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Preface

This book joins the multitude of Control Systems books now available,
but is neither a textbook nor a monograph. Rather it may be
described as a resource book or survey of the elements/essentials of
feedback control systems. The material included is a result of my
development, over a period of several years, of summaries written to
supplement a number of standard textbooks for undergraduate and
early post-graduate courses. Those notes, plus more work than I care
right now to contemplate, are intended to be helpful both to students
and to professional engineers.

Too often, standard textbooks seem to overlook some of the
engineering realities of (roughly) how much things cost or how big
computer programs for simple algorithms are, of hardware for
sensing and actuation, of special systems such as PLCs and PID
controllers, of the engineering of real systems from coverage of SISO
theories, and of the special characteristics of computers, their
programming, and their potential interactions into systems. In
particular, students with specializations other than control systems are
not being exposed to the breadth of the considerations needed in
control systems engineering, perhaps because it is assumed that they
are always to be part of a multicourse sequence taken by specialists.
The lectures given to introduce at least some of these aspects were
more effective when supported by written material: hence, the need
for my notes which preceded this book.

By design and because of its background, this book is different and
unusual. A detailed outline is given in Chapter 1, but here note that:

* the coverage of topics is exceptionally broad for a book which
does not claim to be a handbook, although the theory is mostly
restricted to linear time-invariant dynamic systems;

e the multiplicity of chapters almost constitutes modularization, a
property which makes the book a useful elementary reference
and which leads to some overlap of chapters and repetition of
basics;

* the level of the book is mostly undergraduate and elementary,
with references to more advanced and complete presentations
added for those wishing to progress further — examples are very
simple ones, intended to show how the theory translates into
usable algorithms; and



xx  Preface

the modularization is mostly on the basis of usefulness, as I am
convinced that so-called unifying theories are appropriate, even
for non-specialists and students just beginning to learn about the
subject.

Thus the book will be helpful to several classes of readers:

students, especially undergraduates and early postgraduates — to
supplement their textbooks and as a handy overview;

engineers who are not control specialists — to summarize in one
place the nature of the field so they can interact with specialists
or, with this as a starting place, learn enough to help with a
particular job; and

control systems specialists — as a refresher concerning topics
outside their speciality.

It is appropriate to acknowledge a number of influences here.

Although students who made it clear that standard textbooks were not
entirely satisfactory were the original motivation, the Electrical
Engineering Department provided helpful support, and my industrial
experience undoubtedly influenced my attitudes. Several colleagues,
notably Drs Gerry Ledwich, Gerry Shannon and Pra Murthy,
contributed by discussing the concepts and conveying their experiences
in trying various aspects of teaching.

LCW



1

Introduction and overview

The feedback control systems specialist has a multifaceted job
involving several different types of tasks; an alternative point of view
is that control systems encompass several different sub-specialties
from which an engineer might choose to emphasize only one or two.
The aspects of the systems to be understood include:

1. the process being controlled, whether it be a beer brewing plant,
a refinery, an aircraft, or an artificially paced human heart;

2. the hardware, including instruments for sensing, wiring
carrying data, computers processing data, and motors
implementing commands; and

3. the algorithms used and the computer coding which implements
them.

People tend to specialize in one or another aspect, and personal
inclinations tend to lead to at least one traditional demarcation, that
between the ‘control engineer’ and the ‘control theorist’. The former
is nominally concerned with hardware, instrumentation, and
‘practical’ engineering; the latter is devoted to mathematics and
computer utilization, with applications, if any, being those with
advanced performance demands such as in aerospace systems.

This hardware vs. theory split is common to many fields, but with
control systems the availability of inexpensive computer power is
bringing these together again, and in particular is making possible
many algorithms formerly thought too sophisticated for applications
such as machine and process control. For example, observer and
filter algorithms now allow inferences to be made about the internal
workings of processes without actually measuring internal variables,
and those algorithms are well understood and easily computed with
commonly available computers.

At the other extreme, the desire of engineers to improve control of
some long established systems, such as steamships, plus the need to
succeed with new systems such as robots and nuclear power plants, are
making demands on theorists for more applicable results.
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The meetings of known theory with present applications and the
demands for better performance make it necessary for all control
systems engineers to have an overview of the field. This book is an
introduction to the elements of the field for those who will have future
contact with it, either as specialists in control or in other fields for
which control is a means to an end.

In this first chapter we present a brief overview of computer
control systems engineering. In section 1.1 we look at feedback
control systems, in order to distinguish our usage of the word
‘control’ from those who work in what we might call situation
supervision. Then section 1.2 gives an outline of the sources of
influences which have contributed to the control systems field, with
section 1.3 giving three standard problems which are discussed in the
light of small and large systems. Section 1.4 gives a breakdown of the
field, similar to that followed later in this book and section 1.5
provides a list of ‘tools of the trade’, i.e. a selection of the many
learned society journals and magazines in the field plus useful and
available computer programs for studies on personal computers.
Finally, section 1.6 considers the outline structure and philosophy of
the later chapters of this book.

1.1 WHY HAVE FEEDBACK CONTROL SYSTEMS?

Control systems are needed for simple tasks (e.g. turning motors on
and off, starting furnaces) and for complicated tasks (such as robot
motion co-ordination and aircraft autopiloting). Feedback control
systems are needed because, for various reasons (such as imprecision
of components and disturbances by external events), the outputs of a
system cannot be relied upon to be suitably precise — so they are
measured and the inputs adjusted to allow for the inaccuracies found.
It is precisely this measurement of output and using the information to
influence the input, i.e. this feedback, that makes control systems
fascinating and difficult.

Primitive examples of the need for simple on-off commands
augmented by a bit of feedback appear with automatic washing
machines. A portion of the wash cycle has the drum being filled with
water and agitation started. The sequence of

a) water valves opened
b) water valves closed
C) gears set to cause agitation (rather than drum spin as in the spin



Influences on development of the field 3

dry portion of the cycle)
d) motor started

could in principle be a timed one, requiring only a set of cogs on a
clock drum. However, variations in inlet water pressure mean that the
time for the drum to fill will vary, so the solution is to sense water
level and use this before step b) rather than pure timer activity to
cause the next step. Thus feedback is needed even at this level.

More elaborate examples occur with aircraft autopilots, which must
keep the craft on course and stable in the presence of head winds,
gusts, varying fuel and passenger loads, etc. Here, course and vehicle
attitude and altitude must be measured and the craft flown by the
autopilot utilizing control algorithms to keep these quantities as
desired.

Many such problems can be represented by the block diagram form
of Fig. 1.1.

Disturbance

Desied + _ =" + V4 Object
value Controller 1>  Actuator to be > Output

/N controlled

Measurement
device <
Measured (sensor)
value

Figure 1.1 A typical control system block diagram. The boxes represent
objects and the lines represent communication paths. Desired value, etc.
represent signals.

1.2 INFLUENCES ON DEVELOPMENT OF THE FIELD

Perspective on a field is difficult to obtain without some knowledge of
its history. History may be considered as a chronological sequence,
but we choose to present it as a meeting of many influences, and
observe that therefore there are a number of tools and approaches
which do not necessarily sit well together.
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One influence has been that of the inventors. Devices which
demonstrate a feedback control property date from antiquity, and
include water clocks and geared windmill pointers. The control
systems field is usually taken to date from James Watt’s invention of
the steam engine governor in 1769. This clever device, still
observable on vintage steam engines from less than one hundred years
ago, is shown in Fig. 1.2. The principle is simply one of using the
centripetal forces associated with the rotation of the motor shaft
coupled rotating balls to adjust the steam valve admitting steam energy
to the cylinders. Among the important sensor inventions was Sperry’s
gyroscope for aircraft in 1912-14.

Figure 1.2 A Watt’s governor, used for more than a century to
regulate the speed of engines, particularly steam engines. This one is on
a turn-of-the-century traction engine. The engine shaft is geared to a
shaft which rotates the two heavy balls. These latter are on swinging

s with speed, and these arms are
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A second influence has been that of the process control
engineers, particularly chemical engineers. Many control tasks in
batch and continuous flow processing have used pneumatic or
hydraulic controllers. This has limited the range of control
algorithms to those possible with such elements, and in particular to
proportional, integral, and derivative control (PID). This technique
dates back to the mid-19th century and is highly developed and widely
understood.

The electrical engineers have contributed their understanding of
frequency response. This derives from their history in electrical
power generation, which is usually alternating current (AC), and later
their work in communications and the associated amplifiers. Key
advances were those made by Black, whose feedback amplifiers were
patented in the late 1920s and reported in (Black, 1934), and by
Nyquist (1932) in a seminal paper on stability and Bode whose studies
in the 1930s of gain-phase relationships made extensive use of the
graphical representation associated with his name and were widely
disseminated in (Bode, 1940, 1945).

Mathematicians have been a part of the field since Maxwell in
1868 applied linearization and differential equation theory to
demonstrate why some of the Watt governed engines demonstrated an
oscillatory speed profile called ‘hunting’. Not long afterward Routh
related stability to the differential equation coefficients, and Lyapunov
formed a stability analysis approach which was not rediscovered until
the late 1940s. Mathematicians also applied some of their concepts to
creating new approaches to design and analysis. Among these were
the filter theories developed by Wiener during the second World War
and later publicly reported in (Wiener, 1949), the state estimation
filter of Kalman (1960) and Kalman and Bucy (1961), the optimal
control theories of Bellman (see e.g. Bellman, 1957) and Pontryagin
and his colleagues (an English transaltion is Pontryagin et al., 1962) in
the 1950s, and the sampled data theory originating with the physical
problem posed by radar in World War II and developed by Ragazzini,
Zadeh, Jury, Franklin, and others (see e.g. Ragazzini and Zadeh,
1952, Ragazzini and Franklin, 1958, Jury, 1958). These also lead to
the branch of control systems studies known as control theory.

Although electrical engineers influenced control systems in many
ways, their development of the digital computer has transformed
the field. Computers were proposed for real-time process control in
1950, were demonstrated for flight and weapons control systems by
the:mid=1950s;;weresusedsinssuperyisory roles (i.e. in calculating and
commanding set points for analog control loops) in industry in the late
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1950s, and replaced the analog elements to become inline direct digital
controllers shortly thereafter; by the mid-1960s minicomputers such
as the DEC PDP-8, were coming into common use. The now
universal programmable logic controllers (PLCs) were first used in
1969, and since their appearance in 1974 microprocessors have
gradually come to make the advantages of digital control available at
almost all levels.

Mechanical engineers and instrumentation specialists have
designed many of the devices used in control systems, from refined
valves to sensitive accelerometers, and their machine tools and the
robots themselves need control engineering and theory to work well.

User needs have been spurs in particular directions ever since the
industrial revolution’s demand for mechanical power at constant speed
motivated Watt. Wartime may emphasize performance regardless of
cost; industrial users may look for improved profitability. Many
users look to feedback control to make their tasks possible, just as the
feedback amplifier made long distance telephony practical. Present
needs for manufacturing flexibility are driving the development of
flexible manufacturing systems (FMS), with both devices and
theory in demand.

Finally, university academics have contributed to the shaping of
the field by alternately subdividing the field into special interests
according to application (chemical, electrical, mechanical engineering;
mathematics; computer applications) and combining it into a single
department called ‘Control Systems’, ‘Systems Science’, or something
with a similar name. While subdivision is perhaps natural, the
combining seems to date from the 1950s and the Massachusetts
Institute of Technology.

A legacy of the above influences is that the field is not unified.
There are many techniques which are widely used in pockets of
industry, for example. Thus PID controllers are the mainstay of
process control, whereas Kalman filters and optimal control are
important tools for the aerospace businesses. Large companies,
research institutes and universities have the luxury of specialist
theoreticians for advanced studies, and sometimes a concomitant
reputation for impracticality. In other situations, process controllers
know their processes and devices very well, but may either be
unfamiliar with advanced theories and computer controllers or
consider them uneconomic to implement. Furthermore,
instrumentation specialists are important to both fields and to advances
into.new.areas.such.as biomedicine, while computer specialists may
prove crucial to all applications. The control systems field
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encompasses all of these, partly because of history and partly because
of their common core problem: to control an object or set of objects.

1.3 TYPES OF CONTROL - REGULATION,
TRACKING, TRAJECTORY DESIGN

The typical control system problem is presented as one of feedback
control of some object or group of objects, with the aim of the
controller to make the output match the input. The presence of
disturbances, if any, is also modelled as an input to the object, and it is
usually unspoken that the object may not have precisely the properties
for which the design was made. A typical block diagram from an
undergraduate text is as in Fig. 1.1. Also unspoken is the source of
the input and how it came about.

Although with some effort many systems can appear to have this
characteristic form, or ‘structure’, it is not always helpful to think of
them this way. For one thing, real systems may have many (100s or
1000s) such loops in them with inputs and outputs coupled. More
importantly, the design techniques will vary with the overall goals of
the designer.

Only a few useful distinctions are made with the terminology. Most
study, and the easiest, is concerned with single-input-single-output
(SISO) systems; the alternative is multi(ple)-input-multi(ple)-output
(MIMO) systems, sometimes called multivariable systems. Another
important distinction we shall make is between regulators,
servomechanisms, and trajectory designers.

1.3.1 Regulation

When the error between input and measured output is operated upon
by the controller to generate the commands to the plant (controlled
system), there are two common possibilities. The first occurs when
the input is a constant which is occasionally changed. The value of the
input is called the set point, and the designer’s goal with the
controller is to generate commands so that the plant output rapidly and
smoothly, without drama in the form of wild oscillations, takes on the
value of the set point and then maintains that value in the presence of
exogenous disturbances.

Avsimplerexamplerof ‘aregulator is presented in Fig. 1.3. Here a
water tank is to have its level maintained at a specified depth while
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water is being drawn off (both purposely and through evaporation).
A motor drives a pump which adds water from some reservoir. The
problems for the engineer include how to instrument the tank so that
water depth is known, whether to specify a constant speed motor used
in an on—off fashion or a variable speed motor, and what algorithms
to use in deciding when, and in the variable speed case at what speed,
to run the pump motor. All of this is for the relatively simple task of
maintaining water depth at a fixed level, the set point level, in the
presence of water usage, leakage, evaporation, and other disturbances.

ﬂ Depth sensor

| SR R

i
......................... i
Computer

[ Water supply
b 4 Motor/Pump f————m—o <—

ﬂ Water use

Figure 1.3 A very rudimentary control system for regulating water depth
in a tank.

Another typical example of a regulator is one of the earliest control
systems: the Watt’s governor was a clever arrangement of mechanical
devices to sense and control the speed of stationary steam engines. As
such, it was a set point system with the desired speed being the input
and the actual speed the output. Measurement was performed by
means of flyballs rotated by geared output of the engine shaft; radius
of rotation of the flyballs indicated speed, and this radius was coupled
via levers to steam valves on the engine. The set point became explicit
and changeable when a spring system for varying the desired speed
setting was added.

In current versions of the Watt problem, the set point may well be a
number commanded by a supervisory technician through a console
dial or a number in a buffer loaded by a supervisory computer; the
sensormight be a tachometer,,and,the actuator a solenoid moving the
engine’s throttle.
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The regulation problem is so common that a range of methods is
applicable: off-the-shelf controllers; classical control theory using
both steady-state and transient performance indicators; modern
theories of the linear (dynamics) quadratic (performance index)
regulator (LQR) type. Disturbance rejection is presented differently
with these approaches, however.

1.3.2 Tracking and servomechanism problems

An alternative to the above is to have the input vary in a somewhat
unstructured manner and require the output to track this input. A
paradigm problem here (and the one which produced the terminology)
is the naval gun turret pointing problem of a century ago. A gunnery
officer rotates a dial to command a gun pointing direction. This dial
reading is then input to a set of motors which rotate the gun turret
until the guns point in the required direction. As distinct from the set
point problem, the input could in principle change frequently and
unpredictably and the output be required to match it. Such tracking
problems are called servomechanism problems or servo problems,
and the designer’s task is to have the output track the input rapidly for
at least a specified class of inputs (such as all those which have a rate
of change less than a specified value).

To see the ubiquity of servo-type problems, we notice that in
section 1.3.1 in the mention of the updated Watt steam engine control
a modern implementation might require a small motor or solenoid to
operate the steam valve. We can well envisage that this actuator might
be required to move the valve frequently and accurately, thus giving a
servo problem in an overall regulator milieu. A modern example is
provided by robots, whose manipulators are required to move
accurately along a designed path.

Servo motors are among the most common actuators in control use,
and much effort goes into developing the control electronics and
electrical devices so that they work well. Servo motors drive the
moving arms of computer disc drives and the pens of plotters in
applications that are familiar to most of us; an alternative for small
tasks is the stepper motor.

The theories applied here have been classical (of the frequency
domain or root locus type) and modern (using linear quadratic
tracking methods).
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1.3.3 Trajectory design/targeting problems

There are a number of problems in which the task is neither to
maintain a level nor to track a signal. One such problem is a
navigation problem: the automatic navigation from city LA to city
NY is unlikely to be solved by taking into consideration only the miles
to go. Rather the system must know where it is, where it is to go, and
establish some path for going from ‘here’ to ‘there’ efficiently. Other
problems of this type abound: a robot arm may need to move from
one position to another, carrying a heavy load and avoiding obstacles
in its work area, in a rapid manner which does not overly stress the
components; a processing plant may need to be put through a
sequence of operations to configure from one product line to another;
a spacecraft may be required to change orbits with minimal use of
fuel.

The problems in these cases are often approached using more
advanced ideas of control theory, such as state estimators and optimal
control; we shall call them trajectory or target problems.

1.3.4 Systems

An important failing of the above classification is that many real
problems have aspects of all three in their operation. We have already
seen a simple regulator problem which has a servo motor subproblem
(i.e. the valve actuator of a constant speed motor). A robot, with its
problem of suitable arm trajectories, also has servo problems in the
actuation of particular joints. Process control systems have several
levels of regulator-type (i.e. constant required output) problems with
servo actuators.

A space launch booster rocket needs trajectory planning in real-time
to lay out the most efficient path from sensed position to desired orbit,
converts that path into a flight plan track to be followed, and
implements its plans by commands to subsystems which are themselves
control systems having command following, i.e. servo type,
specifications.
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1.4 THIS BOOK: ELEMENTS OF CONTROL SYSTEMS
ENGINEERING

Many textbooks concentrate on one or two aspects of control
engineering, such as theory or computer applications, to the exclusion
of others; some even specialize as to the level, such as optimal control
theory for linear systems with quadratic performance indicators,
algorithms for system identification, or basics of computer hardware.
A control engineer, however, is necessarily systems oriented, and
some of the trades to be understood are given below.

*  Systems engineering
*  Hardware
Instrumentation for sensing
Hardware for actuation
Computers — hardware and software
Communications between elements of the system
*  System modelling
Mathematical and simulation models
System behaviour — desired and actual
*  Control theory and algorithm design
Classical and modern methods, both time domain and
frequency domain approaches
Implications of the theory and appropriate applications

This book can be viewed as having three major subdivisions,
incorporating the above:

*  Engineering
*  Modelling
*  Theory

1.4.1 Engineering

In Chapters 2-8, we consider systems engineering in overview and
then the practical application material concerning sensors, actuators,
computers and their programming, and finally a bit of ‘theoryless’
control tuning.

Systems engineering is the rather ambiguous name given to a
number of levelsiof studiesiof engineering problems. We will take it
to mean three levels:
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1. the top level which is the management oriented study of system
requirements necessary to make basic decisions of strategic type;

2. the second level which is one the engineer will face frequently —
this entails system planning (but we do not consider the problem
of schedules and plan implementation); and

3. the third level which is the component level, and concerns choices
of hardware, software, and algorithms.

In most general respects, systems engineering is no different for
control systems engineers from what it is for other engineers, except
for the particular problems addressed and for the need to emphasize
‘systems’. Partly for that reason, we address it only briefly and at the
two lower levels (in Chapter 2).

The components for implementing computer control systems

The control task requires measurement, decision, and actuation.
Hence, the hardware needed consists of instrumentation for sensing the
process’s state, the computer and its interfaces for deciding what
commands to send, and actuators for implementing the commands.
The structure of the control may require communications between
components; the control algorithms are implemented in the computer
using software.

To control a quantity, first that quantity must be directly
measurable or inferable from measurements. This requires sensors
and, in many cases, transducers (i.e. devices to translate the sensor
output into a form which is useful for processing — in our case, into
electrical signals for input to computers). Measuring devices abound:
it is possible to measure temperatures, radiation of various kinds,
displacements, speeds, accelerations, forces, voltages and currents,
etc. Often quantities are to be measured and recorded, i.e. data logs
are to be kept, even though these quantities are not themselves directly
controlled. This area is the subject of Chapter 3.

If quantities are to be actively controlled, then there must be a way
to influence their values and there must be devices, called actuators, to
operate the influencers, called control elements. Thus a temperature
can be maintained only if heat can be added and/or removed from the
process; turning the heater or cooler on or off, or allowing the
process to come under the influence of a hot or cold substance, is done
using some sort of actuator. Simple actuators include on/off switches
for,motorsj;a,complexsactuatorsmight use a valve, opened and closed
by a motor, to allow steam through a pipe to heat a liquid for which
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the temperature is to be maintained in the presence of heat losses.
Complex control elements/actuators such as the latter are sometimes
themselves feedback control systems of the regulator or servo type.
Chapter 4 briefly considers actuators and control elements.

In computer control systems, computers are the key and defining
element. A control systems engineer can have little hope of being an
expert in this field in which specialties are proliferating. Knowledge
of how the computer communicates with devices connected to it is
essential, however. Furthermore, the control task is not the usual data
processing or number crunching task of elementary computer courses:
it must operate in real time, and for large systems it is inherently in a
multitasking environment. These features mean that the control
systems engineer needs some appreciation of interrupts, of real-time
operating systems, and of the programming language implementation
being used. In many cases, these tasks are taken care of with off-the-
shelf systems, particularly those allowing only logical control, (or
programmable logic controllers, PLCs) or simple PID (proportion—
integral-derivative) controls handling only one loop, and those
allowing structured supervision and monitoring of such
straightforward algorithms. Chapters 5-6 are concerned with
computer hardware and software respectively.

In a large plant, there may be hundreds, if not thousands, of control
loops operating simultaneously and interacting. The associated
computer power may be centralized in one location, may be in
interconnected cells of activity, or may be in isolated locations with no
direct automatic interaction. In all cases involving computers,
however, sensors must send signals to the computers, and actuators
must receive commands from the computers. If the computers
interact, they must also have communications channels arranged,
perhaps at several levels: sensor to computer, computer to computer,
and computer to actuator. These can all be attacked in several ways,
as we see in Chapter 7.

Finally, the engineer must make all this work together. This may
be done using experience, ad hoc techniques, and rules of thumb, or
by theory-based methods involving studies of mathematical models.
The former constitutes much of control engineering and relies upon
theoryless controllers such as PLCs and rule of thumb tuning of
available control parameters, as in Chapter 8.
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1.4.2 Process characteristics and modelling

There is no substitute for an understanding of the process to be
controlled — not even an elaborate mathematical model — because real
processes are not equivalent to a set of integro-differential-difference
equations (the most common types of models). The designer of an
aircraft autopilot need not necessarily be an aerodynamics expert, but
he must understand how airplanes fly and manoeuvre. A consultant
advising on a controller for a process such as beer-making need not be
an expert on the product, but he should understand what is essential in
the process. The designer of a resuscitator unit need not be a medical
doctor, but he should know some physiology. On the other hand, the
experts on the application should also appreciate the essentials of
control systems engineering if a useful collaboration is to result.

Particular process characteristics which are likely to be important
regardless of the application are numerous. These include time
response characteristics of controlled quantities to inputs (e.g. delays
in response, speed of response once it begins, stability characteristics,
and steady-state errors), measures of accuracy of response (e.g. mean
square error) and responses to particular classes of inputs
(particularly sinusoidal inputs, yielding frequency response).

In some cases, it may prove necessary to construct a model of the
system; this could be an analog, scale, pilot plant, or mathematical
model. The last is the most common in the literature. Here a set of
equations, often differential, is constructed for which the dependent
variables represent quantities within the actual system. A simple such
model relates altitude and down-range distance of an exo-atmospheric
rocket to the motor thrust and steering law: it is called simple because
the construction is based upon well-known physical laws, not because a
useful model is likely to involve only a couple of equations.
Similarly, a process controller requiring mass balance and
temperature control may be straightforward to derive. On the other
hand, the attempt to construct models for some chemical processes
may be difficult, and appropriate models in biology, such as a
quantitative model of human intermediate metabolism suitable for use
in designing an artificial pancreas control law, have proven elusive.

Models and process understanding are application specific.
Fortunately, most processes have existing models suitable for use in
the field involved. Models and their representations are the subjects
of Chapters 9-12. Performance characterization is in Chapter 13.
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1.4.3 Control theory and algorithms

Control theory as a discipline separate from applications in, for
example aeronautical engineering, chemical engineering, electrical
engineering and mechanical engineering, probably arose in the 1950s,
partly out of the recognition that the separate branches were
overlapping and complementary in their approaches, and partly
because the knowledge base was becoming too large to handle in only
a course or two. The needs of the aerospace industry for high
performance pushed theoreticians into new applications.

The result is debatable, but clearly, from scanning the offered
textbooks in several fields and several countries, certain knowledge is
considered fundamental in the area of theory. These fundamentals are
concerned with techniques for linear time-invariant systems: root
locus methods, frequency response methods, and state-space methods
for the analysis and design of controllers for sets of equations which
purportedly model real devices. In the elementary courses, the
systems are of low order, are linear, and are known.

Chapters 13-34 outline some of the basic notions of both classical
and modern control theory at the undergraduate and early post-
graduate level before introducing intermediate post-graduate topics
and finishing with a brief look at recent research level developments.
In this, we use classical to refer to methods based upon Laplace, z- and
Fourier transforms, and modern to refer to state—space methods; we
remark that the classical methods date to before the turn of the
century and the modern ones became popular over 30 years ago. The
‘theory’ chapters (13-34) cover the following ground.

1. Introduce performance criteria (in Chapter 13).

2. Present various viewpoints, especially differential/difference
equation coefficient tests, Nyquist methods, and Lyapunov’s
direct method, of stability analysis (Chapters 14-17). These are
seen as the basis for much of linear system theory, with
representation of classical transform domain pole checking and
steady-state error prediction, the core notion of frequency
domain analysis, and the alternative of generalized examination
of differential/difference equation trajectories.

3. Present root locus and Bode methods of analysis and design
(Chapters 18-20). These are, when done for continuous time
systems, the standard methods taught in first undergraduate
courses. The former studies the system pole locations (choice of
poles is given in Chapter 19'and a very special case is treated in
Chapter 21); the latter studies frequency response.
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Discuss controllability and observability and the associated
notions of pole placement controllers and state observers
(Chapters 22-25). These are standard modern undergraduate
course topics. The technical terms of controllability and
observability are explained and tests described. Applications
include the pole placement design of control laws and the first
meeting with state estimator filters, i.e. observers.

Introduce optimal control, with emphasis on Lagrange multiplier
and the related Pontryagin methods for discrete time systems and
examples relating to the standard minimum time and linear
quadratic (LQ) problems for linear systems (Chapters 26-27).
The results are standard, but we also lead into numerical
methods.

Introduce the topic of noisy measurements state estimation. The
Kalman filter, its engineering extensions to non-linear systems,
and the observer for explicitly noisy systems are met (Chapter
28). The issue of the interactions of filters and control laws is
addressed (Chapter 29).

System identification is looked at in several different ways, with
algorithms shown to illustrate some of the concepts (Chapter 30).
Adaptive control, particularly parameter adaptive control, is
introduced in a couple of variations (Chapter 31). The important
notions associated with self-tuning regulators, which are
commercially available, are among those met.

Some of the notions and goals of learning control systems and
robust control systems are presented (Chapters 32-33). Both of
these are advanced topics of intense research interest, and the
development here is superficial, intended to present only the
points of view applied in the research.

Some theory associated with control system structuring, such as
model approximation and control separation, is introduced
(Chapter 34). Some of this is dated, but is still included, partly to
show that not all systems use SISO ideas or direct extensions of
those.

It must be repeated that most of the material is presented only for
linear systems which do not vary with time. Rarely are non-linear
systems more than commented upon (because there are so few general
results). This book attempts to indicate the current situation for each
topic, to serve as a source book for those wishing to progress further
instheirsownsstudiessof -asparticular topic and as a review for those
seeking a reminder of things once known.
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1.5 TOOLS OF THE TRADE

Any engineer’s principal tool is a brain and the knowledge and
judgement stored in it; engineering remains partly a science and partly
an art form. The engineer will know the process being controlled -
its physics and/or chemistry and/or biology — and have a library of
appropriate techniques to handle the problem. These latter tools will
at a minimum include the following.

1. Knowledge of the standard hardware used in a particular range
of applications.

2. Classical design and analysis methods for linear systems.
Stability testing using algebraic methods such as Routh or, for
discrete time systems, Schur-Cohn or Jury testing.
Compensation of the poles using root-locus methods.
Compensation in the frequency methods, with lag, lead, and lead-
lag networks designed using ideas based upon Nyquist-Bode-
Nichols charts.

3. Modern design and analysis methods, mainly for linear systems
and operating principally with state-space models. Methods
include optimization using Pontryagin’s maximum principle and
Bellman’s principle of optimality, with particular emphasis on the
linear—quadratic—gaussian problem (i.e. a problem with linear
dynamics, quadratic optimization criterion, and gaussian noise),
and the filtering ideas of Kalman and Luenberger. Structural
ideas of observability and controllability and the stability ideas of
Lyapunov are also important.

Beyond this, a library of textbooks, monographs, and perhaps parts
specifications and reports will be available; computational tools such
as computer aided design (CAD, sometimes CACSD for computer
aided control system design) and simulation programs will probably
be available.

To maintain knowledge, the engineer will take two types of
magazines — technical journals and advertising-containing magazines.
The technical journals most commonly used are listed here.

*  IEEE Transactions on Automatic Control, published by the
Control Systems Society of the Institute of Electrical and
Electronics Engineers, US: Control Systems Magazine is a more
survey- and application-oriented publication by the same group.



18 Introduction and overview

e IEEE Proceedings, from the Institute of Electrical and
Electronics Engineers, occasionally has survey special issues
summarizing theoretical advances in control systems.

* IEE Proceedings-D on Control Theory and Applications,
published by the Institution of Electrical Engineers, UK.

*  ASME Journal on Dynamic Systems, Measurement, and Control,
published by the American Society of Mechanical Engineers, US.

*  Automatica, the journal of IFAC, the International Federation on
Automatic Control, published by Pergamon Press.

Others include:

e International Journal on Control, published by Taylor and
Francis Ltd., UK, and

»  SIAM Journal on Control and Optimization, published by the
Society for Industrial and Applied Mathematics, US.

The above tend to be theory and research oriented. A great many
more specialized publications have articles which may be important to
engineers working on particular applications, e.g.

*  Journal of Process Control, a relatively new journal published by
Butterworth-Heinemann Ltd., London, UK; and

e JEEE Transactions on Robotics and Automation and IEEE
Transactions on Aerospace and Electronic Systems, both
published by the Institute of Electrical and Electronics Engineers,
US.

For the process engineer attempting to keep up with developments
in hardware and system design trends, there are several magazines
containing system advertising and short, direct applications articles.

e Control Engineering, published monthly by Cahners Publishing
Company, a division of Reed Publishing, US.

e Automation and Control, published monthly in New Zealand by
Associated Group Media Ltd.

e [&CS (Instrumentation and Control Systems), published by
Chilton Co., US.

e Control and Instrumentation, published by Morgan—-Grampian,
UK.
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Beyond the above, the engineer will have study and evaluation tools.
Laboratory instrumentation may or may not be part of this, but, just
as 30 years ago engineers used slide rules and 15 years ago they used
calculators, they now use personal computers and workstations for
many design and study calculations. The software for these, once
available only on main-frame computers, allows detailed calculations
and simulations. Provided mathematical models of systems are
available, one may use readily available packages, such as:

« MATLAB®, from The MathWorks, Inc., US, for various design
calculations such as root locus plots, frequency response plots in
various forms (Nyquist, Bode, Nichols), conversions between
continuous-time and sampled-data models, and time response
computations (essentially simulations). Additional packages are
available for robust control, system identification, and digital
signal processing studies. A student version is available.

« CTRL-C®, from Systems Control Technology, Inc., Palo Alto,
California, which is similar to MATLAB®.

These are mainly suited for the computations used in design and
analysis. Simulations are also very important, and computer packages
which make simulations easy to design and operate include the
following.

*  SIMNONS®, from Lund Institute of Technology, Sweden, and
available from ESC (Engineering Software Concepts, Inc.), US,
and SSPA Systems, Sweden, is a system simulation program
allowing continuous time, sampled-data, and mixed systems to be
simulated.

*  PSI® is a simulation tool from Delft University of Technology
which is particularly easy for undergraduates to use.

* EASYS5@® is a powerful program available from Boeing, Seattle,
Washington, US, which exploits workstation power to create,
analyse, and operate elaborate simulations.

« SIMULINK® is a product from The MathWorks, Inc., US
integrated with their MATLAB® package.

In larger companies, it is not unusual that they have created their
own, more specialized programs. More and more textbooks are also
including at least some programs for analysis or simulation of special
methods.
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Most engineers will find it useful to have at least some appreciation
of standard computer languages. A knowledge of one language of a
certain level is usually transferable to others at that level. Among the
likely possibilities are the following.

e Pascal is a common teaching language with many extensions to
allow it to be useful. Its structuring is its obvious feature.

» Fortran is the language of choice for many number crunching
applications. A close and common relative is BASIC.

*  Modula-2 and ADA are the newest candidates for a number of
reasons, including their structuring and (in the case of ADA)
their sponsorship.

e C, an intermediate level language intended at first for systems
programmers, has a good capability for direct dealing with the
hardware, and is in some respects like a cross between assembly
language and an ordinary compiler language.

* Assembly languages and associated programs exist for most
common processors.

The above are all for digital computation. An additional simulation
tool, becoming less common because of the increasing power of main-
frame digital computers, is the analog computer. This is a set of
electronic operational amplifiers, arranged so that they may be
interconnected using simple patch cords to yield solutions of ordinary
differential equations. Voltages within the computer are taken as
analogs of physical quantities, and the time histories of these voltages
are viewed on oscilloscopes or recorded on x-y plotters. Outputs are
displayed on ‘real’ meters, etc., and hence the analog computers are
often used in training operators (and pilots) under simulated
conditions.

In this book, many of the references are to IEEE Transactions on
Automatic Control, IEEE Proceedings, Automatica, and Automation
and Control. Books frequently referred to are Astrém and
Wittenmark (1990) and standard first texts such as Phillips and Harbor
(1991), Dorf (1989), and Franklin et al. (1990). Many of the
calculations used PC-Matlab.

1.6 THIS BOOK - SCOPE AND GOALS

This book portrays two.elements,of the control systems engineer’s
work. First is the engineering aspect, including systems decisions,
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hardware and software, communications, and elementary process
controller tuning. After a transition incorporating a chapter on the
sources of models and three chapters on model representations, we
proceed to theory, working through performance indicators, stability
and its testing, and pole location design methods and goals. We
continue into essentials of modern theory with information extraction
(filtering), optimal control, system identification, and adaptive
control, and conclude with introductions to specialized and advanced
topics. All of the theory is primarily about methods for systems
which are modelled by linear constant coefficient differential or
difference equations, except when extensions are easily done.

In all cases, the book’s goal is to introduce issues and basic
approaches. Leads into more thorough or advanced treatments are
given for each topic, and for each we attempt a brief summary of the
essential ideas.

1.7 FOR MORE INFORMATION

History can be found in fragments in various texts, depending upon
the detail sought. The article by MacFarlane (1979) is very
instructive. Astrom and Wittenmark (1990) give an interesting
perspective on the influence of digital computers. Jury’s
reminiscences (1987) are also helpful. Bennett (1979) has one of the
few books devoted to a history of the field; he covers the period
1800-1930.

This book is not deep, intentionally, since full and detailed books
can be found concerning almost any single topic mentioned, and the
individual chapters here offer specific references. The reader might
consider this book as a somewhat condensed version of the following
textbooks.

m  Sensors and actuators
- Hunter (1987)
m  Computer control
- Bollinger and Duffie (1988)
- Bennett (1988)
m  Analog control theory
- Dorf (1989)
m  Digital control theory
- Astrom and Wittenmark (1990)
- Kuo (1980)
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- Franklin, Powell and Workman (1990)
m  Advanced topics

- Bryson and Yu-Chi Ho (1969)

- Anderson and Moore (1989)

- Ljung and Soderstrom (1983)

- Maciejowski (1989)
Astrom and Wittenmark (1989)

This list is by no means a complete bibliography, nor is any
mentioned book necessarily the best in the field for all topics
considered. Instead, we mention them here to give the reader some
notion of what books represent a class of books relevant to the topics
listed.
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Elements of systems
engineering of digital
control

Control systems are the subsystems of plants which generate and send
the commands to the plants’ ‘working’ components. Hence, they are
the elements which turn motors on and off, regulate inputs, record (or
log) data on the processes, send messages to operators, etc. The level
of sophistication is decided at the systems engineering stage, with the
goal of using control components and techniques appropriate to the
task — neither using a supercomputer to turn a heater on and off nor a
commercial personal microcomputer for a sophisticated satellite
antenna pointing system. The various decisions involved are aspects
of systems engineering, and require decisions at a number of levels.
This chapter explores only two levels: system structuring and
component selection.

2.1 SYNOPSIS

The objective of systems engineering is to provide orderly overall
management of the development and operation of systems. It is this
management aspect that the engineer must keep in mind, often at
several levels simultaneously. Among the intermediate level problems
are the selection of the layout, or structure, of the control system.
Here it is decided whether control is centralized or distributed, and
whether in multiple computer cases the computers interact at all, and
if so, whether hierarchically.

At the lowest level are the problems of component and algorithm
selection. Objective evaluation is possible in several different formats:
qualitative checklists, qualitative/quantitative ranking and weighting,
and quantitative scoring!"A"knowledge of how project costing is
evaluated is essential to contributing to business decisions.
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2.2 MANAGEMENT-LEVEL CONSIDERATIONS

The top level of systems engineering is the program planning level. It
is likely to deal heavily in general rather than specific systems
elements, with specifics derived as needed from lower level studies.
The study may be of whether a new or refurbished plant or assembly
line or a new ship control system should have an overall digital
computer control system and even whether a flexible manufacturing
system (FMS) is to be installed; the impetus may have come from
one or more of several sources, such as salesmen talking to
management extolling the virtues of specific systems or a researcher
finding that further automation of the assembly line might be expected
to produce better quality control.

At this level are investment decisions and operations management,
both of which are beyond the scope of this book.

2.3 SYSTEMS CONFIGURATION ENGINEERING - THE
INTERMEDIATE LEVEL

The intermediate level in computer control systems is the
configuration design. Choices must be made as to quantities to be
measured and logged, quantities to be controlled, how automatic
operations are to be structured, how communications are to be carried
out, etc. All of these choices are specific to the task at hand, but do
not necessarily involve particular component selection. Configuration
design can be among the most difficult parts of design: the answers
must allow for a great many, possibly only partly known, factors.

2.3.1 Closing the loops

For many control problems, the system to be controlled is a relatively
uncomplicated one: a motor to be speed controlled or an amplifier to
be frequency-response compensated. For these, the theoretical
classical control methods, which are largely single-input-single-output
(SISO) and which require well structured problems, are directly and
obviously applicable.

Larger problems will typically require many more decisions, with
choices which may or may not be obvious. Among the choices are the
following:
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1. measured variables;
2. controlled variables; and
3. control technique, both algorithms and structure.

Tying these together are the system requirements, and the final
choices are often arrived at through an iterative process. This
iteration may proceed from the top down or the bottom up, i.e. from
the specifications through increasingly lower level decisions as to
detail or from step-by-step build-up from component control up to a
major system.

The choice of controlled variables is sometimes obvious, but even
simple systems can show subtleties. Hence, fluid flow can be
controlled by controlling a pump's speed, by using a constant speed
pump plus a valve, or by maintaining a suitable head in the liquid
supply tank. Another example is that a boat's course can be affected
by rudder action or by the differential speed of dual propellers.

Similarly the choice of measurements may be obvious, subtle, or
simply expedient. For the fluid flow problem mentioned above, one
might measure the actual flow or the supply tank depth, for example.
Additionally, the need for instrumental or other compensation may
dictate that temperature be measured. Furthermore, it may be
necessary to measure disturbances and compensate for them.

The control approach must be selected. One common method is to
use pair-wise matching of measurements and control variables; this
tends to yield thousands of control loops in large process controllers.
In other applications such as aerospace navigation and control, the
inputs and outputs are treated in groups using multiple-input-multiple-
output (MIMO) control algorithms.

Associated with algorithm choice, but different from it, is the
choice of control structures. MIMO controllers may use a
modern state estimator cascaded with an optimal controller, for
instance (see Chapter 29). In basically SISO approaches feedback
control will almost certainly be used. Beyond feedback are other
possibilities, including cascade (nested) and feedforward controllers
(see Chapter 34).

For a large plant, many such choices will be made. The result of all
of these choices, when combined, is a system. Even a portion of the
system will look complicated, as can be seen in the following example.
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Example

A detailed and instructive example is given by Singh et al. (1980, pp.
185+) based on a simplification of regulators used by Foxboro
Company on ships. The ships are turbine powered and require
superheated steam at constant pressure in the presence of a need for
variable quantities of steam. The main control variable is the fuel
flow rate to the burners of the boiler, and the approach is to act on the
enthalpy of the saturated steam. As presented by the reference, the
design progresses in a bottom up manner as follows.

The basic situation is shown in Fig. 2.1, and the progression of loop
installations is given in Fig. 2.2(a)—(d).

STEAM

BOILER

Ventilator

Air Steam pressure sensor
] ——~, BURNER

Fan motor Fuel flow control Steam flow rate sensor
Air fiow rate sensor
Ventilator ( ) Fuel flow rate sensor
vane controller
Fuel supply

Figure 2.1 A steam boiler tank, with its various sensors and actuators.
The object is to supply a regulated amount of steam energy to an engine.

The reasoning behind the development is straightforward.

1. The first loop to install is the principal one: a regulator with a
measurement of steam pressure as input and a command to the
fuel flow rate valve as output (Fig. 2.2(a)).

2. Evaluation shows that, since the above command is to the valve,
the flow rate can still vary because of pressure variations in the
fuel supply. Although these pressure variations would eventually
affect the steam pressure and cause valve commands to change,
improved regulation is achieved by measuring the actual fuel
pressure and using thisitorgenerate a secondary command to the
valve (Fig. 2.2(b)).
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Figure 2.2 Stages in development of feedback control for the boiler using
process control (PC) elements: (a) steam pressure feedback to fuel valve;
(b) addition of fuel flow feedforward; (c) addition of steam pressure
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3.

If the motor demands more steam suddenly, this may be seen as a
disturbance to the steam pressure maintenance system. Because
of the size of the boiler, however, there may be a time constant in
sensing this disturbance using pressure. To achieve a rapid
response to this situation, a flow rate sensor is installed to
provide a further (feedforward) input to the fuel valve controller
(Fig. 2.2(c)).

Combustion also requires air to burn with the fuel. Maintenance
of the proper air/fuel ratio is therefore also necessary and
requires control loops. The amount of air needed is provided by
a constant speed fan directed at variable-opening vanes (a classic
case of using constant supply plus valving rather than variable
supply). Hence the primary control of the air supply is provided
by a measurement of fuel flow rate input to a controller of the
vane angles. In addition, air flow reaching the vanes may vary,
e.g. due to variations in fan speed or to excess or deficit pressure
due to the burner. To compensate for such effects, airflow is
measured and used as an auxiliary adjustment to the vane angles.
These two effects both influence the vane setting (Fig. 2.2(d)).

In addition, engineering refinements are added, including a limiter

to process both fuel flow rate and valve opening command and base
the command on the more demanding value (to overcome time delays
and avoid smothering the flame in transients due to lack of air) and an
auto/manual option for vane control. The final situation is

represented in Fig. 2.3. The figures are based upon Singh et al.

(1980).

BOILER

Ventilator

Fan motor

Ventiator
vane controller

PC 4

Figure 2.3 Completed multiloop multivariable control system.
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We remark that an alternative is to note that steam pressure, steam
flow rate, fuel flow rate, and air flow are measured variables, while
fuel flow valve opening and air flow vane opening are the command
variables. In principle the variables can be taken as interacting and a
MIMO controller can be designed.

A MIMO controller analysis can show that SISO controllers are
sufficient, depending upon the situation. For example, although in an
aircraft autopilot the roll, yaw, and pitch axes are coupled in an
important way, a space launch missile will ordinarily be flown in such
a manner that yaw and roll manoeuvres are small after lift-off. When
this is so, guidance may well be designed assuming the angles are
uncoupled; this significantly reduces the navigation problem, for pitch
commands and engine commands are then the only ones of major
importance in the orbital injection accuracy.

2.3.2 Computer control configurations — central,
distributed, and hierarchical control

The extremes of the possible computer configurations are shown in
Fig. 2.4: one has a single central computer and control room with all
instruments sending data to it and all control commands issuing from
it; and the other has each loop having its own controller, probably
based upon a microprocessor, and no communication between loops.
The two extremes might be called completely centralized control and
completely distributed control, respectively.

The arguments for and against the two extremes help to define the
rationales for the intermediate systems which are more common.

* Centralized computer This system may benefit from the
economy of scale in having one large computer rather than many
small ones. It might be expected to provide ‘better control’
because the commands for all the components of the system can,
in principle, be co-ordinated ones. However, a back-up computer
might be required to gain the necessary system reliability, the
cabling to and from the central control room will be expensive,
and the system may be expensive to trouble shoot and maintain if
the software is complex.

*  Completely distributed control Each control loop is easy to
understand and tune because the loops are wired independently.
Wiring costs aré minimized:" Trouble shooting is straightforward
(at least as far as breakdowns are concerned), and changes to the
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Figure 2.4 Possible computer control configurations: (a) distributed;
(b) centralized; and (c) heirarchical. S are sensors, A are actuators, C are
computers.

plant are relatively easy to make because co-ordination with other
parts of the plant is not done at the automatic control level.
However, lack of co-ordination may lead to strange interactions
of control loops and significant inefficiencies in machine use.
Tuning of hundreds of scattered control loops is unlikely to be
done frequently. At least some cabling to a central location will
probably be needed so that the operation of the system can be
monitored.

Hierarchical control In this scheme, the computers form a
hierarchy, with some handling direct measurement—controller—
actuator loops, supervisory computers co-ordinating their
actions, planning computers generating parameters for the
supervisors, etc. It has characteristics between those of the two
methodspabovepandpispofwincreasing interest because of the
potential flexibility available.
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The choice of structure will be influenced by the plant
configuration and projections for future changes. The options are
growing partly because of the rapid lowering of the price of computer
hardware.

Hierarchical control structures are worth more discussion at this
point. A terminology, still only crudely defined, is developing which
attempts to give a basis for discussing the systems and hence for giving
a rough notion of the computer power necessary at each level; the
notions are those of the work cell, the area, and the plant controllers.

A work cell consists of a few machines or devices which are
‘obviously’ best controlled in a co-ordinated manner. Thus the
elevators, ailerons, and rudder of an aircraft should be moved in a co-
ordinated way during turning manoeuvres. In a plant in which a
robot is feeding raw materials to a stamping press, the two should be
synchronized so that the material is properly placed and the robot
manipulator is out of the way when the stamping is performed. A cell
might be expected to require a modest computer controller, and it
might or might not be operated independently of other cells. Its
computer might be programmed to communicate only modest amounts
of data to a central control room. It would also co-ordinate lower
level controllers such as the individual motor controllers of machines
in its cell.

The next level in control is the area control. It might be thought
of as co-ordinating a number of cells, possibly only in a supervisory
manner. The overall control of an assembly line, with several stages
of welding robots, painting robots, assemblers, etc., might be vested in
an area controller, with the painters in one cell, welders in others, etc.
Office building air conditioning may have room controllers, floor cell
controllers, and building area control levels.

In principle, above this level is plant control, in which the
operations of the entire factory are co-ordinated.

Other factors can also affect the configuration choice. The decision
to have a flexible manufacturing system (FMS), consisting as it does of
several computer numerically controlled (CNC) machines plus
connecting parts movers such as conveyors and robots, will require at
least some central co-ordination and an ability to transmit instructions
or instruction sets from the central computer to the machines;
coupling such systems with the computer aided design (CAD) office
will place even more burdens on the computer system, but will lead to
a goal of computer integrated manufacturing (CIM). The system is
necessarily hierarchical or centralized. Similarly, the addition of
sensors and ‘intelligence’ to a robot cell may determine the computer
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requirements. The point is that other factors may force certain parts
of the configuration decision.

Beyond the aspects of philosophy, convenience, and history which
affect configurations are other considerations.

1. In any configuration except completely distributed controllers,
the control elements must communicate with other elements of
the control system. Here both the distances and philosophy
involved become important. The extreme choices here are to
make each communication channel an ad hoc affair so that some
signals are over instrumentation type cables (heavy cables
carrying 4-20mA, say, with shielding), others are computer
pairs in master/slave configurations, others are computers and
smart instruments in a computer local area network (LAN). The
other extreme is a complete LAN for everything. Such
communication is discussed in Chapter 7.

2. Almost certainly some decision making will be left to the human
operators, whether plant technicians or pilots or other operators.
A centralized controller may be able to handle most set-up and
operation of the plant, with monitoring and emergency
interventions done by the operators. This is the basic scheme of
electric power plants, for instance. On the other hand, a
distributed system will require operators for each subsystem for
at least tuning, adjustment to be compatible with other
subsystems, etc. The burdens, responsibilities, and duties of the
operators in the configurations are different, obviously, and so
are their information needs and training.

2.3.3 The top-down alternative

If the above approach seems reasonable, it also hints at being
inefficient. In applications demanding high performance, it may be
necessary to account for the coupling of loops explicitly. For
example, in the flight control of high performance aircraft the air
speed, vehicle attitude, and altitude may all be both controlled
variables and sensed variables. They are certainly coupled and proper
aircraft control requires consideration of this coupling. Furthermore,
these are really only intermediate variables in a situation in which the
ultimate task is to go from point A to point B or situation C to
situationsDsnSimpleuncouplediloops may well be inadequate for such
applications, and the engineer will need all of modern control theory
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to design the control system.

The alternative approach is called top-down design, and it starts
with overall problem definition and breaks down the problem into
sub-problems successively until the level of solved problems is
reached. In principle, this would appear to lead directly to modern
control theory, multiple-input-multiple-output (MIMO) systems,
centralized controllers, etc. In fact, it partly does so in the case of
flight controllers and similar systems, where the models of the system
dynamics are well known and performance criteria are easily
established. In the case of process control, however, the breakdown
may come to quite low levels for the simple reason that low-level
problems have existing solutions but often do not have the structure
needed for modern MIMO methods.

The first choices at any level are an interlocking net of choices on
what is to be controlled, what is to be measured, and what the control
variable is to be. The designer will be aware of several possibilities
for each choice.

2.4 CHOOSING SYSTEM ELEMENTS

The time finally comes to buy hardware or choose control algorithms
and start closing the loops. When closing the loops, components must
be selected, as must control algorithms, communications and its
cabling, etc. Each step requires a conscious choice among real
alternatives: no longer is the choice between central computer and co-
ordinated cell controllers, but between brand A and brand B of cell
controllers, between two methods of temperature sensing and
components which do them, etc. Making these choices can be made at
least somewhat orderly by considering technical factors, price, vendor
support, and even personal prejudices in a straightforward way. The
factors can be combined qualitatively, quantitatively, and by
combinations of the two. In this section, these approaches are
demonstrated.

2.4.1 Assumption: configuration known

The assumptions made at this level of systems engineering are that a
set of specifications exists and that a configuration has been chosen.
Thus;yansactualychoicesofymethodsyor components is to be the result.
The choice could be between two control laws, with criterion to be the
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quality of control as measured by variance of the controlled variable,
and with the control computer (and hence available computer power)
‘given’. It could be between five programmable logic controllers
(PLCs), with several factors included in the choice, as in the
minicomputer choice below. It could be between several temperature-
sensing methods, with criteria centering on reliability and
maintainability. The point is that the trade-offs are now precise
because the situation is well defined.

For computer selection, for example, the configuration definition
would include the computer size and speed, its I/O elements, and the
types of computations to be performed. These definitions help to
define the class of candidates. Thus it would be known at evaluation
time whether a microcomputer, minicomputer, mainframe, or
supercomputer is required, and how much storage is required.
Knowing the I/O elements, particularly the number of digital and
analog inputs and outputs in the control systems case, may narrow
down the architectural choices. The type of computations, e.g.
whether the utilization is predominantly number-crunching, logical
operations, or input-output in nature, also defines the system
requirements. This knowledge is typically derived from knowledge of
similar systems, analysis of the task, and from simulation.

2.4.2 Selection factors — technical, support, financial

The factors influencing selection of a system fall into three categories:
technical performance, vendor support, and financial aspects.

Technical performance must be established for the device sought.
For example, in the case of computer systems, there are several
technical performance factors to be considered. These include both
hardware and software elements of the system.

Hardware considerations start with the raw architecture of the
machine. The number of bits in words of various types (addresses,
data, bus size) will influence many aspects of performance. The user
will be interested in speed of operation and throughput, particularly
for certain defined operations. The throughput and capability of I/O
devices and peripherals will also be a consideration.

Software factors will include the number of assemblers, compilers,
and special programs available. A critical point may be whether an
appropriate operating system is available. Off-the-shelf systems may
include a software package; this should be examined for general
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capability, and for ease of programming. De-bugging aids should be
available.

Related to both of the above, but perhaps more of a hardware
consideration, is the ability to expand the system under consideration
by adding more memory, more interface elements, and
communications, etc. Modularity is often prized for this reason, as
well as for maintenance ease. Upward compatibility with more
powerful systems may be a factor if increased demands are
anticipated.

Performance can be difficult to predict for actual installed systems,
even though instruction speeds are well known. This is for a number
of reasons, but mainly because applications have a mix of instructions
and because compilers may vary in their usage of powerful
instructions and code optimizations. For this reason it is not
uncommon to demand benchmark tests of candidate computer systems.
Such tests usually involve prediction of execution times, or actual
running of benchmark cases, for particular problems.

Support factors in the decision to select a piece of equipment are a
variety of influences which are real but perhaps difficult to quantify
precisely. One of the first among these is reliability, usually given in
terms of the mean time between failures (MTBF). This can be very
difficult to discover, and may require interviewing other users of the
equipment in question. Somewhat related is the mean time to repair
(MTTR), i.e. the time to repair a non-functioning device. Also
associated with the issue of reliability and maintenance is the
availability of parts and access to trained service personnel.

Any purchaser should attempt to acquire proper documentation
along with purchased equipment: user instructions, repair manuals,
and, for electronic equipment, wiring diagrams. The latter two are
particularly important for buyers who intend to perform their own
maintenance.

Related to hardware maintenance is software maintenance, in that
similar problems arise. The buyer would certainly like to have good
documentation. Even more, perhaps, (since software always seems to
have bugs and improvements are frequent) the buyer would like
assurance that software will be delivered on time and will be kept up
to date by the manufacturer.

Other factors will include warranties, if any, and the general co-
operation of the seller. Computer warranties are typically 60-90
days; for.examplessSellersco=operation in installation, rectification of
problems, etc. should be assured, but sometimes the sellers are sales
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personnel working for a distributor rather than manufacturers.
Judgments in this area are intangible, but can be crucial.

The obvious financial factor is price, but this must be considered
along with possible discounts, contract terms, and eventually life-cycle
cost. Even overlooking the high-level factors in systems financing
such as profitability and pay-back periods, the predicted costs
associated with a particular piece of hardware may diminish
substantially if the equipment is reliable (implying low repair costs
and small loss of production due to down-time) and good contract
terms are available.

Another direct financial factor is the cost of installation, with it
being important whether the buyer or the vendor does the installation,
and in the latter case whether the cost is already included in the price.
Similar comments apply to maintenance: who does it and what is it to
cost?

Intangibles among the financial factors are the ability of the vendor
to fill orders on time and at quoted price, the marketing support
which the vendor has (is there supplier back-up?), and the vendor's
future competitive position (is there risk of going bankrupt?). The
engineer is not necessarily expected to be a financier concerning these
matters, but should certainly be aware that they should influence the
decision-making process.

2.4.3 Combining the factors - qualitative, rankings,
quantitative

The above section presents many factors to be considered in choosing
a system. Since it is rare that a single candidate is clearly best on all
counts, a rationale is needed for combining the considerations. This
should be done as an aid to decision making, rather than a
commitment to choosing the ‘best’ by some arbitrary weighting of
factors. To this end, the factors may be jointly considered in several
different ways.

1. Qualitative evaluation In qualitative evaluation, each factor
of interest is considered for each candidate and a subjective rating
assigned. The subjective ratings may take on three, up to five, or
seven different levels, depending upon the situation. A three-
categoryrating;for.example, is ‘good’, ‘adequate’, and
‘deficient’. Two possible additional categories are ‘excellent’ and
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‘inadequate’. Table 2.1 shows such a ranking for four candidate
systems using the factors discussed above.

Table 2.1 Evaluation summary using qualitative ratings

Criteria Device
A B C D
Technical
General design + N -
Ease of use + N N N
Modularity/growth potential v+ NN
Support
Expected reliability Yo+ o+ o
Documentation - N+ A
Warranty N NNy
Vendor operation + v - -
Financial
Ability to fill order v o+ Ny
Prices + + - A
Vendor stability - +

+ = Good/excellent
V' = Adequate/satisfactory
- = Poor/deficient

With the guidance of this table (which might be a compilation of
results from having several experts consider factors in their areas
of expertise — a Delphi method) the decision maker hopes to be
closer to a decision. In this particular case, device D is clearly a
poor candidate. Although at first glance, device A appears
superior to device C, one should note that device C is satisfactory
for most factors. Is there an engineering advantage in having
device A exceed the levels required? One is inclined to extend
this question to device B, and finally choose device B not because
of all the ‘goods’ but because it shows no deficiencies on the
factors considered.

Ranking and weighting If the above seems unsatisfactory
because there is no final winner, and more so because it appears
to make ‘ease of use’ equal in importance to ‘prices’, a more
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quantitative approach may be taken. In this system, each factor is
assigned a weighting to indicate its relative importance and, for
each factor, each candidate is placed on a numerical scale. Thus
relative weightings might be 0-10 for ‘unimportant’ to ‘very
important’, and factors might be 0-4 for ‘bad’ to ‘very good’.
Table 2.2 shows example weightings and the bases for the scoring
of factors in technical and vendor evaluations.

Table 2.2 Criteria for ranking/weighting type
evaluation

Criteria Weighting

Technical
General design
Ease of use
Modularity/growth potential

Support
Expected reliability
Documentation
Warranty
Vendor operation

—
S o0 O

W K L oo

Financial
Ability to fill order
Prices
Vendor stability

WD 3 oo

An application of these criteria to the four devices is shown in
Table 2.3. For each factor, scoring was on the basis of 0—4, with
0 for inadequate and 4 for superior.

Quantitative evaluation Strict quantitative evaluation is a
further continuation of the scheme of the previous section. Its
paradigm is the price/performance ratio, e.g. dollars per digital
I/O channel of a programmable logic controller (PLC), but it can
have many forms. The point is that each system is judged
according to some function of its characteristics. The problem is:
what function is appropriate?
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Table 2.3 Performance score

Criteria Device
A B C D
Technical
General design 40 30 20 10
Ease of use 32 32 16 8
Modularity/growth potential 8 16 8 8
Support
Expected reliability 16 24 32 16
Documentation 0 10 20 10
Warranty 4 4 4 4
Vendor operation 12 6 3 3
Financial
Ability to fill order 16 24 16 16
Prices 2821 7 17
Vendor stability 0 6 12 6

156 173 138 88

A possible function for price/performance of computer hardware
is

cost
Py= N

where f is some function of internal storage, bits in address,
number of registers, memory cycle time, arithmetic instruction
set power, logic instruction set power, and I/O capacity.

A similar function for software is

cost

Ps= g

where g is some function of availability of diagnostic routines, of
debuggmg routmes of loader routines, number of assemblers,

g System power.
oLl ly I—l.Is I

itler (1970) with
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no. of address bits }

. 1
f = 0.1*%(memory size in bits) * {5 + Jxword length in bits

+ '2170 {fi (arithmetic, logic, I/O instruction types)}

+ 100*(no. of extra features)

+ 50*(no. of general purpose registers)

where T = computer read/write cycle time, and f; = valuation from
0 to 300, depending on hardware instruction capabilities, and with

g = 500*B(debuggers) +B(diagnostic routines) +B(loaders)
+ 1000*(no. of assemblers) + 2000*(no. of compilers)

+ 50*g; (operating system properties)

where B(x) =1 if at least one x routine is present, and 0 otherwise and
g1 = valuation from 0 to 100.

This particular example is arguably little more objective than those
of the qualitative and the ranking and weighting methods; although
many of the factors are demonstrably objective, others and the
combining are not necessarily entirely objective.

The point of the above is not to find the ‘winners’ in these studies,
but to indicate how scoring, prices, etc., are guides to evaluation.
Decisions are judgements made after considering the data sensibly and
from several viewpoints.

2.5 COSTING

It is worthwhile for the engineer to have some knowledge of costing
and financial evaluation of projects. We touch on those by indicating
the cost of some components and systems, and by presenting one such
method (internal rate of return).
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2.5.1 Examples of costs

It is necessary for the student to appreciate the amounts of money at
stake in computer control and computer co-ordinated data logging (a
less demanding task in that the outputs are allowed occasional errors
because they are not real-time effective). To this end, Table 2.4 is
presented. Other prices will appear later in the book.

Table 2.4 Rough prices of alternatives in computer control

System or component  Cost (§) Comments/examples

Microprocessor chip 10-100 Chip only
Microcomputer PC 500-10000 Includes a few I/O channels. Not
industrially hardened

PLC 1000 up Cost around $100 per digital [/O
pair

PID controller 600-2000  Single channel of input and ontput

CAD workstation 20000 up  Not an on-line device. Included to
give perspective

Controller system 15000 up  Basic system with several digital I/O

channels and some analog capacity.
Expandable at around $100 per
digital I/O and $1000 per several

PID channels
Minicomputer 50000up DEC VAX system
Main-frame computer 500000 up Moderate IBM system

Supercomputer 30 million

Common instrument/  500-1000 A temperature sensor
sensor

Special instrument/ 50000
sensor

Actuator/control 500-700 Small valve with motor
element

The reader will appreciate that these are ‘order of magnitude’
numbers only. Computer system peripherals, for example, can add a
factor of two to the costs of the computer systems. Systems costs are
very particular, and different systems may have different costs.

Some system costs are $300000 for a control system refit of a small
power station, $150000 for an industrial robot with a vision system,
and millions of dollars for advanced aircraft electronics (of which the
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control systems would be a fraction). A small simple university pilot
plant may incorporate $25000 in control computers, sensors, and
actuators.

2.5.2 Internal rate of return

Costing principles should be considered by engineers at all stages,
even though their primary inputs may be technical. In making a
capital decision, a common parameter is the internal rate of return,
i.e. the rate of interest the expenditure would have to generate to
provide equivalent after-tax profits. Equivalent to this is the
pay-back period, the time by which the profit increase will repay
the capital expenditure. Thus an initial (capital) investment of $C on
an object with n-year lifetime, if it leads to an annual cash savings of
$S, will show an internal rate of return / given by the solution of

n
1
$C=8$S ]; T+ T

and a pay back period of 1/1.
Example

Examples of the calculations are given by Hall and Hall (1985) for a
robot with vision in a materials handling application (Tables 2.5-6).
The initial investment has two components: hardware (capital
expenditure) and start-up costs.

The system is assumed to have a five-year life with no residual
value (actually, robots are being found to have working lives in the
range of 8-10 years), with straight-line depreciation of the hardware
costs, yielding ($124 800/5 =) $24 960 per year depreciation.

The cash flow effects are due to taxation, assumed to be at a 50%
rate, and to productivity increase of 10 parts per shift at $50 per part;
manpower is unaffected because present workers are either retrained
to operate the robot or transferred to other tasks due to the increased
workload attributable to the robot. Two-shift operation is envisaged,
and 200 working days are assumed.

Cash flow in the first year then has the components shown in Table
2.6.
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Table 2.5 Costing for a robot installation*

Capital investment
Robot $66 800
Manipulator 4000
Safety equipment 4000
Vision system 40000
Conveyors 5000
Other 5000
Total $124 800
Installation costs
Feasibility study (400 hr @$20/hr) $8000
Engineering (200 hr @ $20/hr) 4000
Site preparation (80 hr @ $15/hr) 1200
Installation (80 hr @ $20/hr) 1600
Total $14800
Total initial costs $139600

* Derived from Hall and Hall (1985).

Table 2.6 Cash flow for robot evaluation*

Productivity (20 parts/day x 200 days/yr x $50/part)  $200000
Less: Energy (electricity) usage

(30 kW x $0.04/kW-hr x 3200 hr/yr) -3840
Maintenance (3.75% of equipment cost) -4 680
Insurance (5% of equipment cost) -6240
Plus: Depreciation 24960
Total before taxation $210200
Taxation effects:
Tax savings due to start-up expenses (first year) $7400
Tax credit for investment (10% first year) 12480
Tax on cash flow -105100
Total tax paid $85220
NET CASH FLOW $124 980

oLl Zyl_i.lbl
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The numbers remain essentially the same for succeeding years,
except that all but depreciation are increased by 5% due to (assumed)
inflation. Hence, we have net cash flow for the second to fifth years as
follows

Second year $109731
Third year 114594
Fourth year 119699
Fifth year 125060

From this, the internal rate of return is approximately I = 0.80, a
very good figure. The pay-back period is about 1.25 years. (Less than
a 2-year pay-back is often sought, although it is claimed that the
investment-minded Japanese businessman may settle for five years.)

2.6 SUMMARY

These last few pages are included primarily to give an introduction to
the nature of the problem faced by the systems engineer in the control
systems field and to indicate that it is possible to be systematic in
evaluating alternatives. It should be stressed that there is no algorithm
for evaluation at any level of the systems engineering process, i.e.
there is no checklist which, faithfully followed, will yield a best
solution. Rather, there is a systematic way of thinking about the
problems which may be helpful in design and procurement stages.

2.7 FURTHER READING

This chapter has considered only a minor subset of systems
engineering — intermediate design exemplified by the closure of loops
and structuring of the computer system, and alternatives in semi-
objective component selection. A minor addition, useful both for an
example of costing and the handling of finance, was also presented.
Further reading is in a variety of areas:

1. Systems engineering approaches can be pursued in Sage (1977)
and in IEEE Transactions on Systems, Man, and Cybernetics.
There have been attempts to give a general perspective of systems
engineering;yunSagenisponepstarting point for this. Systems
engineering has also had ‘a more particular meaning for some
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writers, and really means computer systems engineering to them.
The computer science literature contains several texts of the
specialized computer systems engineering variety.

2. Control systems engineering for process control systems is
covered at many different levels in magazines such as Control
Engineering, Control and Instrumentation, and I1&CS.

3. Flexible manufacturing systems (FMS), work cells, and area
control are popular topics of the above-mentioned magazines.
The recent text by Groover (1987) is very helpful concerning
manufacturing processes. Hierarchical control is the topic of at
least one monograph: Singh (1980).

4. Example trade-off studies are difficult to come by, but helpful
information is usually to be found in magazines such as Control
Engineering and in manufacturers' literature. The magazines
periodically present data on topics such as PLCs.

5. An important topic which we have not covered here, but which
influences system layout, is human factors. System operation
can be strongly affected by information displays to human
operators, for example. A text in this area is McCormick and
Sanders (1983). Operator reactions to new process controllers
have been reported by the magazines. A brief mention is given
later in Chapter S.

More general approaches into management are in the operations and
production management texts such as Heizer and Render (1988).
Management for engineers is given in Samson (1989).
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Sensors and
instrumentation

In this book we choose to work from the process back to the
controller on a system such as is indicated abstractly in Fig. 3.1 and
more specifically in Fig. 3.2. The immediate connections to the
process are the sensors which measure the state of the process and the
actuators which influence the control elements to adjust the process.

For this example, to know the temperature, the computer must be
connected to a transducer such as a thermocouple through devices
which convert the sensor’s output to a binary number represented in
bits of 0 or 5 volts, and this number must be made available to the
computer in an orderly manner. The computer output is also one or
more binary numbers; for these to be useful, they must at least be
displayed and in control loops they must lead to an action. This action
is done by actuators such as motors and solenoids which manipulate
control elements such as valves to implement the computer’s
commands.

The devices which gather the data and which interface them to the
control computer are the subject of this chapter; the devices which
implement the commands are the subject of Chapter 4.

3.1 SYNOPSIS

Of itself, a computer is incapable of dealing directly with other
devices — it must be attached to them with interface equipment. The
idea is shown in Figs 3.1-2.

There are many types of transducers for many physical quantities,
and these directly or indirectly give electrical outputs which can be
sampled for use by the computer. When chosen they typically have a
number of characteristics which are specified, including accuracy,
size, typical application, and price. After looking at these, this chapter
briefly outlines a few of the common sensor types with emphasis on
transduction, that is, how they operate to give electrical outputs
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Bus

Operator

Printer

Figure 3.1 Block diagram showing computer connected via a bus to its
own peripherals and to the sensors and actuators associated with the
controlled process.

Steam source —— Water outlet

Computer

Amplifier )
—— Water inlet

Dischge Thermocouple

ADC Amplifier

Desired
temperature

Figure 3.2 A more specific version of Fig. 3.1. The process is the supply
of heated water, the controlled variable is water temperature, and the
controller variable is the valve admitting steam to the heat exchanger.

corresponding to the physical quantity being measured. We notice
that a typical process control application may have a great many
sensors;accurate tobetter,thanyl%yat a cost of several hundred dollars
each.
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Since the computer requirements are ultimately for low voltage
binary signals, signal conditioning and possibly conversions from
analog to digital and back are often necessary. We briefly consider
such conditioning and conversions.

3.2 SENSORS AND INSTRUMENTATION

The computer senses the external world, and in particular the plant to
be controlled, by means of transducers which convert physical
phenomena to electrical signals. These signals are then converted as
necessary to a form which the computer can process, i.e. to binary
words of some number of bits, each bit having voltage of 0 or 5V and
appropriate impedance matching. The data are carried to the
computer using pairs of wires, coaxial cables, or increasingly by
optical fibres, depending upon the environment. Sensors are readily
available to measure light, temperature, position, velocity, chemical
composition, force, acceleration, motion, etc. Clever use of raw
transducers and electronics allows many other variables to be sensed.

3.2.1 Transduction principles

It is the ability of the control system to sense what is happening that
gives it the knowledge to behave intelligently in its role. The basis of
sensing is the use of a transducer to transform a physical phenomenon
into an electrical signal, which may then be processed into a form
suitable for the computer. The sequence is shown in Fig. 3.3, but it
must be observed that many of the steps may be optional. For
example, a microswitch may need only a buffer to contain its result
for the computer.

Sensors may be classified in many ways, but it is most
straightforward to classify by the quantity sensed, as this is arguably
one of the most useful approaches. Starting with this, we describe the
transducers by the following:

1. measurand;

2. transduction principle;

3. (optional) special features, special provisions, sensing element;
and

4. range and units.
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(@

PROCESS

l

Signal conditioner

Analog to Digital conversion
Buffering and addressing

U

COMPUTER 1
Computer buses (address, data, contro) !
(b)
Physical stimulus (Light, force, heat, etc.)
[ Transducer } (Semiconductor, thermocouple)
| Preprocessing | (Amplification, filtering)
|
LFeature extraction] (Counts to rpm, frequency)
|l
| Conversion to digital signal ] (ADC)

[ Transmission to computer I

Figure 3.3 Two points of view of sensing procedure: (a) the computer-
based view; and (b) the functional view.

The measurand, of course, is the quantity such as flow rate, velocity,
or pressure which is being measured. The transduction principle is
the scheme by which the measurand or one of its physical effects is
converted to an electrical signal by exploiting special properties of an
object such as a wire or a semiconductor.

Transduction principles in common use often measure the change in
some. electrical circuit property,and from this infer the change in the
measurand as follows.
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1. Resistive The resistance of a metal changes with its
temperature, cross-sectional area, and length. One or more of
these is employed in developing a great many transducers: for
temperature using the thermal response, for displacement using
length as in potentiometry, for force or pressure using strain
gauges in which the wires are stretched, etc.

2. Capacitive Capacitance may be changed by moving a
capacitor’s plates relative to each other or by changing the
dielectric. One application uses a liquid dielectric, so that
changes in liquid level yield changes in capacitance.

3. Electromagnetic Relative motion between a magnet and a
sensing or pick-up coil will produce an output voltage. One use
is in tachometry.

4. Inductive Similar to capacitive in philosophy, the inductive
transducer uses the displacement of a coil’s core relative to a coil
to change its measured inductance.

5. Photosensors The measurand of photoconductors is converted
to a change in the resistance of a semiconductor material by a
change in the amount of light incident upon that material. The
common CdS cell used in photography is an example. In
photovoltaic transducers, the impinging light produces a voltage
proportional to the light intensity.

6. Piezoelectric Certain crystals will, when mechanically
stressed, produce a change in electrostatic charge which can be
measured. This is useful for force and pressure measurement.

7. Thermoelectric A voltage is produced (Seebeck effect) when a
joining of dissimilar metals is heated relative to another such
joining (the reference node). This is the property exploited in
thermocouples.

3.2.2 General properties

For any sensor, both the static and dynamic properties will be
important. The static properties include accuracy and precision,
reproducibility, and the functional relationship between measurand
and input. The character of the time response, including how long it
takes for the device to settle to its new output value after a change in
the measurand, constitutes the dynamic properties. We examine the
properties by considering what might be in typical device
specifications, as in Table 3.1.
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Table 3.1 Typical specification block

Model No. TC-10 Temperature Sensor

Type Thermocouple K

Input signal Temperature

Range of operation —-200°C to 1200°C

Output signal 4-20mA or 0-10V

Accuracy +0.2% of span

Repeatability +0.1%

Speed of response Fast

Reliability 5 years w drift compensator

Size Probe lengths: 10cm-1m
Body: 12cm dia. X 7cm

Mounting On tank wall

Environment -40°C to 100°C

Power requirements 12-35VDC

Special properties Low cost

Guarantee 90 days

Design date 1987

Typical application Chemical vat temperature

Shows typical (there are no standards) block as might be
seen in manufacturer’s brochure.

Let us consider the information given.

Model Number is the company’s part identification for the figures
quoted. Type is the nature of the sensor: thermocouple, strain gauge,
accelerometer, etc.

The device’s basic characteristices are defined in terms of its input
signal (e.g. temperature, force, flow rate), range of operation
(e.g. 0-500°C, 0-5kg, 0-50 /min), and output signal. Common,
near standard, options for the latter include analog signals such as
4-20mA, 0-5VDC, 0-10VDC, and digital signals with connections
satisfying RS—232C or IEEE 488 (HPIB) (Chapter 8).

Various operational accuracy and reliability characteristics are
sometimes given. Often specified are accuracy, usually meaning
percentage deviation from the true value and given as either
percentage of measured value or of full range, with typical numbers
the order of 0.1%. Particularly when the output is non-linearly
related to the actual value, its repeatability may also be specified in
a-similarmanner; thereby.the peossibility of calibration is presented.



Sensors and instrumentation 53

The precision, often called sensitivity, defined as the minimum
input change needed to register a change in output, and indications of
reliability or of lifetime may also be given.

Physical characteristics of the sensor system such as size and
mounting are of interest for most applications. Necessary power
supplies should be indicated, including both character (e.g.
pneumatic, electric) and amount (e.g. 20psi, 10watts at 24 VDC).
Environment characteristics of interest are at least allowable
temperature range and often include humidity, shock, vibration, and
other properties.

The summary will usually make a brief claim about other
characteristics of the device or its builder. Special properties may
include the meeting of certain standards (e.g. MIL-SPEC in the US,
other standards association rules), availability of support personnel,
claims about cost effectiveness (actual costing is probably subject to
quotation). Guarantees may be stated, and the design age may
indicate something about the technology used. Finally, it is common
to indicate typical applications, so that the purchaser may be able
to gauge whether the sensor is suitable for the proposed use.

We elaborate on certain aspects of the instrument’s performance
which may be only alluded to in specifications. First, and obviously,
the sensor output will be some function of the measurand (Fig. 3.4).
It is usually most convenient if the relationship is linear over the
values of interest, and closeness to linearity may be included in the
specifications. _

A non-linear relationship, or one which varies due to some
disturbance (e.g. many devices are temperature sensitive), can usually
be compensated by calculations in the computer, provided the
relationships are reproducible, that is, that they are known, repeatable,
and one-to-one to within some limits which may be specified, often as
a percentage. Significant hysteresis or non-linearity of the device will
lead to poor reproducibility. The above are static response properties.
The other important part of the response characteristics is the
dynamic, or time, response. The question here is: How rapidly does
the sensor output take on a new value when the measurand changes?
The typical model of the device response is that the output y(f) to an
input quantity x(#) satisfies a differential equation of the form

dy(t
%%=ﬁm+mm 3.1)
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Non-linear )
(Single valued) /

Linear

Output

, "," ,, Non-linear
g .+ (Muttiple valued)

Input

Figure 3.4 Input/output relationships possible with a sensor. Linear is
preferred, but known non-linear relationships can be compensated in a
computer. Multi-valued sensors are ambiguous unless special action is
taken or input variable constraints are imposed.

Eventually, if x(#) = X, a constant, then y(¢) —» Y = bX and the
output is proportional to the input. However, if the time constant 7T is
large, it may take a long time for this to happen, as the solution of the
above is

y@®) =@0)-Y)elt+Y (3.2)

and hence y(#) will show an error of 37% of (y(0) — Y) after a time 7.
More complex dynamic response is possible, but will not be pursued
here. We mention, however, that accelerometers are often mass—
spring—damper mechanical systems and exhibit a response associated
with a second order differential equation.

The importance of time lags such as that above depends, as does
almost everything in systems, on the actual system under study. Five
seconds can be a long delay in some systems, whereas 20 minutes is
short in others. An inferred value, computed from a relationship of
two_measurements_containing lags, can be seriously wrong even if
both measurements are ‘almost’ correct, as can be seen from Fig. 3.5.
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Sensor Outputs

Figure 3.5 It is not infrequent that a ratio of sensed values is used in
control. If the sensors have differing time responses, the ratio can be
temporarily misleading.

3.3 COMMERCIAL SENSOR PACKAGES

Commercial sensors usually come packaged, including some signal
conditioning, robust packaging and mounting, and perhaps with digital
output. It is becoming more common for the sensor package to
contain a microprocessor, and some manufacturers have programmed
this to give an intelligent (or smart) sensor by incorporating unit
conversion, linearization, communication capability, and sometimes
even simple control laws.

3.3.1 Sensor examples

We present here a few examples of sensors, grouped essentially by
measurand or application. The list is nowhere near exhaustive, and
the information concerning the types is not uniform.

Example sensors

*  On-off
*  Temperature
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Thermocouples
Resistance thermometers
Quartz thermometers
Radiation pyrometers
*  Displacement
Contacting sensors
Non-contacting sensors
Direct digital readout sensors
Synchro transformers
*  Ranging devices (radar, etc.)
e Time
*  Pressure and force
*  Liquid level sensing
Float valves
Immersed sensors
Ultrasonic sensors
Differential pressure sensors
e  Flow measurement devices
Orifice type devices
Turbine meters
Electromagnetic flowmeters
Positive displacement meters
e Tachometers — velocity and speed
DC tachogenerators
Counters — digital tachometry
*  Accelerometers
e  Attitude sensors — gyros
* Light sensors — basic methods and devices
e Others

Of these, the most common sensors in process control are probably
those that measure temperature and flow. In aerospace applications,
the most important are those that measure acceleration and attitude.

3.3.2 Temperature sensors

Temperature is the most commonly measured quantity in process
control, and arguably is the most commonly measured of all variables,
although it would seem that size or distance might be a candidate for
theplatterpprizespy Thegmostyecommon temperature sensors are
thermocouples, resistance thermometers, quartz thermometers, and
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radiation pyrometers. Of these, the first three are contact-type
sensors, in which the sensor is in contact with the substance whose
temperature is being measured, and the fourth is non-contact.

Thermocouples are quite stable. They operate over wide
temperature ranges, having electrical signals as output. Their
advantages include their small size, ease and flexibility of mounting,
and low cost for materials. Disadvantages include the need for a
reference junction or simulation thereof, low DC output requiring
amplification, and drift in calibration as the alloys gradually change
composition. Typical packaging places the sensor in a long slender
rod to be inserted into the substance measured and includes a protected
head containing amplifiers and other signal conditioning electronics.
Range and other characteristics vary with the choice of metals, as in
Table 3.2.

Table 3.2 Thermocouples

Type Materials Range Sensitivity ~ Accuracy!
0 pv/ieC §®)

K Chromel/Alumel -200 -1200 38.8 0.7

J Iron/constantan 0 -760 52.6 "

T Copper/constantan ~ -200 - 370 40.5 0.5

R Platinum/Pt 0 - 1450 12.0

1 Using polynomial over part of range

Figure 3.6 shows thermocouple connections, which are simply
bondings of two different wires (actually two such are needed, the
second as a reference called the cold junction), and a transducer
mounted on a probe containing the sensor.

Other methods are also used.

1. Resistance thermometers depend upon the fact that the electrical
resistance of materials varies (usually increases with metals) in a
specific and reproducible way as temperature increases.

2. For the quartz thermometer, the conversion principle is that the
device will change (slightly) in size with temperature changes;
this is sensed indirectly, as a change in resonant frequency.

3. The radiation pyrometer is basically a simple optical system with
a means, such as a thermocouple, for measuring the heat focused
by its lenses. Since the temperature of the surfaces is inferred
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from the heat radiation they emit, the measurement is contactless
and the device is not subject to wear through heat, corrosive
action of the substance being measured, or frictional heat and
damage from measuring moving surfaces (such as hot steel in a
rolling mill). It is required, however, that the surface have an
emissivity high enough to give reasonably accurate measurement.

Other possibilities include mercury and other thermometers and bi-
metallic strips.

Depending upon the technology chosen, temperature can be
measured with accuracy/reproducibility in the order of +0.05°C to
+1°C, and environmental ranges as subsets of —200°C to 1500°C.
Time lag for an infra-red sensor may be of the order of 50ms, while
thermocouples may be of the order of seconds or, with cladding,
minutes. Prices are of the order of $500 for thermocouples and
resistance thermometers.

3.3.3 Displacement measurement

Displacement is measured either for its own sake or as part of the
sequence of inferring other quantities such as pressure and
acceleration. There are many variations on displacement sensing,
although one typically measures either linear displacement or angular
displacement. Even this split is not clear-cut, for it is quite possible to
convert linear displacement to angular or vice-versa (e.g. using
crankshafts and rods); a common instance of the former is the
measurement of distance in an automobile by, in effect, counting
wheel revolutions.

Most displacement transducers have a sensing shaft which is
mechanically connected to the point or object whose position is to be
sensed. This mechanical connection is then also attached to a fixed
sensor mounting, and the position of the shaft relative to the mount is
transduced. Simple transducers may have the shaft physically move
capacitor plates or dielectrics, wiper arms on either potentiometers or
rheostats, a core in a coil (inductor), etc. Slightly more elaborate are
schemes in which the shaft moves a shutter between a light source and
a photoconductive or photovoltaic cell or cells.

The basic principle of contacting displacement sensors — that a
change in position will lead to a change in resistance (or capacitance
orrinductance or transformer characteristic) and that the resulting
electrical characteristic car. be measured and from it the displacement
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inferred — is straightforward. The variations of materials, sizes, and
gearing (to change operating range) for different requirements of
accuracy and environmental conditions seem endless. Resistance
potentiometers, for example, can exhibit ranges in angular
measurement from a fraction of a turn to 10 turns, and similar sized
versions (say Scm in diameter and 3cm long plus shaft) may have
accuracies of 1% or 0.01%, with corresponding costs ranging from a
few dollars to many tens of dollars. Linear variable differential
transformers (LVDTs) may be miniatures accurate to 0.001 um or
large versions with a range of 15cm.

Although it is common to have analog readouts followed by analog
to digital converters (ADCs) for displacement measurement, the above
methods can usually be adapted to give a direct digital readout of the
displacement, either incrementally or absolutely. A common example
is the absolute shaft-angle encoder, in which light sensors record the
presence or absence of light through a slotted shaft-mounted disc, and
the array of the on—off signals, converted either photovoltaically or
photoconductively, together with knowledge of the position of the
holes in the disc gives the shaft angle to within 360/2" deg, where n is
the number of photoreceptors.

A linear contact displacement transducer using LVDT technology
might be of the order of 10mm diameter by S0mm long, with
accuracy around *0.4mm. Environmental constraints would limit
frequency to less than 200 Hz and temperatures to 0—50 °C.

3.3.4 Ranging devices

These are devices such as radar and sonar. The principle here is to
radiate pulses at ultrasonic, radio, or other frequency and measure the
time delay until a reflection of that pulse returns. An ultrasonic
ranger can be accurate to better than 0.01% full range, work in -5°C
to 65 °C, and cost the order of $2000.

3.3.5 Time measurement

Time is critical in many control applications. It is often not so much
absolute time (day of the week, time of day) which is of importance,
but relative time (from one valve opening to another, from one output
commandytosthesnextiinputysample). Time can either be sensed from
the external world or counted internally.
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External sensing is usually based upon using a synchronous AC
motor running from the electricity supply as provided by the local
electrical power utility (at 120V or 240V and 50Hz or 60Hz) plus
appropriate gearing.

Internal clocks are based upon the counting of oscillations of a
resonating electronic circuit. A common oscillator is a simple quartz
crystal plus amplifiers and voltage supplies. Simple circuitry can be
used to count the oscillations and output pulses periodically for a
variety of uses. Digital watches illustrate how small and inexpensive
such devices can be.

3.3.6 Pressure and force sensors

Pressure sensing is done in two stages: conversion of pressure to
displacement or force, and conversion of the displacement or force to
an electrical signal. In a typical system, as installed in an industrial
environment with temperature extremes, shock, vibration, occasional
overload, corrosive agents, etc., accuracy may be expected to be of the
order of 1%, although higher accuracies such as 0.1% are obtainable
and 0.01% might be possible in principle.

A typical pressure or force sensor is a device accurate to £0.25% of
full range, 2ms response time, based upon strain gauge technology,
and costing several hundred dollars; part of the cost, as in much
industrial equipment, is for ruggedness sufficient to cope with
expected temperature extremes, shock, vibration, occasional overload,
corrosive agents, etc.

A commercial differential pressure transducer is shown in Fig. 3.7.
A pair of strain gauges, mounted so that the difference of their outputs
represents the twist of a shaft, can be used for torque measurement
and are shown in Fig. 3.8. Both operate by conversion to an electrical
signal of the displacement of sensors mounted on a surface of known
displacement vs. force characteristics.

3.3.7 Level sensors

Level sensing, for applications such as measuring the depth of liquid
in a tank, is generally done by the mechanical conversion of level to a
displacement, using for example a float in a liquid, followed by the
measurement of the displacement by a displacement transducer
mechanically connected to the float. When this is not possible, there
are a variety of other methods available, including the following.



Figure 3.7 Differential pressure sensors measure the difference of two
input pressures and have many applications. In this case, one of the inputs
is at atmospheric pressure and the other is liquid at the bottom of a tank.
This allows the inference of liquid depth in the tank.

ounted on a shaft to allow the
erence of torque.
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* Electrode methods The principle is that the liquid is allowed
to rise and fall between two electrodes. Depending upon the
liquid involved, the accuracy needed, and range of measurement,
the resistance, conductance, or inductance between the electrodes
is measured and used to infer the level of the liquid (see Fig.
3.9).

Figure 3.9 The outside of a capacitive liquid depth sensor shows nothing
of its action. A probe is inserted into the liquid, which is the capacitor’s
dielectric, and the capacitance is measured by simple circuits in the head
shown. The resulting inferred depth is, in this case, transmitted to a PLC.

* Ultrasonic sensor This in essence measures the distance from
a fixed mounting to the surface of the contents of a container of
known depth.

*  Hydrostatic head methods The pressure of the liquid at some
point (say, the bottom) of the containing tank is measured using

pressure measuring instruments. The depth of liquid above the

this pressure.

at heat transfer from a wire to a
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liquid is different from the transfer to the vapour above the
liquid is exploited.

3.3.8 Flow measurement devices

Flow measurement devices are widely used and appear in a variety of
applications. Measurands include gases, liquids, and slurries. Flow
measurement is sometimes claimed to be the most important
parameter in a variety of industries dependent upon the transference
of bulk liquids.

Flow may be measured either as a rate or a quantity (the latter
being equal to the integral of the former). The various devices used
are ultimately either inferential (i.e. the output implies but does not
measure the flow directly) or direct (i.e. the quantity is the flow, as in
piston-type meters below).

*  Orifice type devices Here Bernoulli’s principle is exploited
to obtain a pressure drop through an orifice. This drop is
measured using pressure sensors and the flow rate is inferred.

*  Turbine meters These are based upon the principle that an
impeller placed in a fluid flow will rotate at a rate proportional
to the flow velocity of the fluid. Flow rate is then inferred from
a measurement associated with the impeller rotation rate.

* Electromagnetic flowmeters These are particularly suitable
for measuring flow of sludges, slurries, and electrically
conducting liquids. In such flowmeters, a magnetic field is
created perpendicular to the flow of the liquid. Since the liquid
is then a conductor moving in a magnetic field, an elementary
generator is created whose output voltage is proportional to the
speed of motion of the fluid.

* Doppler flowmeters These provide a non-invasive flow
measuring technique. They use an ultrasonic transmitter, an
ultrasonic receiver, and a Doppler frequency conditioning unit,
all mounted outside the pipe. The transmitter emits a continuous
tone which is reflected back to the receiver by particles and
discontinuities in the liquid stream.

*  Positive displacement meters These actually measure all of
the liquid flowing, instead of inferring it as in the above
methods. The input fluid is trapped briefly in a container of
fixed size which is then emptied into an output pipe or channel,
all.the fluid-mustpass;throughsthe container, so the system simply
records the number of containers-full to find the flow.
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Two small flow transducers are shown in Fig. 3.10.

(a)

(b)

ers: (a) an electromagnetic type; and
on 2.5 cm pipes.
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One Coriolis effect mass flowmeter is accurate to around +0.2% full
range, with that range being selected from 0-1 to 0-9000kg/min. For
liquids, a volumetric flowmeter with range chosen from 0-100 to
0-17000 V/min at an accuracy of 1% full scale is available.

3.3.9 Tachometry - speed measurement

Speed control, to wit, the Watts governor, constituted one of the
earliest problems in machine control. Mechanical devices for
governing or indicating speed are still common, but they are
ultimately of limited accuracy — a few per cent at best. The
measurement of speed of rotation of a revolving shaft is common
today both for direct speed indication, e.g. of automobiles, and for
sensing of quantities such as flow in turbine flowmeters. Two types of
transducers are common: generators whose output voltage is
proportional to speed of rotation of the shaft, and counters which
respond as a point on the shaft passes a sensor.

 DC tachogenerators use the fact that the output voltage of a
DC generator varies linearly with the rotation rate of the shaft.

* Digital tachometers use one of several possible methods to
generate pulses as the shaft rotates and then count the pulses. The
number of pulses per time interval divided by the number of
pulses per revolution yields the rotation rate in revolutions per
time interval.

3.3.10 Accelerometers

The basic sensing element of acceleration transducers is the ‘seismic
mass’, a mass restrained by a spring and having a damper on its
motion. When the transducer is accelerated along the allowed axis,
the mass moves relative to the case. The displacement of the mass is
measured by any one of several methods and from this the
acceleration is inferred.

A somewhat different conversion approach is evidenced by strain-
gauge and piezo-electric accelerometers, with the measurement being
more directly of force rather than of displacement. The basic idea of
the piezo-electric design is that the seismic mass compresses a piezo-
electric.crystal, while in strain-gauge transduction, the seismic mass is
essentially suspended from the strain gauge.
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A commercial accelerometer utilizing the piezo-electric effect can
show accuracy of 10.1% full scale for a scale chosen from ranges 0-
2G to 0-200G. Such a device may be small (1 X 2 x 0.3cm) and
work in a temperature range —40°C to 85°C at a cost of a couple of
hundred dollars. A more elaborate and sensitive device for seismic
event sensing might trigger on as little as 1 mG, be around 300 x 300
x 100mm, and cost around $1000; it would need special mounting to
avoid triggering on, e.g. passing truck traffic.

3.3.11 Attitude sensing — gyros

The sensing of the angle an object makes with some reference falls in
the realm of attitude sensing. For example, we use a compass to
determine the direction of magnetic north and thus which direction we
are facing. In fact, there are a number of references possible and
hence a number of possible instrument types. Few of these are
important in process control, but one is crucial in aerospace
applications and this last, the gyro, is briefly reviewed here.

Inertial reference sensing is based upon the fact that a rotating body
will continue turning about a fixed axis without change in rotation
speed unless it is acted upon by an external torque. Thus a gimbaled
rotating wheel will maintain its axis of rotation; by reading the gimbal
angles, we may find the attitude of the gimbal frame relative to the
axis of the wheel. This is the principle of the gyroscope, perfected by
Sperry in about 1912-14.

The free (or two-degree-of-freedom) gyro is commonly used in
attitude sensing. It supplies two angles whose interpretation depends
upon knowledge of the gyro spin axis orientation. For example, if the
spin axis is vertical, then the two axes supply pitch and roll attitude
information; if the spin axis is horizontal, the angles supply yaw
information and either roll or pitch or a combination, depending upon
initial orientation.

3.3.12 Light measurement

Very useful non-contacting measurement devices are often based upon
sensing of light radiation (including infra-red). There are a large
variety of devices based upon each of several potential methods:
photoemissivermmethodsywphotoconductive, photovoltaic, and
phototransistor. Each of these has its advantages and disadvantages.



68 Sensors and instrumentation

3.3.13 Others

Many other quantities can be sensed, but have not been described
above. Material compositions can be determined or inferred; one
common example is the measurement of pH in liquids using membrane
and electrochemistry methods. Magnetic field strength measurement
is essential in nuclear magnetic resonance (NMR) devices and has
many uses. Mechanical properties such as hardness and density are
often instrumented. Humidity is measured using several types of
hygrometers. New in the industrial context, if not in medical
laboratories, are sensors for biological variables. Some very
interesting sensor studies are associated with robotics, where vision
and tactile systems are receiving intense research (Fig. 3.11).

Figure 3.11 Advanced sensing: a CCD camera mounted on a robot arm
and aimed at the manipulator.

3.4 COMPUTER TO SYSTEM INTERFACES - ADCs
AND SIGNAL CONDITIONERS

The digital computer is restricted to use numbers represented in
binary with two voltage levels, typically 0 and 5V, to represent 0 and
1 (off and on) for each binary digit (bit) of the number. Very few
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sensors and actuators work directly in this binary system with these
levels. Such sensors include shaft encoders; a common actuator is the
stepper motor. For most sensors, the transduced output to the
computer is a voltage or current (proportional to the variable sensed)
lying in a continuous range over the instrument’s full scale; similarly,
actuators such as servomotors expect a voltage or current input,
possibly a fairly powerful one. Under these circumstances, before
computers can process the data, sensor outputs must be converted to
binary using analog to digital converters (ADCs) while computer
outputs must be converted back to continuous levels using digital to
analog converters (DACs) before the data can be transferred to
another device. Furthermore, it may be necessary to ‘condition’ the
signals by changing their levels, converting from current signals to
voltage signals (or vice-versa for the outputs) and possibly by filtering
to remove noises or interferences from AC power lines and devices.
In the following subsections we consider ADCs and some of the
associated circuitry.

3.4.1 Analog to digital converters (ADCs)

There are several types of converters which take a single signal in the
range 0-5V (usually) and output several pulses in parallel, each either
0 or 5V and each representing one bit in a numerical binary
representation of the input level. Depending upon the approach used
and details of its implementation, the representation usually has 8-16
bits, with 10 or 12 bits commonly found, and the conversion takes a
few tens of nanoseconds up to tens of milliseconds.

The popular types of converters include successive approximation
converters, flash converters, ramp and dual slope converters, and
voltage-to-time and voltage-to-frequency converters. For our
purposes, the last two are intermediate stages for the conversion to a
binary word, although they may be directly used in some
instrumentation applications.

3.4.2 Associated components
Although the actual converters are the dominant elements in ADC and

DAC operations, practical systems usually have several other elements
associated withrthemy» We brieflyreview them here.
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Sample and hold

Although some ADCs are sufficiently faster than the signals they must
convert, so that the signal is essentially constant during the interval
during which conversion occurs, often it is better to freeze the signal
during conversion. This freeze not only prevents strange errors (such
as could occur if the signal moved from veeg/2 + € t0 Vreg/2 — € during
successive approximation conversion), but allows precise definition of
the time instant at which the sample applies. The operation of
freezing the value, called ‘sample-and-hold’ and often implemented as
‘track-and-hold’, is implemented by straightforward electronic
circuitry with the generic characteristics of tracking error, settling
time, and holding time.

In operation, the units are typically integrated circuits (ICs) with
solid state switching. The control signals come from the computer or
from some other source, typically a clock.

Along with their virtue of freezing the signal for conversion,
sample-and-hold units are also useful for ensuring simultaneity of
sampling of several signals.

Multiplexers

An ADC may only be needed for conversion of a particular signal for
a few milliseconds every 1-20s. A way to share the converter and the
addressing, buffering, etc., circuitry between it and the computer, is
to use a multiplexer. This device is essentially a multi-input—single-
output switch — the output line is time-shared by the incoming signals
in a manner called time division multiplexing in communications
systems. The multiplexer is usually controlled by the computer,
which decides which input is fed through to the output at any given
time; another possibility is a simple periodic time sequencing of the
allocation.

It is quite possible to multiplex at other levels; it is not uncommon
to multiplex raw thermocouple outputs prior to conditioning,
amplification, and conversion.

Signal conditioners

Signal conditioners are used to provide amplification, filtering,
linearity adjustment, and perhaps type conversion for the arriving
signals:» Thermocouples; for,example, must be amplified from their
level of millivolts to the 0-5 V range typically required by the ADC.
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Current signals (usually 4-20mA) must be converted to voltage
signals (basically by passing them through a resistor). Linearity
adjustment may be done either by the conditioner or the computer.
Offsets such as the 4 mA in current signals are usually removed.

One important element of the signal conditioning is frequently the
low-pass analog filter. Often called a guard filter, its role is to
make certain the signal to the ADCs contains no frequencies higher
than (1/2T)Hz, where T secs is sampling period. An effect called
aliasing could arise because it is impossible from the samples to
distinguish a signal such as sin(w?) from sin(w? + 2nkt/T), where
k = integer > 1. This problem may be avoided only by insuring that
the signal received by the ADC contains no components at the higher
frequencies.

3.4.3 Commercial signal conditioning systems

A user can always build up a signal conditioner/sample-and-
hold/multiplexer/ADC and buffer/DAC systems, with the required
addressing from the computer, use of control lines, etc. Cost for
elements other than ADCs are typically in the $2-20 range per IC
package. ADCs cost $5 up to $100s depending upon speed and
number of bits; 8 bits at 40us conversion are among the low priced
units.

The alternative is usually attractive: purchase a commercial data
acquisition unit. These are modules, often immediately compatible
with popular computers and ‘hardened’ besides, which perform all of
the above tasks. They vary in size, capabilities, and cost, but with 8
analog I/O and 4 digital I/O a cost in the range $500-1500 for an IBM
PC compatible unit could be expected. Related to these are the
modules readily available for programmable logic controllers (PLCs),
discussed in Chapters 5 and 8; a cost of $1000 for 8 channels of input
or output, analog or digital, could be expected.

3.5 INTELLIGENT INSTRUMENTS

Sensors/transducers convert a physical change into an electrical signal;
except for some modest conditioning, interpretation is left to the
computer systems, and calibration may be left to manual means.
Smart sensors do this; plusiconvert the signal into a directly useful
form or even a decision. Such sensors are quite new and are
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undergoing rapid development. The key notion is that such devices
combine a sensor/transducer with signal conditioners and a
microprocessor in a single package.

The capabilities added by the microprocessor include the following:

[T

linearization and conversion to engineering units;

2. compensation for environmental factors (usually temperature
and sometimes pressure) through the use of auxiliary built-in
Sensors;

3. communication with other control or data logging system
elements in a standard format;

4. sensor self-checking and diagnosis with appropriate indicating

outputs;

decision making and (perhaps) control actuation; and

remote reprogrammability or parameter adjustment.

W

One typical application is in temperature sensing using a non-
contact infra-red (IR) sensor. The reprogrammability can be used to
change the parameters when the product is changed, thus allowing for
the differing emissivity of the new components.

Correction for sensor non-linearity is obviously needed before
display of the inferred variable, in this case temperature, and
correction for ambient temperature of the sensor and electronics may
be necessary. Conversion to standard communication format removes
a burden from the supervisory computer, as does self-checking.
Decision making, such as determining and sending commands (for
heating or cooling, say), may not only remove a burden on the
supervisor but lead to tighter control loops, to improved stand-alone
capability for part of the system, and to a decrease in factory wiring
requirements.

Smart sensors are available which determine presence or absence of
objects through shape or colour recognition, object positioning
through switches and proximity sensors, measurements such as
thickness, and several other quantities. Important applications include
inspection.

3.6 FURTHER READING

Discussion of instrumentation, actuators, and their interfaces appears
in many textbooks; much of the above general overview is based upon
Mansfield(1973)-sExtensive treatment of measurement, including
devices and signal processing, is presented by Doebelin (1990).
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A recent textbook with much practical engineering information is
Derenzo (1990), and a more general process control text is Hunter,
(1987). One book devoted to intelligent instruments is Barney (1988).

Recent texts which are helpful include Borer (1985). Those
wishing to explore the electronics aspects might consider Jacob (1988)
or Webb and Greshock (1990).

Definitive information on particular devices must come from the
manufacturers and to a lesser extent from the trade magazines such as
Instrumentation and Control, Control Engineering and Automation
and Control. The latter are particularly helpful in keeping up with the
rapidly changing aspects of applications, such as intelligent
instrumentation.
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Control elements,
actuators, and displays

The reverse operation of computer data gathering is information
output, particularly data display and control commands. We now look
at the interface aspects of these — the transduction of the computer
words to signals appropriate for operating valves, moving dials,
running motors, etc. In this context, a control element is a device
such as a valve, an actuator is a motor or solenoid which opens and
closes the valve, and a display is an indicator on the operator’s
console.

4.1 SYNOPSIS

Because a computer works with binary words consisting of 0V and
SV bits, its outputs are rarely of direct use. A plant needs motors
turned on and off, valves opened and closed, heaters adjusted,
operator information displayed, etc. Hence the computer outputs must
be processed.

The computer words must be transduced to other forms and are
usually first conditioned. Thus the computer words are first
amplified, perhaps converted to another electrical signal using
modulation, and then used to control electromagnetic fields, heating of
wires, lighting, and small motions, using various physical effects.
These effects are either the final process control elements themselves,
or are used to operate actuators which affect elements such as valves
which adjust the plant variables.

The key ideas then are those associated with transduction of
electrical signals to other physical signals and with the specification of
control elements; the latter is the primary feature of this chapter.

An alternative to control output is the provision of information to
operators using dials, flashing lights, and audio signals. The
transduction here and the human factors characteristic of the displays
are both of interest.
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4.2 ACTUATORS AND TRANSDUCTION

There are few direct control actuators, i.e. devices which take the low
voltage electrical signal and convert it to fluid flow rate, temperature,
acceleration, etc. Rather, the signals often command valve openings,
switch openings and closings, amplifier outputs, etc. The valves,
switches, airplane flaps, etc., are the actual control elements, the
devices which affect the process; many of them have local feedback to
maintain a commanded opening, and thus the elements are themselves
servomechanisms. When packaged as such, they are smart controllers
and are analogous to smart sensors.

Among the few direct transductions of electricity to other physical
quantities are:

1. force or torque via EMF
2. heat

3. light

4. displacement

These appear to be the principal quantities to which electricity may
be transduced, but usually the low-power output of the digital
computer is inadequate for them. Amplifiers and signal conversions,
such as to frequency or analog values via digital to analog converters
(DAC:s), are therefore required, and such signal conditioning becomes
part of the computer output process.

The transduction principles from electric signals to motion, heat,
etc., are applied either directly to control a process or themselves are
used in controlled subsystems to command the control elements (as in
use of a motor to open/close a valve). Five simple principles of
transduction are given below.

4.2.1 Linear-acting devices

A very common device which converts an electric current to linear
motion (and hence to sound) is the audio loudspeaker. The relay is
similar in operation, but it is used for switching of electrical signals
and is in effect a sort of binary amplifier or signal conditioner. An
electromagnetic device, used for translation of an electrical command
into a mechanical straight-line motion, ordinarily has a moving core
whichyis,connectedyto the;moved system, but fixed core moving
electromagnet devices are not uncommon.
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4.2.2 Rotating devices

When the magnets and fields are arranged so that the force is applied
about an axis so that a torque is obtained, we enter the class of devices
leading to motors, where great variety is obtainable and the
applications seem endless. Motors may be applied in such a way that
the important output is the torque, speed, or angular displacement.
With eccentric cams they can be used as counters, and with crankshafts
a conversion to linear force or motion is possible.

4.2.3 Transduction via piezo-electricity

When the surface of a piezo-electric material is displaced, a small
EMF is generated; alternatively, when a small voltage is applied to
such a material, the material will expand. This property is difficult to
use effectively, but it does have applications as a displacement
transducer for precision alignment.

4.2.4 Heating

Electrical heating is the result of passing currents through conductors.
Often an unwanted side-effect of the use of electrical components such
as amplifiers (where the high temperatures can affect accuracy of
operation and reliability), the effect is sometimes sought for heating of
small amounts of liquids and gases. In such cases the conductor is
chosen for its electricity to heat conversion properties. The heating is
proportional to the applied electrical energy, so variable control is
possible, but it often seems that on—off control such as in domestic
water heaters is the most common form.

4.2.5 Light

As with heaters, special conductors will, when electricity is applied,
yield an output energy of a different form, in this case visible light.
An alternative to using incandescence is to use the gases, such as
fluoron and neon, which will emit visible light when electricity is
passed through them. Also, special materials struck by an electron
beampwillieitheremitilighti(assinicathode-ray oscilloscope devices) or
change their light reflecting properties. In all of these, the light tends
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to be used in signalling and communications rather than as a direct
control quantity.

4.3 CONTROL ELEMENTS AND ACTUATORS

High power requirements in many applications make direct use of
electrically-driven actuators uneconomic if not nearly impossible.
Large amounts of heat are best produced by combustion of
biochemical fuels such as gases, petroleum, coal, or wood products
(which are typically the source of the electricity in any case). Moving
large valves, for many reasons, is often done hydraulically or
pneumatically. In such cases the computer control system commands
small electrical transducers which then become the inputs to large
hydraulic, pneumatic, mechanical, etc., controllers. For example, a
small stepper motor may position the valve of a hydraulic actuator for
a very large door on a gravel bin feeding a crusher. With a balance
of some kind in the valve, it itself becomes a control system.

In this section we look briefly at some common actuators or
controller devices. The first of these are necessarily the amplification
devices, since few devices other than display outputs are driven
directly by the computer power supply.

4.3.1 Amplifiers

One of the simplest devices supplying a sort of binary amplification
effect is the mechanical relay: a small voltage input may move the
contacts engaging a high power signal. The relay is a binary amplifier
— on or off — but is very common and inexpensive. Solenoids may be
latched or in pairs, used basically for on—off applications such as valve
opening—closing, or may be opposed by a spring so that the
displacement is proportional to the applied electrical signal. In the
latter instance, typical applications are again valve opening or closing,
with the relaxed position of the electromagnet being typically ‘valve
closed’ (for safety reasons). A small solenoid activated valve is shown
in Fig. 4.1.

Ordinarily the signal to a solenoid, loudspeaker, relay, etc., must at
least be in analog form and often it is amplified. Frequently it is even
an AC (alternating current) signal.

Soleneids,can be simplesand-inexpensive, being a few cubic
centimetres in size and costing tens of dollars, but costs can vary
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Figure 4.1 A simple solenoid on/off valve.

upwards with higher prices charged for environmental sealing (often
hermetic), heavier contacts, and more robust devices. Many small on—
off valves for liquids are solenoid actuated and, including the valve
mechanism, cost the order of a hundred dollars. Actuation signals can
be mains AC or various levels of DC: common input voltages are 24
or 40VDC, but 12VDC is becoming more common as computer
control becomes more common, because 12V is often readily
available within the computer power supply.

Solid-state relays, essentially semiconductor switches, are also
possible and are frequently used.

Amplifiers which take the DC analog outputs of digital to analog
converters (DACs; see below) and give higher power DC outputs are
also straightforward at lower power levels. Single chips are sufficient
for the amplification necessary to drive loudspeakers, for example.
The problem is that in all amplifiers, the input is essentially ‘opening a
gate’ to let through an externally supplied higher power capability. If
this must be DC, the supply of such a power source can itself be
expensive. This is because the supply will ordinarily be from an AC
source, which must be rectified and controlled to give the necessary
direct current. For this reason, other means are used at higher power




80 Control elements, actuators, and displays

4.3.2 Motors

Motors are either AC or DC, with advantages to each; AC machines
dominate when larger power requirements are needed, whereas DC
motors are often used for positioning when lower power is demanded.
A special case of the DC motors is the class of stepper motors, which
have many poles and can be accurately moved one pole position at a
time, in steps.

Motors have a great many applications and hence there are a great
many sizes and styles of motors. We distinguish two types of tasks
here: power suppliers and position controllers. This is rather
arbitrary and is done mostly to give the flavour of the tasks involved.

In the class of power suppliers are motors applied for powering
pumps, conveyor belts, etc. Also included are the large and important
traction motors, used for example in railway locomotives. In
applications, many of the former class are simply on—off devices for
which it is only necessary to supply a steady power source when
operation is desired. Although they may need special start-up
procedures, these can often be applied locally with manufacturer
supplied hardware. The control task is one of sequencing the start-up
events.

Table 4.1 Actuator motor specification — typical

Type Electric, part-turn actuator motor
Torque 300 nm

Travel 120°

Speed 30s full arc

Operating period Intermittent, 5% time, to 1200c/h
Size 50 x 80 x 70 cm; 50 kg

Power requirement 220V 50HzAC

Environment -20°Cto 60°C

Typical application Valve operation

Extras available
Special features
Price

Warranty

Shaft position feedback transducers

$2000
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The second class typically requires speed control in addition to start-
up and similar sequencing. The precise application of power to the
traction motors of a locomotive is critical to smooth and efficient
operation of railways. The use of variable speed pumps, as opposed
to constant speed pumps with throttled outputs, is an energy saver in
the process control industry. Electric pumps of small size are shown
in Fig. 4.2.

The position control motors are used in a number of applications
in which rotary motion, or a geared derivation of it, is to be precisely
controlled. These include small applications such as pens on x-y
plotters, larger ones such as joints on robots, and still larger ones for
valve opening and closing. The motors in these applications are
somewhat specialized and fall into two general classes: servomotors
and stepper motors. Each is a design problem to create, and a control
problem to drive properly. A servomotor with most of its control
electronics is shown in Fig. 4.3.

At its heart, a stepper motor is a many-pole DC motor, often with
a permanent magnet in the small sizes. Careful selection of the
windings to be energized means that a more or less precise alignment
of the shaft may be obtained; switching to another set then leads to
motion to a new configuration. With appropriate interfacing, the
device can be used in a motion control system. They have several
advantages:

1. they give the appearance of being digital in nature and are
therefore easily interfaced with digital controllers;

2. since positioning is accurately controllable, sequences of positions
can be carefully timed to lead to precise control of velocity and
acceleration profiles without the need of encoders, tachometers,
etc.; and

3. they are fundamentally simple and rugged, so reliability and long
life come naturally to them.

Stepper motors are common in computer disc drives and are often
used in small robot applications; larger robots use electric
servomechanisms for joint movements, while the largest may have
pneumatic or hydraulic elements.

Problems with the devices lie with their basically underdamped
stepping characteristic, but manifest themselves at the possibility of
getting out of step with the commands and hence no longer having the
shaft angle the controller assumes they have.
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(b)

Figure 4.2 Electric powered pumps: (a) a small centrifugal pump; and
(b) a modest motor dnvmg a posmve displacement pump. The latter is
d.quantity-is a slurry, which is too thick for a
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Figure 4.3 A servomotor. Mounted on the motor is an electric
tachogenerator for speed sensing, while the belt drive is attached to a
potentiometer for shaft angle sensing. The necessary electronics for the
control of the servo are mounted next to the motor.

Servomotors are intrinsically AC or DC electric motors specially
designed and controlled for applications in which shaft position or
velocity and the attainment of specified values of such are of
importance. Thus it is really the system, rather than the isolated
motor, which is important to the control system designer (unless the
task is to design a servomotor system).

The advantages of the servomotor systems over stepper motors are
typically those of degree. Servomotor systems are available, using
either AC or DC motors (and hence requiring DC or AC power
supplies), capable of the order of up to 8kW of power and SONm of
torque in the range of a few thousand rpm rotation speed. Some can
accelerate quite rapidly if necessary, e.g. at up to 3000rad/s2. Special
circuitry can even make them appear as stepper motors with tens of
thousands of counts per revolution. For small precisely controlled
positioning applications, manufacturers are making these a viable
alternative to stepper motors.

Electric motors vary widely in price, depending upon power and
type; large ones require auxiliary circuitry for starting, which adds to
the price. The servomotor in the figure was configured for
educational use at.a cost.of a few. thousand dollars complete, whereas
quite small servos may cost a few tens of dollars.
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4.3.3 Heater systems

Heating can be controlled in two ways, depending upon the heat
source. Electric heaters are directly controlled, whereas heat
exchangers are controlled using valves, motors, etc.

The simplest heaters are probably the small resistive coils operating
directly from the AC power supply and controlled by an on—off
switch. These are useful for small applications (such as home hot-
water heaters) in powers up to several kW.

Large scale heating in industry seems to use steam or hot water,
piped around the plant as necessary. The heat supply to a particular
location is then controlled by a valve. We remark that the production
of the steam is itself a control system problem, with a boiler to be
regulated and water and fuel to be supplied to it. In fact, boiler
control is one of the major control system problems in electric power
stations.

4.3.4 Coupled transducers and control elements

Some final control elements are electrically controlled in a way that
closely couples the electrical transduction to the element. This is
particularly true in force-balance arrangements, in which typically a
small solenoid is leveraged to balance and, through mechanical
linkages, control a power source. We elaborate somewhat upon this.

Many actuators, particularly in process control industries for valve
control applications, are pneumatic or hydraulic ones. This is partly
‘traditional’ now, in that electric actuation was once more expensive,
less safe (because of sparking, for example), or less capable than now
is the case, and partly because such devices can still be quicker and
more powerful in certain applications because of the storage of energy
involved in having high pressure air or liquid on-line.

The use of an electrical signal to control a pneumatic (or hydraulic)
signal can be done from a low-power electrical actuator using either a
force-balance or motion-balance technique, in a manner which
essentially reverses the transduction problem of pressure sensing.
Thus an external (i.e. computer commanded) force can be generated
as the external set point using a motor or a solenoid. This force must
be balanced by the measured force, which is related to the actuation
force as a constricted value or leveraged value of the on-line force.
Such a scheme is utilized in the pneumatically powered, electrically
controlledwalvesin Figa4:4(b)yand might be compared to the directly
motor controlled valve of Fig. 4.4(a).
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(@)

(b)

Figure 4.4 Electrically operated valves: (a) a small electric motor is
geared directly to a valve shaft; and (b) an electric motor is leveraged
against the motion of a pneumatically powered valve in a force-balance
configuration.

In such cases, the control actuator is itself a servomechanism. Its
des1gn is mechanical in nature and is beyond the scope of this book,
id and accurate response) are the
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4.4 DISPLAYS

Some of the computer gathered data will be recorded for archival
purposes, and some will have an important indirect control role in
informing operators of system status. This latter in particular means
that the computer outputs will be displayed on dials (using perhaps a
electromagnet to deflect a needle), with command display lights and
alarms, etc. These, while in principle straightforward, are always
worth some thought because of the human factors involved: the ability
of operators to use the information conveniently and properly.
Underlying all thinking about the problem are the following ‘rules’:

1. the goal is to present essential information clearly and
unambiguously, and in emergencies to prompt clear-cut sequences
of actions; and

2. process operators are likely to be neither engineers nor computer
programmers, and they should not be expected to respond as
such.

Visual displays of information may be presented with numbers,
dials, coloured shapes, flashing lights, etc. This may be done either
with discrete elements (such as individual lights or dials) or on
computer terminals with special displays created using graphics
techniques. We comment on some of the factors.

First, there is the matter of quantitative vs. qualitative displays.
Here the choice is basically between displaying numerical values and
displaying attention getters such as flashing lights which indicate that,
e.g. a preset value has been exceeded. In fact, a single display unit
may have both, and in addition use an analog presentation of the
quantitative data in which the scale is vertical and an indicating pointer
is toward the top of the scale for ‘high’ values, etc. (Fig. 4.5).

For quantitative displays, there is also the choice of scale shapes,
pointer styles, moving scale vs. moving pointer, full scale vs.
windowed scale, and others. There is now also the choice of a purely
digital readout: the choice between an analog clock with hands and a
digital clock with numbers is one paradigm; analog moving needle
speedometers vs digital readouts is another. Here a number of studies
have been performed, and some general rules of thumb are
summarized by McCormick and Sanders (1983):

1. for qualitative readings, use fixed scale/moving pointer displays,
as operators use the pointer to derive both trend and rate
information; and
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Figure 4.5 For output display, meters directly on the hardware, in this
case a PID controller, are common.

2. warning is best done with flashing lights, shutters, or other
clearly visible signals.

Audible signals seem like a good idea, but one must remember that
they are not always reliable in stress situations: many airplanes have
landed gear up with warning horns blaring. In spite of this caveat, it
is known that audible signals can be useful. Two things to remember
are:

1. use only a few different sounds — this means <5 frequency levels,
<4 intensity levels, and <3 durations of beeps, buzzes, etc., and

2. choose the sound direction, with sound coming from a source

equipment to be operated.
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It may be remarked that the computer can use VDUs to present
very elaborate displays, with colour block diagrams of the processes,
flashing lights, and large blocks of text; one of the simpler examples is
shown in Fig. 4.6. It is not clear that this approach is always helpful
in a difficult situation, as operator information overload has been
blamed for poor system response in failure situations.

Figure 4.6 Very elaborate displays, of which a bank of the form of Fig.
4.5 are only a simple special case, are possible using computer VDU
screens.

4.5 DIGITAL TO ANALOG CONVERTERS AND
SIGNAL CONDITIONERS

The basic concept of the semiconductor digital to analog converter
(DAC) is that switches are used in parallel to gate a reference voltage
through precision resistors with values R,2R,...,2" 'R to yield
currents 1,1/2,...,1/2"1 which are summed. The summation is done at
the virtual ground point of a feedback amplifier to provide an analog
voltage output proportional to the binary word represented by the
gated currents.

The switches are actually transistor switches in an integrated circuit
(IC) and they are controlled (opened and closed) by parallel inputs
buffer (see below). The range of
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resistances needed may be reduced using special methods, such as
binary ladder networks. Voltage output DACs with 8-12 bit inputs
have settling times to reach constant voltage output of 1-20
microseconds. Current output DACs can be faster.

4.5.1 Output buffers

The nature of the DAC is to convert the signal represented by the
switch settings at a given instant. Many of the converters do not latch
these settings, and hence without special interfacing — i.e. a latch on
the computer output — the DAC output may drift or be undefined
except at the instant of transmitting the value from the CPU. The
usual way around this is to latch that value until a new one arrives;
since the latch buffer is then piecewise constant in contents, so is the
output of the DAC to which it is connected. In mathematical models
of the computer and its outputs, the transmission signal or strobe may
be interpreted as an impulse and the buffer/DAC as a sample-and-
hold, or zero order hold (ZOH). (See Chapter 12 for use of these
models.)

4.5.2 Signal conditioning

Output signal conditioning may also prove necessary. Typical
requirements are to convert the low-power 0-5V DAC output to a
more powerful signal, perhaps even an AC command signal to a
servomotor, or to a current 4-20mA signal. Some of this has already
been considered.

4.6 EXAMPLES OF COSTS

We give only a few examples here of small equipment. A small water
pump and motor costs a few hundred dollars and is around 20cm
diameter x 30 cm long.

A small valve with electrical motor for servo control might cost
several hundred dollars for a unit with 25 mm pipe and 2 min response
time (full open to full closed). A modest servomotor with associated
electronics and sensors can cost a few thousand dollars.

Wepsawpdigital=analogpinterface subsystems in section 3.4.3. A
DAC itself (8 bits, slow) may cost only a few dollars, and associated
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amplifiers a few dollars more for the IC circuits.

Gauges for displays depend partly upon the ruggedness desired, but
needles on dials can be had for tens of dollars. This may not be an
issue itself — many sensors and some process controllers will have
their own displays — but the human factor aspects may well influence
choice of the latter.

The modern alternative of computer VDU displays in place of
individual dials and gauges will cost a few thousand dollars for the
hardware, but the software can be expensive. One is likely to puchase
these in a system rather than as individual elements, except for large
or highly specialized operations.

4.7 FURTHER READING

Discussion of instrumentation, actuators, and their interfaces appears
in many textbooks. Definitive information on particular devices must
come from the manufacturers and to a lesser extent from the trade
magazines such as Instrumentation and Control and Control
Engineering. The process control texts are often helpful within their
own field of expertise. One such is Hunter (1987).

Electro-hydraulic, electro-pneumatic, and electro-mechanical
devices are, except for the simplest types, not commonly described in
elementary textbooks, although such devices are often themselves
servo-mechanisms needing some control-theoretic study. Of interest
sometimes are all-pneumatic or -hydraulic systems such as those
described by McCloy and Martin (1980).

Human factors are interesting and important. One text is
McCormick and Sanders (1983).

We have not touched on the final control element here, but should
observe that one of the very important classes of such elements is that
of valves for liquid and gas flow control. Valves and their sizing may
be found in books such as Borer (1985).
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hardware

The connecting hardware element between sensors and actuators is the
computer system, with connections being performed using various
communications strategies (Chapter 7). In this chapter some of the
essential aspects of computers in a real-time environment are
introduced.

5.1 SYNOPSIS

A very broad overview has the control computer communicating with
the plant, with its peripheral devices such as memory and operators,
and possibly with other computers as in Fig. 5.1.

PROCESS/PLANT |
—_—
11
Computer 4= COMPUTER = Other
peripherals —y computers
1

Figure 5.1 Conceptual block diagram of the connection of a computer to
the process, its operator displays and keyboard, its other peripherals, and to
other computers.

The computer system consists of hardware such as

e  central processing unit (CPU)
» input devices: keyboards, mouse
»  output devices: printers, visual display unit (VDU)
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« memory: read-write memory, read-only memory (ROM)

+  mass storage: magnetic discs, magnetic tape

« interfaces: communications devices (to local area networks
(LANs), modems to use telephone lines, special data carriers)

plus software (Chapter 6).

A closer look at the computer system shows the ‘brains’ of the
system, the central processing unit (CPU), using sets of wires called
buses to deal with all other aspects of the system and with devices
external to the system. These buses are grouped into a data bus, an
address bus, and control lines as shown in Fig. 5.2.

CPU ADORESS

CONTROL

[omer ] [omez J[ o2 ]

Figure 5.2 The computer is bus orientated, with the CPU connected to
other computer devices using (typically) 8-16 parallel address lines, 8-16
data lines, and several control (signalling) lines.

The CPU is the central device and in the case of microprocessors is a
single semiconductor chip. It typically has a functional breakup of its
circuits as in Fig. 5.3.

The suitability of a computer for control tends to depend upon its
ability to handle I/O to various devices such as ADCs, DACs, and
operator displays, to react quickly to external unscheduled events, and
to meet speed and arithmetic word length requirements. These
typically require an adequate structure for addressing external devices
and exchanging data with them, a special hardware interrupt
capability, and at least 8-bit words and instruction cycles of the order
of no more than several microseconds.

Commercial computer-based systems for control range from
programmable logic controllers (PLCs) and process controllers (PID
controllers) costing several hundred to a couple of thousand dollars to
systems with base prices of several thousand dollars. Major
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installations may use mini-computers valued at many tens of thousands
of dollars each.

Data bus Address bus

General Arithmetic
registers 1 and
( mulator) lac Logic Unit '
i ; ALY <<z Timing
' and
- h . | control
{ Inrsm:s(;l;on -1 =1 Instruction [ 71
b e decoder
Program |
counter CPU
>
e

Figure 5.3 The functional composition of the CPU shows several blocks
of registers and logical units.

5.2 THE GENERIC PROCESSOR ELEMENT

Discussion of the computer system starts with a single central
processing unit (CPU) and appropriate additional elements. Figure
5.3 shows the essential elements of a generic CPU.

The CPU is the core element of the computer, characterized by its
speed, its technology (e.g. CMOS), the extent and power of its
instruction set, the amount of memory it can easily address (the
number of bits in the address bus) and the number of bits in data
words (width of data bus). For control systems applications, features
such as number of I/O ports and number and hardware processing of
interrupts may also be important.

Some,CPUs come. in single chip,configurations, whereas others may
require auxiliary hardware. A common example of the latter is the
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arithmetic co-processor to perform multiplication and other
arithmetic operations in hardware; the same functions can usually be
performed in software by the CPU chip alone, but at a considerably
slower rate.

The CPU hardware operation is basically a simple repetitive cycle,
comprising seven steps as follows.

1. Using the contents of the program counter (PC) as an address,
fetch an instruction from memory, i.e. ‘place the address on the
address lines and, using the control lines for synchronization,
obtain on the data lines the contents of the memory at the
addressed location’.

2. Route the fetched data into the CPU instruction register (IR),
i.e. ‘use logic settings within the CPU to allow the IR to become
the same as the data lines in step 1°.

3. Increment the PC by 1 location (so that the next instruction is
fetched from the next location after the current instruction).

4. Interpret (or decode) the contents of the IR in the instruction
decoder, i.e. ‘set logic gates to accept various portions of the IR
contents and hence enable other logical elements (e.g. adders)’.

5. Execute the decoded instruction (which may involve addition,
fetching data, modifying one of the registers, etc., depending
upon the instruction) i.e. ‘execute the logic paths set up in the
interpretation of the IR’.

6. If a special control line (interrupt) is set, change the PC to an
address preset in the hardware, i.e. ‘automatically and in the
hardware, override the usual sequencing to start a special
sequence if a particular control input line has a signal on it’.

7. Gotostep 1.

The CPU cycle time (the time for one such sequence of seven
steps) is perhaps a fraction of a microsecond or so, with each separate
step taking some number of nanoseconds. Step 5 (executing the
decoded instruction) is typically the longest and most variable
(depending upon the exact instruction) portion of the cycle. Note that
instruction execution is sequential; although instructions may be
partially overlapped, multiple instructions are not executed
simultaneously (in parallel) in most control applications.

It is worth emphasizing the communication of an external device
with the CPU. When an external device requires attention, it signals
using.a-controlline-If checking. this control line is an ordinary CPU
instruction, and hence done only when the CPU is ready, then the line
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is called a sense line. If the line is automatically checked by the CPU
hardware every cycle, and leads to a special reaction by the CPU, then
the line is an interrupt line to which the interrupt response is in
essence a forced subroutine call to a location fixed by the hardware.
Because the interrupt response may utilize various registers of the
CPU (the PC must at least be used to call the interrupt routine), the
relevant registers must be saved upon entering the routine and
restored to their pre-interrupt values before returning to the main
program. The sense line approach allows deferment of recognition of
the signal and hence allows delays in reacting to it, while use of
interrupt requires at least minimal action immediately. Hence
interrupts are preferable for rapid response, but because of their
unpredictability in time they must be carefully used.

5.3 COMPUTER SYSTEM

The CPU is placed with other components to form a system. A rather
minimal computer (the CPU alone is just a processor) will have
memory and some input and output (I/O) capability as indicated in
Fig. 5.4.

CPU
' | Rom [R/;\M] lDI?Cl
R e s e .
et i e ks 1 s s -
| l |[ _l_]., | i l Control
Com. Conm [Analogu0 | [ Digital v0 | e

Figure 5.4 A CPU as in Fig. 5.3 is connected to buses and thereby to the
interfacing units, as well as to the computer’s memory, which are attached
to the buses.
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Some common elements of a computer for control applications include:

1. random access read/write memory (RAM) for data storage;

2. read only memory (ROM) for the program, including control
algorithms;

3. digital I/O interface for reading or commanding on/off type
settings;

4. analog I/O interface for reading sensors or commanding, e.g.
valve settings or motor speeds;

5. interrupt controller for handling the receipt of interrupts for
emergencies, plant errors, system real-time clock, etc.;

6. serial communication interface for communications with printers
for data logging, some types of instruments and actuators (those
using RS-232C, see Chapter 7); and

7. clock generator, for the computer’s internal timing of
instructions (but not the same as the real-time clock).

General purpose microprocessor chips include the 8-bit Intel 8080,
the 16-bit Intel 80x86 series, and the 32-bit Motorola 16000 series.
For special applications, the RAM or ROM or other elements are
sometimes placed on the same integrated circuit (IC) chip as the CPU,
creating a microcomputer. This can be particularly useful in control
applications because it lowers parts counts and can be hoped to
improve reliability. One such microcomputer is the Intel 8096 (a
special relative of the ubiquitous 8088/8086 family used in many
personal computers).

5.3.1 Components of the system — specialized for control

The computer control system components are in one sense little
different from standard ones: RAM, ROM, bulk memory (discs and
tapes), operator interfaces (keyboards and VDUs), printers. However,
it becomes immediately apparent that there are differences.

1. Hardening The system may be mounted in metal rather than
plastic cases and have special cooling fans. Power supplies may
also be able to stand occasional fluctuations. If the computer
environment is to be dirty, vibrate, or have other problems, the
system mounting must protect it.

2. Standard sizing The equipment will fit standard industrial
equipmentyracksytypicallyy19 (0.5 m) wide.

3. Special input/output Special I/O cards deal with instruments
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and actuators of standard levels. Thus input of 4-20mA,
thermocouples of various types, and outputs of 0—-24 VDC will be
readily available, with power supplies, rack mounting, etc.

Test hardware, such as LCD terminals for readouts of
programs, will be available.

Instrument buses of standard types will be catered for. This
will probably include IEEE 488 (GPIB or HPIB; see Chapter 7).

Special CPU characteristics which may be important include the
following.

1.

Interrupts Number and handling of interrupts may be
important for higher level controllers, but nearly irrelevant for
smart instruments.

Special instructions or I/O capabilities This is becoming
less important as CPUs become more powerful in general. I/O
ports (essentially special control lines for I/O) can be important
for efficient memory use, but control applications will seldom
have extensive memory requirements; the effects and convenience
of ports are sometimes provided in other ways using memory-
mapped interfaces.

Number and nature of special registers Having a large
number of registers for intermediate data handling can be both a
speed and convenience advantage.

5.3.2 How the CPU maintains supervisory control

As shown in Figs 5.2 and 5.4, there are three sets of wires to which all
of the devices — CPU, memory, clock, etc. — are attached. To avoid a
Tower of Babel, the CPU (or occasionally a designated other device)
supervises the traffic on these lines.

1.

Control bus This is used for signalling. One of these lines
may, for example, carry a short pulse (called a strobe signal) to
indicate that the device addressed by the address lines should
accept the data on the data lines ‘now’.

Address bus Each device has a unique address, expressed as a
binary number. Signals on the address lines are set to a device
address to show that the information on the data lines is intended
for that device.

Data bus  This carries the actual messages between devices.
The simplest configuration has all messages routed to and from
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the CPU. The information carried may be numbers from
memory (such as algorithm parameters) or from a sensor (such
as a flow meter) or to an actuator (such as a valve). They may
also be characters to the console display, commands to devices
(such as a reset command to the clock), and many others.

The control lines are the primary means of signalling from other
devices to the CPU, and may operate in those situations in one of two
different modes: as interrurts and as sense lines. The distinction is in
the CPU'’s response mechanism, as in both cases the external signaller
places a signal on an appropriate control wire. Sense lines are
checked by the CPU when there is a software instruction to do so;
hence, in writing the code for the algorithm one could include a wait
loop to check for the clock signal. If there is no such check, the
clock’s information will be unknown to the CPU in this mode.

The alternative is to use the CPU’s hardware interrupt capability.
This is somewhat like the sense lines but with a crucial distinction: the
line is checked automatically by the hardware after each instruction
executed. If the interrupt line has been set — in our case if the clock
device has set the line — the hardware will automatically cause
program execution to transfer to a designated location in the program.
This location, or a pointer to it, is built into the hardware; from that
location, further aspects of the interrupt response are specified by
user-written software. Other aspects of the response, such as saving
of registers, may be done either automatically by the hardware or
optionally by user-specified software, depending upon the CPU
architecture.

Although interrupt handling is built into the hardware, it has very
important ramifications for the system and the software used, and we
return to some of those in Chapter 6. The underlying problem is that
a interrupt can cause a program transfer at any time (provided
interrupt inhibit commands have not been given), and hence it can lead
to the possibility of performing a particular instruction sequence
which has not been tested (since not all such sequences will have been
tested). Interrupts are used when fast response to an external event is
required or when very rare events must be handled.

Interrupts come in many varieties: priority interrupts, software
interrupts, and internally generated interrupts are among the
possibilities. Responses also vary in detail: for example, sometimes
the hardware will automatically save all registers and inhibit further
interrupts _prior to actually performing the interrupt-demanded
program transfer.
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5.3.3 Device interfaces — the core ideas

There are two possibilities for message 1/O: direct ports and memory-
mapped I/0O. In the former, data placed on the data lines are
addressed using the address lines and have special control line signals
(such as IN and OUT) with their own special CPU instructions.
Advantages include speed and precision of addressing. It is possible,
if enough IN and OUT commands are available, to avoid address
decoding and so simplify the interface. Ports may have special CPU
instructions associated with them.

The alternative situation is called memory-mapped I/O and has
the I/O device addressed just as memory is. This can be wasteful of
allowable locations. Also, there is a burden on the interfacing so that
the I/O connection indeed looks like memory to the CPU. On the
other hand, the number of I/O devices is virtually unrestricted (up to
the limit of the number of memory cells addressable by the CPU).
Sometimes memory-mapped I/O can be used for special interfaces to
give the latter the appearance of ports; the cost is the usage of memory
addresses for things other than data and program memory, but the
gain is that the CPU and its instruction set are simpler.

A typical output connection configuration is shown in Fig. 5.5.

DATA
CPU ADDRESS

\L CONTROL
Address decoder | |.Control
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AND
[Enable

Data buffer

OUTPUT DEVICE

Figure 5.5 The CPU outputs a data word to a device by placing the
device’s address on the address lines, the data on the data lines, and a wr1TE
command on the control lines. The device gates the data to its buffer (i.e.
enablesitherbuffertoracceptitherdata)if the address is correct and the proper
control line settings are present.
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If the address desired equals the device address and if the control line
carries the proper signal (such as WRITE DATA LINES command), then
the AND gate will admit the data line information to the data buffer,
where it will be available for conditioning, conversion to analog
levels, etc., as required.

Data input is similar. Here the input device must request attention
using control lines (interrupts or sense lines) or by replying
affirmatively when polled, must make its identity known (using its
address), and on command gate its data from the buffer onto the data
lines.

In both cases, the CPU must have all of the lines in a proper state
for the transfer: addresses on the address lines, proper control signals
(such as timing strobes), and data lines carrying data or ready to
receive data.

Typical electronic devices needed for these and other interfaces are
given below.

1. Address decoder This chip ‘knows’ its own address and puts
out an indication to attached devices whenever the address lines
from the CPU contain this address.

2. Buffer This will, on command from its associated address
decoder and the CPU control lines, interact with the data lines to
the CPU. It will read the data lines or hold data for reading as
appropriate to the commands and to the function of its attached
peripheral device.

3. Serial/parallel converters Data on the computer system bus
is bit-parallel (all of the bits of a byte, or word, are carried
simultaneously on separate wires). Electronic devices consisting
of a register plus a clock do the conversion from one to the
other.

4. Controllable interfaces These ICs are of a general type for
signalling but have many varieties called variously PIAs
(peripheral interface adapters), UARTSs (universal asynchronous
receiver—transmitters) and ACIAs (asynchronous communication
interface adapters), etc. The latter two incorporate serial/parallel
conversion.

5.4 COMMERCIAL SYSTEMS

It is possible.to buy.digital-computer-based controllers ‘off-the-shelf’,
with only tuning or other job specific parameter setting to be done by
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the user. It is instructive to look at some of these, particularly the two
most common types of elementary systems: the PID (proportional-
integral-derivative) process controller and the PLC. Following this
we consider systems which are more obviously computer systems; the
above are digital implementations of analog and relay systems,
respectively.

5.4.1 Microcontroller

The microcontroller is a special computer system for special
applications. It is special because virtually all of its requirements for
CPU, RAM, and ROM are on one or two ICs. Power must be
supplied, and interfacing to the system is necessary but may be
simplified. Basically a specialized microprocessor, and costing about
the same (a few dollars to a few tens of dollars) but requiring special
manufacturing to program the ROM, the microcontroller is
particularly attractive when large quantities of goods with identical
small computing loads are to be constructed. This occurs with toys,
with consumer goods such as washing machines and microwave ovens,
and with motor controllers which are supplied with the motors.
Large systems will need more computer power and flexibility than the
microcontroller is able to supply.

5.4.2 Programmable logic controllers (PLCs)

PLCs originated at General Motors Corporation, Detroit, in the late
1960s as a replacement for relay banks which co-ordinated the
movements of their assembly lines. They were, and are, chosen
because they are smaller than the relay banks, are relatively easily
programmed, are fairly easy to troubleshoot, and are rugged,
surviving 0-60°C temperatures and 95% humidity. Early versions
used special purpose discrete logic components, but now they tend to
be built around microprocessors. Many have a simple programming
language based upon ladder logic diagrams (see Chapter 6) so that
programs can be written by technicians rather than specialist
programmers. Early versions were entirely on—off logic type devices,
but modern versions have capabilities for analog input and output,
data logging and manipulation, communication with computers and
other PLCs, and even PID control laws.
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A typical example of PLC use is batch operation weighing and
mixing. The following steps would be involved.

1. Weigh bin of material. Strain gauge instrument sends signal to
PLC. On satisfying weight requirement, PLC sends OFF signal
to valve or screw feeder (or stops sending ON signal).

2. Do step 1 for several bins in parallel. When all have required
amount, empty into mixing bin sequentially.

3.  Start blending operation.

4, Keep track of feeder conveyors (which often should not be left
loaded when not running)

One advantage of the PLC is that when, for different products, the
mixture of components must be changed, a new program can be
downloaded from the central computer (if there is one) or manually
by a technician (for less elaborate setups); no change in hard wiring is
needed in either case.

A typical PLC, such as the one pictured in Fig. 5.6(a), is modular
and has three module types: the processor module, the I/O modules,
and the programming equipment module.

The processor module usually consists of a CPU, memory, and
various interface and miscellaneous functions. In one older PLC, the
CPU is an 8-bit Intel 8085, while memory is in a 2kbyte ROM for
system monitor and programs and 0.5-2kRAM or EPROM for the
user program and intermediate storage. Miscellaneous functions
include various timers and counters, and the interfaces are of two
types: to programming equipment and (buffered) to an external bus
and 1/O modules.

In one typical approach, the I/O modules each handle either 32
input or 32 output signals and work with 5V logic; a fully configured
system may have 200-1000 inputs and outputs. Either input or output
may be isolated using an optic coupler and the standard signal level is
24 VDC. Interfaces are used to provide 220V or 20maA signal levels.

Programming equipment may be expected to consist of at least a
plug-in, hand-held calculator type unit capable of simple one-
instruction at a time readout and entry. A hand-held ladder logic
programmer is shown with the unit in Fig. 5.6(b). VDU terminals are
often easier to use for the programming, while downloading from a
computer is sometimes possible and usually easier for initial entry; the
unit in Fig. 5.6(a) is programmed in that manner using a choice of
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(b)

Figure 5.6 PLCs are commercial special purpose computer systems. We
g type of modularized system and

rogrammer.
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three languages which are converted to code which is sent to the PLC.
A hard copy of the program (i.e. a copy stored in a relatively
indestructable medium), usually a printout but occasionally punched
tape or cards with older or specialized systems, is often necessary and
always desirable.

The basic need in programming of PLCs is to be able to input
logical statements of the type ‘1F switch 33 open anp switch 91 closed,
THEN wait 2.3 s aND after that close switch 14’. It is common for
vendors to make one or more special programming languages
available for their devices. In particular, a ‘language’ which allows
the programmer to construct logic ladder diagrams (Chapter 8) of the
desired logical operations is often supplied, and more conventional-
looking computer languages of an assembled or compiled type (e.g.
Siemens’ STL or various BASIC-like languages, Chapter 6) plus other
graph-like languages may be available.

PLCs cost from a few hundred dollars upward. A system
configuration including support computers for program generation
and down-loading may cost $10 000 up.

5.4.3 Three-term (PID) process controllers

Process controllers of the three-term type implement a control law
dating back over a century and which applies to mechanical
components, hydraulics, and electronic analog circuits. At its
simplest, this very common controller implements the input—output
relationship in which the output command u(?) is related to the input
signal e(t), so denoted here because it is usually an error signal, by

u(t) =K [e(t) + ;i je(r) dt + Ty M)

Here the user sets the proportional gain K, the integral or reset time
T;, and the derivative time T4. Rules of thumb exist for choosing
these parameters (see Chapter 8), but the idea is that the first term
gives a command proportional to the error from the desired value, the
second gives a command proportional to the integral of the error and
thereby works to reduce any tendency for the system to develop a
steady state offset error, and the third gives a command proportional
to the derivative of the error and because of the sign conventions used



Commercial systems 105

tends to give more rapid damping of the response oscillations.

The purchased units will usually have a number of features in
addition to simply computing the above input—output relationship. In
fact, in many respects it is very interesting to consider these as an
example of real engineering considerations.

First, the unit will typically display the desired system output (or set
point), the actual system output, and the control command being put
out by the unit. A vertical display with two needles may well show
the first; a second gauge the third. The first gauge may also display,
via pointers, the high and low allowable system output values.

It is usual to have manual override of the computed control
command. Using a push button the operator can choose to go into a
manual control mode and use a button or dial to generate the control
command. (This ability to choose leads to terms such as ‘hand-
auto(matic) units’ for these devices.) The computer unit may also
check the system output against the preset limits and, if a violation
occurs, flash lights or give other warning signals. Figure 4.5 shows
the face of an older but typical unit; it is seen again in Fig. 8.5(b),
where the unit is opened to show the potentiometers for adjusting the
PID gains.

The unit must of course have the capability for the set point and the
control parameters to be adjusted. Commonly the former can be done
from the instrument face but the latter requires opening the unit.

Communication with a central computer, at least for data logging
purposes, may be necessary. The unit may for such purposes have a
standard data bus such as IEEE-488 built in.

Finally, there are two operational aspects of the units that are
usually allowed for in the real object, but not in the theoretical
considerations. These are called bumpless transfer and anti-reset
windup.

Bumpless transfer is desirable to avoid a jump in the command
signal when the operator switches from manual mode to automatic
mode. The second problem is integrator saturation, called ‘reset
windup’, which occurs when the controller output is limited. Both
have engineering solutions (Astrém and Wittenmark, 1990).

With all of these built-in functions, the process controller for a
single loop (one input and one output) will cost the order of
$1000-2000; many are available from manufacturers. The PID
function is also available in more general systems.
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5.4.4 More general computer control systems

The above functions and more have been implemented in commercial
products for which PLC and PID functions may be just a subset.
These are pre-assembled systems, and several suppliers assemble and
support such systems. The modularity and capability can vary, as can
the customizability. It is not unusual to have a basic system consisting
of central control console and unit, software, and a few I/O channels
starting for around $10000 and having added capabilities of both
logical control and proportional (PID) control varieties. The added
units constitute some distribution of the control and cost a few
thousand dollars for each unit; these might provide a few tens or a
hundred logical (on—off) controls and a few proportional (analog)
controls. Examples in use include the Hewlett-Packard 3000 series
and the Leeds and Northrup Electromax series systems.

Further capability is obtained with minicomputer-based systems
costing from $50 000.

5.4.5 Alternative — in-house design, construction, and
programming

In principle, the designer could nearly specify a set of components
from different sources to make up a computer system for control.
This is particularly so if the basic computer is to be the ubiquitous
IBM PC-compatible. A number of manufacturers are prepared to
offer ‘hardened’ versions for industrial application, along with special
keyboards and their interfaces and standard level 1/O cards to deal
with the process. A certain amount of software is also available.

Total cost can be as low as a few thousand dollars; systems
engineering studies should show whether this is a good value.

5.5 COMPUTER SYSTEM REQUIREMENTS

A digital computer is by its nature a discrete-event finite state device.
This translates into two characteristics of computers as control
elements.

1. Finite word length Any number will be represented by a
finite number of bits;typically 8 to 32 bits. No value will be
more accurately represented than 1} of the least significant bit, or
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2-9 to 2-33 of full range.

2. Finite time between inputs, between outputs, and to compute
responses. The computer has an internal clock running at about
1 MHz to upward of S0MHz; an instruction takes several clock
cycles; an algorithm needs many instructions. For this reason,
there will be a sample interval T between inputs and a sample
interval T (often the same) between outputs. Neither input nor
output can be a continuous function of time.

We survey these two effects in the following sections.

5.5.1 Finite word length

Finite word length affects implementation through four routes:
quantization of data on input and output; round-off and truncation
errors in arithmetic operations; inexact representations of control law
coefficients; and possible non-linear effects such as limit cycles or
steady-state errors.

Data quantization

The ADC which converts an incoming analog signal to a digital word
is an inherently non-linear device as in Fig. 5.7.

If the data has an n-bit representation, then the least significant bit
(Isb) represents 27" of full scale; an 11-bit-plus-sign ADC has a
quantization level for + 10V input range of 10%2-11V or 4.9mV. The
representation of a signal can be no more accurate than about
+2.5mV.

Similarly, the output is fed to a DAC. With a digital word of m bits
as input, the output will be in steps of 27™ of full scale. Analog
devices can be used to smooth this input from one step to the next, but
the intermediate values are interpolations rather than commands.

One usually will choose the ADC with enough bits in the
representation that the 4lsb error is less than noise or other
inaccuracies coming from the measuring device: there is little point in
having a signal with 0.2V random error represented to an accuracy
of 20.02V. The output DAC is usually cheaper than the input ADC,
but would rarely need to have more precision than the ADC.
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Linear Output .-

Output

ADC Output

Input

Figure 5.7 Underlying several problems with digital computation is that
the representation of a quantity is necessarily non-linear and non-uniquely
invertible. This happens right at the conversion stage, when analog to
digital conversion is applied, and continues throughout the computation.

Arithmetic errors

Arithmetic errors arise from the fact that multiplication of two
numbers with n-bit representations in principle requires 2n bits for
the product. The product is usually scaled and rounded or truncated
back to n bits. The error is (for rounding) up to 4 the least significant
bit, or 27D This error is usually taken as a random number with
uniform distribution, and hence will have mean zero and standard
deviation 2"\[12. These errors have been found to be approximately
uncorrelated. Thus a useful model is that multiplication is given by an
ideal multiplication operation with additive noise of mean 0 and
variance 27"/12.

a*bacual = a*bigeal + NOiSE

The effect of each noise generator may in principle be propagated
to the output, and in linear systems all such effects may be superposed.
This is done by Franklin et al. (1990) and in the digital signal
processing literature, e.g. Roberts and Mullis (1987).
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Coefficient representation

Algorithms are usually designed with the expectation that their
parameters may be implemented exactly. However, just as in
electronic circuits the choice of resistor, capacitor, etc., values is
restricted, so in digital computers numbers can only be represented
using a finite number of bits. For example, the number § = 0.3333...
can be represented in binary as 0.1 with one bit, 0.01 with two bits,
0.011 with three bits, 0.0101 with four bits, etc., but all of these are
erroneous.

This effect might not be a problem if only one parameter is
involved, but multiple parameters rounded independently to a near
binary representation can cause changes to the characteristics of the
algorithm. Consider the simple algorithm

x(k+1) = 5 x(K) + 5 u(k)

The two coefficients can be approximated by one bit, two bits, and
SO on as

x(k+1) = 3 x(K) + 5 u(k)
x(kt1) = 3 x(k) + 3 u(k)
x(k+1) = 3 x(k) + 3 u(k)
x(k+1) = 15 x(K) + T u(k)

These have quite different responses.

There is the obvious solution of using more bits, by using double-
length arithmetic or a more capable processor, and the not-so-obvious
solution of structuring the computation to reduce sensitivity to such
problems.

Limit cycles and steady-state errors

Because of quantization, non-linear behaviour is possible from the
nominally linear system:wForiexample, a set point reference signal
may be slightly different from the measurement to which it is
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compared. If this difference is small enough, it may be quantized to
0, leading to no corrective command, i.e. to a steady-state offset of up
to 4 Isb. Alternatively, the controlled system may ‘hunt’, oscillating
between slight positive error and slight negative error with the control
unable to find the exact zero error due to quantization.

5.5.2 Sampling

The digital computer takes a finite time to complete an algorithm
computation concerning a data value. Hence it can only consider data
every T seconds, for some number T. If we can choose T, or if T is
forced by the physics of the problem, the appropriate value must be
decided.

Sampling theory
The core idea of sample rate selection is Shannon’s Sampling
Theorem, which may be stated in many forms and variations, but for
our purposes is as follows:

A signal s(#) may be exactly reconstructed from its equally spaced

samples {s(nT), n=0,%1,%2,...} if and only if the sampling
period T satisfies

2 M

~ia

where wp is the signal bandwidth, for which the signal Fourier
transform satisfies

Sw)=0 |Jo|>wg>0

When T = ©t/wp , sampling is said to be at the Nyquist rate; a short
characterization is that the sampling frequency is twice the highest
frequency in the signal.

We make four observations concerning this. The first is the
pedantic one that the above applies to a low-pass signal in which
S(w).#.0 for almost all ® < wp; the theory is slightly modified for
band-pass signals. The second is that in principle an infinite amount
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of data are needed for the reconstruction. The third is that there are
no truly band-limited signals of finite duration.

A more important observation is that the above is concerned with
signal reconstruction, which may be irrelevant for applications such as
supervisory control of stable systems.

For control systems applications, an alternative viewpoint is that the
system is required to respond ‘well’ to an input with highest
significant frequency .. Hence a sampling frequency of at least twice
this frequency is necessary.

It should be noted that it is possible to sample too rapidly. This
counter-intuitive situation arises primarily because rapid sampling
increases the difficulties with numerical/word-length problems. Thus,
increasing the frequency of multiplications increases the propagation
of round-off errors per second, while coefficients arising in PID
controllers may be required to go to 0 or to 1 as T—0 (see Chapter
12).

5.5.3 Rules of thumb

There are a number of rules of thumb concerning sampling period or
frequency. Among those are (Perdicaris, in Tzafestas (1985)):

1. sample at 10-20 times ®;
2. sample period should be at most 0.1 of desired rise time; and
3. choose T small relative to desired closed-loop time constant.

Specific time periods are mentioned by Astrém and Wittenmark
(1990):

Variable type Sampling period

Flow 1-3s
Level 5-10s
Pressure 1-5s
Temperature 10-20s

One rule of thumb (Perdicaris in Tzafestas (1985)) for
computational word length is to use a word length 4 bits longer than
the ADC size chosen, where the latter is presumably chosen consistent
with data reliability and noise.
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5.6 EXAMPLES

It is difficult to develop an intuition as to the size and speed
requirements of programs. Certainly we are becoming accustomed to
having hundreds of kilobytes (kbytes) of random access read—write
memory (RAM) and read-only memory (ROM) available in
microcomputers for personal use (PCs), along with megabytes
(Mbytes) of read—write bulk storage on magnetic discs and a promise
of gigabytes of read-only or write-once read-many (WORM) bulk
storage on optical discs. Common microprocessor CPU units can
perform simple instructions such as READ from or WRITE to memory,
ADD two integers, or CLEAR a register in tenths to a few microseconds,
and special purpose arithmetic units (ALUs) can do multiplication in a
similar amount of time. Let us look briefly at a couple of reported
examples of relevance to us.

Refai (1986) describes a control law coded for a simple 8-bit
microprocessor implementation. The control law was a PID law
given by the simple expressions

X(n+1) = 0g*T — (0(n) + 0(n-1))*T/2 + X(n)
e(n) = wg—w(n) 5.1)
u(n+l) = Kp*e(n) + Ki*X(n+1) + Kd*(e(n) - e(n—l))/T

where T, Ky, K, and Kq are parameters, ®(n) is the ‘present’
measurement of the controlled variable, wq is the desired value, and
u(n+1) is the output command. Although the computation requires
several multiplications, the microprocessor used (Motorola M68B00)
did not have a multiply instruction and hence a software multiplication
was required, i.e. multiplication was performed by shift-and-add
instructions, as was (in essence) the division by T.

The task was the sole one performed by the computer; there were
no outputs to instruments, no safety monitoring, and no extras (such as
anti-reset windup, manual mode, bumpless transfer) as found in
commercial units. This bare-bones algorithm then was reported to
require 255 bytes of storage and to run one complete cycle (from data
read to command output) in about 1 ms.

As a second brief example, we mention the comment by Gressang
(1977) concerning adaptive control of an F-8 aircraft. It was found
that the Kalman filtering/linear quadratic controller (Chapters 26, 28,
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29) for 7-9 states on each of three axes of the aircraft was estimated at
that time (1977) to be possible at a rate of about 20 times per second,
with filter gain updates at a slower 1/s or 0.2/s rate.

As further examples, we remark that a number of power generation
stations use DEC® minicomputers or their equivalents for their basic
supervisory computers and have dozens of PLCs in addition. Also,
some process industries (such as petrochemical plants) are converting
to minicomputer-based systems such as the Honeywell 3000 series.

The message of the above is that direct digital control software is by
current standards small, and that the speeds required, by
communications standards, are slow. The message not given is that
supervisory and monitoring software, as used in control rooms, may
be large, complicated, and customized.

5.7 SUMMARY AND FURTHER READING

In this chapter the hardware of computer systems control has been
outlined. Included have been descriptions of how the CPU
communicates with the outside world, and some prepackaged systems.

We have only touched briefly on any of these, with the intent of
giving the systems engineer the flavour of the needs of computer
control. Specialists must necessarily study much further into these
topics.

Details on the electronics aspects of basic computers can be found in
texts such as that of Gibson (1987). A more elaborate discussion
oriented toward control systems is in Bennett (1988).

Discussion of word length effects has already been attributed to the
digital signal processing literature, such as the classic Rabiner and
Gold (1975). A control systems oriented presentation is Williamson
(1991).

Control-oriented discussions are presented in journals by
Kowalczuk (1989), and Williamson and Kadiman (1989).
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The computer software encodes the control algorithms and the logical
commands for the interfacing of the I/O and for the emergency and
other routines which the system is expected to perform.

We have already briefly considered how the CPU works. Software
(sometimes placed in special unchangeable memory and called
firmware) is simply the set of bits, loaded into the proper cells in
memory, which are operated upon by the hardware. We review
languages for that software and emphasize the particular aspects of
control systems — namely those associated with real-time operation —
which the engineer should keep in mind even when the actual
programming details will be done by a specialist programmer.

6.1 SYNOPSIS

Software is the term used for computer programs. When used to
implement control algorithms, these have several interlocking aspects:

1. the language used for the encoding;

2. the program which co-ordinates the various tasks, that is, the
operating system; and

3. the verification and validation of the system.

The overriding issues in software are that

1. all but the simplest implementations will have multiple tasks to
perform, such as algorithm computation, instrument input and
command output, and communication with operators and other
computers, and

2. the above must be performed in real time, in sometimes
unpredictable sequences, with no risk of serious errors. When an
error occurs, the computer must not ‘crash’.
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The user implementing a computer control system will be faced
with a number of software choices: algorithms, coding languages,
operating systems. The software must be engineered, and in
particular validated and verified, to perform the control tasks well and
without itself contributing to disasters.

6.2 BASIC PROBLEMS - THE MULTITASKING
ENVIRONMENT

A few control system programs are very simple: read data, compute a
desired command using some algorithm, output the command, repeat.
The program is executed as frequently as possible, so is program-
timed — the frequency depends upon the computer’s speed. The
program starts when the computer is turned on and stops when it is
turned off. Many early applications were of this type, and even now
the controller for a washing machine or valve need not be complex. It
is even possible for such applications to be software timed, i.e. to have
the timing controlled by cycling through the software rather than by
an external clock circuit. For example, the sequence

READ instrument

READ set point

COMPUTE command

ouTpUT command to valve

COMPUTE output to display

outpuT display information

CHECK sense lines for supervisor commands

EITHER LOAD new supervisory data OR PAUSE an equivalent time
UPDATE supervisor data

LOAD EITHER standard OR new supervisor response into output
END cycle

=S 0PN LR LN

—_ O

can be instigated by a real-time clock (RTC) or, if all logic branches
are of the same time duration, can be cycled regularly. In either case
the computations, etc., might take 50ms and the desired
implementation might be every 75ms. A cycle could then be
instigated by the RTC or, with ‘EnD cycle’ expanded using NoOps (No
operation — the ‘NULL’ instruction, taking up time but doing nothing)
to 25 ms, the software could simply be in an endless loop.

Such activities.as.in the above list are called tasks, and from the
point of view of the computer program they are modules which can be
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executed independently; although one might request that another be
activated, it does not directly call it, as a subroutine would. When
there are multiple tasks, then in a real-time system they are related
and hence interdependent. The result is that they must communicate
with each other and must always run in a certain order and at certain
times.

The particular example above is simple and hence straightforward
to program because the various tasks are always in the same order and
take the same amount of time. If more tasks are required, some are
optional, or some (such as causing a printer output) take so long that
simply waiting for the task to be completed is inefficient, then a more
complicated program is needed.

Even modifying the above so that data are sampled every 0.1s, the
control algorithm is run and an output command given every 0.5s, the
displays are updated every 1.0s, and the data log is printed every
1.0min requires a major change in approach. This more complicated
program must do the required tasks, interleave tasks to use CPU time
effectively, keep tasks in order of importance if there are conflicts for
the CPU, etc. Such a program has a structure which occurs frequently
in applications of computers — a structure in which there is an overall
supervisor plus a number of subroutines specialized for the several
tasks. The supervisory program, which ultimately is just another
computer program, is called the operating system.

When multitasking is done, the various possible tasks must be able
to signal when they are ready (e.g. a RTC signals that it is time to take
another sample). The signalling is done using the control lines,
particularly the sense lines and interrupt lines, and co-ordination is
achieved in the CPU by running a supervisory program, called the
scheduler (usually part of the operating system).

6.2.1 Dealing with the outside world: I/0

It is because of multitasking that control computer problems arise, and
it is the input—output properties of these real-time systems which are
the main trouble source. This is particularly because the sequencing
of tasks, and hence of program instruction execution, may not be
fixed.

Control system CPUs must deal with other components and
ultimately interact with their outside world. For the system, there are
three main I/O sections.
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1. Process I/0O Reading process instruments and outputting
actuator commands.

2. Operator I/O Reading keyboard and switch inputs from
operators and writing data to printers, VDUs, meters, etc.

3. Computer I/O Reading and writing data between memory,
registers, and ALU, for example.

To handle all of this, the CPU has two options: it may poll the
devices frequently to see if they are ready to transmit (or receive) data
or it may wait for a signal initiated by a device ready for service, i.e.
an interrupt. In either case, it is the external event which triggers
the action.

There are trade-offs between interrupts and sense lines and some
off-the-shelf systems use one and some use the other. The essential
trade-off is that polling is straightforward but can result in delays in
response (some polling systems can take over 500ms to respond),
while interrupts lead to rapid response but possible unforeseen
instruction execution sequences. One must decide what it is worth in
unpredictability to have rapid responses to inputs such as:

1. alarm inputs;

2. failure indicators, for hardware, power, and transmission failures
Or Eerrors;

3. override indicators, to allow control panel or other manual inputs
to override computer control; and

4. real-time clock, to provide a regularly spaced (in time) signal to
the CPU.

6.2.2 Some special software considerations with interrupts

There are several tasks that must be performed when an interrupt
occurs.

1. Saving of registers, flags, CPU status, etc., is usually done at least
partly by the hardware, so that the program can return to
business as usual after the interrupt has been processed.

2. Identification of the source of the interrupt can be by hardware
(using effectively a different interrupt signal for each
interrupting device — e.g. interrupt vectoring) or by software
(which typically must poll devices to see which has sent the
interrupt).
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3. Establishing priority involves deciding which interrupt gets
serviced if several occur simultaneously, which are allowed to
interrupt other interrupts, what happens to ignored interrupts
(are they eventually forgotten?), etc. Interrupt priority is an
important and not necessarily obvious issue.

The above steps may be performed by either software or hardware,
depending upon the CPU design. If in software, these tasks are a
programming burden, whereas if they are in hardware, the
programmer must still be aware of how they affect operation of the
algorithms.

We indicate just one of the many problems which must be
considered when using interrupts: if the subroutine is re-entered
before it is completed, and with completely different data, there is a
chance that the results will be muddled or the program will get lost.
Suppose, for example, that two registers, R1 and R2, are saved by the
interrupt routine when it is entered and restored when it is exited.
Then if the main program is interrupted, these cells will contain
values A and B, say. Part way into the subroutine, the same registers
may contain values a and b when another interrupt of the same type
occurs. The subroutine is then entered in the course of this second
interrupt response and a is put into R1 and b into R2, overwriting A
and B. Even if the interrupt returns are unravelled successfully, A
and B will be lost and a and b will be processed by the main program.
Solutions to this problem include having multiple copies of the
subroutine, blocking further interrupts while it is operating, and
making it a re-entrant routine (in which all data are saved in stacks).

6.3 SOFTWARE PROGRAMMING

Programming of the computational element may be done in several
different ways, or more precisely, at several different levels. It
should be remembered that ultimately the CPU executes a sequence of
relatively simple instructions (made up of even simpler micro-
instructions). The programming language used may consist of more
readable commands, but the CPU sees only strings of binary bits,
which are voltage settings of, typically, 0V for binary 0 and 5V for
binary 1. We first indicate one of the principal structural forms for
which we must program, the procedure structure with interrupts, and
then discuss programming languages.



120 Computer software

6.3.1 Program structure — procedures

A simple program will have a simple structure, perhaps such as in
Fig. 6.1. Such a program will simply keep running, doing one cycle
in whatever time the computer speed allows, and is called software
timed.

PROGRAM DATA

Logic Flow

I

Figure 6.1 A computer program and its data are represented as sequential
blocks of storage. A software timed program simply sequences through its
list of instructions. The time for one cycle depends upon the computer's
speed and the number of instructions.

If a cycle starts when an external real-time clock initiates it, then the
structure is more as in Fig. 6.2.

This is of course more natural even for a simple program. A next
stage has subroutines, which are used to supply readable structure, to
break up the code into manageable segments, and to allow sharing of
code segments. This leads to structures such as Fig. 6.3.

The most important variation from our point of view is the
possibilities for interrupts posed by the need for multi-tasking. Here,
a special subroutine called an interrupt routine may be called at any
time (due to an emergency, for example). The impact hardly shows if
we impose such a possibility on Fig. 6.3 to create Fig. 6.4.

The attempt in Fig. 6.4 is to indicate that the interrupt may occur at
any time and between any two instructions. The software must be so
arranged that there will be no problems upon return from the
interrupt subroutine, whether it is there to fetch data, to trigger
alarms, or simply to update a display or respond to an operator input.
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DATA

Logic Flow

Figure 6.2 An improvement, especially when the sequence is not of fixed
duration because of internal branching, is to start the sequence periodically

at times determined by a timer.

TIMER
SUBROUTINE A

>
MAIN
~<—>> SUBROUTINE B
PROGRAM S > ¢
SUBROUTINE C

]

DATA

Figure 6.3 A program with subroutines is structurally easier for
programmers, and may save memory.
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i TIMER ,
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DATA W No A

INTERRUPT?

Yes

SUBROUTINE D
(INTERRUPT ROUTINE)

Figure 6.4 An interrupt is a hardware signal causing automatic branching
to a special subroutine. In principle, an interrupt might occur anywhere
within the standard sequence.

6.3.2 Languages: levels of programming

Machine language consists of the binary sequences referred to above,
on which the computer operates directly. The programmer must
write his code directly in such sequences of Os and 1s. Thus the
program to add the variable A to variable B and set C to the result
requires that the quantities A, B, and C all have memory storage
locations known to the programmer, e.g. at locations 10000010,
10000011, and 10000100 (binary) respectively. If the program
should then transfer to location 01110101 (i.e. set PC to 01110101),
then the program might look like:

MEMORY LOC CONTENTS

01000111 001010000010
01001000 010010000011
01001001 010110000100

01001010 110101110101
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This is an oversimplification in that there are only 4 bits used for
the instruction code and the total instruction word has length 12 bits,
but the programmer’s burden should be clear: the work is tedious and
highly error prone. Furthermore, if one of the variables must be
reassigned to a different memory location, then finding all of the
resulting programming changes will be difficult.

A first step in improving on the above scheme is to use
mnemonics for the instructions, such as cLA (clear and add) for
0010, app for 0100, sto (store) for 0101, and gmp (jump) for 1101.
Allowing spaces on the input also helps readability, so that the above
might be represented by:

CLA 10000010
ADD 10000011
STO 10000100
JMP 01110101

This code will require another program to translate it into binary as
above, but if the translator is reliable and can be told where in
memory to put the instructions, the result should be the same as
before.

If a translator program is necessary, it can be used for a few more
things. One in particular is symbolic addressing, i.e. to tell the
translator that 2 as an address means location 10000010, B means
10000011, ¢ means 10000100, and NExT means 01110101. Then the
above becomes

CLA A
ADD B
STO C
JMP NEXT

A further improvement in the translator allows it to make some of
the memory management decisions. If the translator is told to set
aside memory cells for variables a, B, and c, and that NExT is a
destination location for a transfer, it can keep an appropriate symbol
table of these labels and their addresses instead of requiring the
programmer to do so.

A translator of the type outlined above is a computer program
itself, of course. Its inputs are sequences of characters (CLA, &, NEXT,
etc.), and its outputs are binary strings as in the first part of this
section. Such a translator is an elementary member of the class of
programs called assemblers; the input to it is called assembly
language code, and the output is called object code.
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The advantages of assembly language programming (over machine
code programming) are the relatively easy readability of the input
program (compared with a string of binary digits) and the fact that the
assembler copes with the memory allocation. Most assemblers also
will have some ‘macro-instructions’, or ‘macros’, which the
translator recognizes and expands (each time they appear) into
machine code on a many-to-one basis. (A simple macro might allow
the instruction MADD A, B to represent the two instructions CLA A, ADD
B in the above example.) This allows even more programmer
convenience.

The disadvantage of writing in assembler code rather than machine
code is that the programmer ends up with a computer program, the
assembler, between the input alphanumeric source code and the
machine instructions. The programmer is usually responsible for the
final machine code and hence must either believe the assembler has
been properly implemented and used or check the machine code using
memory dumps and other methods. On the other hand, programmer
errors in coding binary words are avoided, considerable flexibility is
gained, and the programmer retains tight control over the final
program because most instructions are one-to-one related to the
assembly language mnemonic instructions.

The tight control over the program and the cleverness with which
programmers can sometimes code algorithms, along with the fact that
various parts and ports of the computer are directly accessible to the
programmer, means that assembled programs are (in principle)
efficient in their usage of both memory and time. For this reason they
have in the past been frequently used for real-time computer
applications, and are still common for small programs.

A further step along the trail of programmer convenience is to have
a more elaborate translator, one to which an instruction such as

C := A + B;

is meaningful. This instruction, representing the information ‘find the
sum of the variables a and B (a + B) and place the result (:=) in ¢, end
of instruction (;)’ is elementary for programs capable of breaking
elaborate character strings such as

IF (IN < MAX) THEN C := IN ELSE C := A + B; GOTO NEXT;
and

FOR I:= 1 TO IN DO C[I] = A[I] + B[I+5-3*K];
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into appropriate machine code. Such programs are called compilers,
and the input instructions are in a compiler language. There are
many such languages, including FORTRAN (FORmula TRANslator)
for scientific number-crunching, COBOL (COmmon Business
Oriented Language) for business data-keeping and updating of wages
and such, Pascal (named for scientist Blaise Pascal) for educating
programmers, C (the language which followed A and B) for operating
systems programming, and ADA (named for Lord Byron’s daughter,
Ada, Countess of Lovelace, the ‘world’s first programmer’) for
United States of America Department of Defense real-time
programming.

Compilers were intended to use the computer to remove some of
the tedium of programming, leaving the programmer to be creative
and efficient. In just a few characters, a programmer can write a
single instruction which when compiled results in several machine
instructions being created. Also, the compiler can identify certain
types of programming errors, reducing the testing time needed.
There are disadvantages, though.

1. The language often keeps that programmer far removed from the
actual machine code instructions and their ordering, which can be
critical in a real time environment.

2. For small routines at least, a programmer can produce more
efficient code (in terms of memory used and/or execution time)
than a compiler will generate; this is somewhat debatable for
large programs, but is probably true even if not always cost
efficient. (It may be better to have slightly inefficient code than
to have expensive programmers trying to optimize it.)

3. The more important criticism of compilers is a growth from the
one with assemblers: because there is a sophisticated program,
namely the compiler, between the source code and the object
code, the programmer may make errors in using it. Thus the
programmer must be highly skilled with the particular compiler
used to avoid, e.g. subtle variable interactions which may
produce unexpected results.

Assemblers and compilers take as input a set of character strings
called source code; their output is usually an entire program of
machine code, called object code. This object code may be
interfaced, or linked, with other object codes, typically for
subroutinessand.forsstandards(library) routines to form the machine
code that is finally executable.
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A significant variation on this procedure from an operational point
of view is the interpreter, which decodes and executes the source
code on a line-by-line basis but does not save the object code after
execution. Hence it translates a given line of instructions each time it
is met. There are problems with such an approach, the main ones
being

1. slow execution because of the need for translation at execution
time, and

2. the possibility that the language will be less flexible or efficient
because of the line-by-line approach to translation.

The advantage is that the interpreter may be small in storage
requirements and that the source code almost surely needs less
memory than the equivalent executable code. The most common
interpreted language is BASIC, although it is sometimes compiled and
linked; some special purpose languages for PLCs and PCs are also
interpreted.

Actual coding of the control computers depends upon the computer
system used and its tasks. Special purpose applications on small
microprocessors are often coded in an assembly language for reasons
involving need for efficient code, lack of a suitable compiler, and
relatively small and uncomplicated programs. The code is then
assembled for this target machine using a larger (or host) machine, a
method called cross-assembly, and the resulting machine code is
then down-loaded to the target machine. (A variation of this uses a
compiled language and a cross-compiler.) Larger machines doing
complicated sets of tasks are more likely to be coded using compilers,
for the reasons that good compilers are available and their advantages
in terms of programmer time needed for coding large programs are
more important than potential coding efficiencies from using
assembler code.

6.3.3 Special purpose languages

Many commercial devices come with special programming already
done, so that the input need only be of special parameters and settings
for the particular process. For these devices the input may be
considered to be by means of a special purpose programming
language.. We look briefly at.a.couple of examples.
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Robot programming is often done either with a ‘teach’ mode in
which the arm is controlled manually using a hand-held control
terminal and told to remember certain positions, and/or with a
proprietary language. Such a language is the VAL language used by
Unimation for the PUMA series of robots. Its elements are
instructions such as in Table 6.1, and a typical small program string is
in Table 6.2.

Table 6.1 Elements of VAL

Command Effect

OPENI open tool

CLOSEI close tool

DRAW x,y, z move arm to coordinates x, y, z
HERE name define present location as ‘name’
MOVE name move arm to location ‘ name’

Table 6.2 Sample VAL Program

Instruction Comment

READY Go to initial position
CLOSEI Close tool

4 Define this as ‘4’ for loop
MOVE loc 1 Move to predefined loc 1
DRAW 0, 0, =50  Move -50 in z direction
OPENI Open tool

DRAW 0, 0, 250  Move 250 in z direction
DRAW 200, 0, 0  Move 200 in x direction
DRAW 0, 0, -200 Move —-200 in z direction

HERE loc 2 Define this as 1oc 2

DRAW 0, 0, 50 Move 50 in z direction

CLOSEI Close tool (to grasp)

MOVE loc 2 Carry object to loc 2

MOVE loc 3 Carry object to predefined loc 3
MOVE 0, 0, -50  Lower object

OPENI Release object

SETI n=n+1 Increment counter

IF n<10 THEN 4 Qo to 4 if less than 10 times through cycle
HALT Stop program




128 Computer software

Another approach, called ladder logic programming, is taken by
some makers of PLCs. Here the computer in essence simulates a relay
bank plus timers and counters, so the basic elements of the language

specify

« input contacts (‘relay contacts passing signals into the computer
when the relays are actuated by external events’)

e output coils (‘commands to relays to open or close and thus pass
signals to external devices’)

« internal coils (‘relays for internal logic’)

«  timers (to count time delays, etc.)

«  counters (to count events either internal or external)

and sometimes a few others. Symbols are defined for these, and
programming consists of manipulating such symbols on some sort of
visual display unit to obtain a desired wiring logic diagram. (An
illustration of such symbols and programming is in section 8.2.)

Another class of examples contains the special languages often used
for numerically controlled (NC) machines; a typical such language is
APT (Automatically Programmed Tool).

6.3.4 Software considerations

Any computer may be coded in machine language, and usually at least
primitive assemblers are available; for the smallest systems, the
program may sometimes be developed on a larger computer and
cross-assembled or cross-compiled for the target system. Commercial
systems sometimes provide a suitable real-time operating system
combined with an appropriate variation of a compiler. For example,
the rapidly developing capabilities of programmable logic controllers
(PLCs) mean these can handle both logic and analog controls and
hence can be programmed in relay logic language (RLL) and higher
level languages such as BASIC and Fortran, developments which are
tracked by the trade magazines, e.g. Lodzinsky (1990) and Flynn
(1990). For a second example, the IBM 9000 system operates under
CCOS, with languages Pascal, BASIC, and Fortran readily available,
and, because the CPU is a Motorola 68000, other languages and
systems also obtainable.

Software is expensive to write: a good programmer generates the
orderyof :3-10,lines,per-day-of ;programmed, checked, validated,
documented code. This number is somewhat independent of the
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language level, so it is clear that a language which has many machine
instructions generated per line of programmer code has cost
advantages over machine languages. Thus, particularly for large
systems, programming may out of cost necessity be in a compiled
language. The extra hardware — memory and CPU capability -
needed may be far cheaper to buy than efficient coding. For this
reason we look briefly at some of the newer candidates.

A modern language for control applications should preferably have
or support the following attributes.

1. The use of blocks, procedures, functions, etc., to provide
structure to the program should feature in the language.
Structure will prevent inadvertent sharing of memory cells and
will prevent spaghetti-like (and hence possibly wrong) paths
through the program. It also helps by ensuring readability of the
program.

2. Concurrency of a number of simultaneous asynchronous tasks
should be supported. Proper ordering of the tasks (to prevent
data output tasks executing before the proper data gathering task,
for instance) should be supported.

3. Run-time security is of paramount importance, so the language

should have intrinsic features which improve security. Included

in these are strong variable typing and exception handling
capability.

The language should allow reaction to events in real-time.

The object code generated should be memory- and time-efficient.

Both of these are partly a function of the language and partly of

the compiler.

6. It is preferable if the code is portable, so that it may be
transferred to other machines. True portability is difficult to
obtain, however, because of machine differences and lack of
standards.

e

Preferred features in addition to the above can also be defined.

7. Low-level code facilities, to allow added flexibility for the
programmer.

8. Separate compilation of procedures, to help in modularization of
the code and in the efficiency of code development.

If thesaboverarestakensasirequirements, then there are virtually no
existing languages with proper compiler supports which meet them.
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The closest are the new languages ADA and MODULA-2. ADAis a
very large and complex language, and possibly it is unsuited for that
reason for implementation at this time; it does in principle meet all of
the requirements, however. MODULA-2 is a Pascal derivative (or
improvement) in which the independent modules are the most
important feature; it does not support exception-handling.

For small programs (a few tens or hundreds of lines of code) a
number of possibilities exist; most fail to meet several of the above
desired conditions, but all have some use. They tend to be special
versions of older or very special languages. Thus, the engineer is
likely to meet Concurrent Pascal, BASIC, and FORTH. Process
BASIC and Process FORTRAN are other available languages; each is
a special version of the obvious regular language. The process
versions are not standardized, but of necessity will have language
extensions for:

1. interfacing to the operating system, such as communicating the
need for periodic task execution, enabling and inhibiting
interrupts;

2. process input and output, such as reading an ADC or switch, or
commanding a DAC output; and

3. task management, such as activating a task when an interrupt
occurs.

For example, since the languages such as BASIC are not normally
used in real-time operations, they must be augmented with instructions
such as

ON EVENT “signal on IEEE-488 bus” ’sets up linkage of receipt
GOSUB “process instrument data” of interrupt to processing

EVENT ON ’to allow event to be recognized

EVENT OFF ’to block event processing

and the compiler and operating system must generate appropriate
machine code.

Finally, there is always assembly language and its high-level
version, the systems programming language C.
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6.4 OPERATING SYSTEMS

In systems of reasonable size, there are a number of tasks which are
nearly independent of the application; for example, process plants and
aircraft both need operator displays. To avoid reprogramming such
software for each application, a supervisor program with appropriate
special routines is often used. This operating system is the
computer program, which is not application specific, but which is the
essential interface between the outside world and the computer
hardware and also the interface between the applications programs
(such as the number crunching routines which give the control output
as a function of the instrument inputs). It is found in all but the
simplest applications, in which the few functions needed may be coded
as part of the applications program.

A typical operating system has components which manage elements
such as the system interfaces to the operator, task scheduling, timing,
memory allocation, and files. The I/O subsystem takes care of such
roles as peripheral device drivers (i.e. special codes for dealing with
I/O devices) and queue handling, if outputs (e.g. characters to
printers) queue, in such a way that applications programs can seem
device independent. The operating system may also support special
handling of floating point arithmetic operations, loading of
applications and other program segments, and so on. Some of the
handling of interrupts may reside with the operating system rather
than the applications programs.

6.4.1 Overview

The way to view the operating system is to note first that the computer
is required to perform a number of different tasks in the system, e.g.

read instruments for data

output commands to actuators

interface with other computers

accept inputs from operators

output information to operators

log data for future analysis and record keeping

compute algorithms for commands as functions of inputs
do unit conversions for data logging

PN A LR
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Associated with these tasks, an operating system must perform at
least the following functions.

1. Error handling

2. I/O handling

3. Interrupt handling

4. Scheduling of tasks

5. Suspend, kill, restart tasks
6. Maintain queue of tasks needing execution
7. Resource control

8. Protection

9. Provision of good operator interface

10. Assign/accept user input of task priorities

From a process control point of view, in which events may occur in
a non-deterministic order and at variable times, one of the most
important roles of the operating system is keeping the tasks in order
of importance and not forgetting any of them. Consider the following
scenario.

1. The computer is in the process of printing a log of the shift’s
activities.

2. The real-time clock sends an interrupt. The CPU immediately
goes to the interrupt routine. It must remember that it was
printing, but call up the program appropriate to the clock
interrupt.

3. During step 2 the operator presses a command button. If an
important command, this will generate another interrupt which
must be processed. Now steps 1 and 2 must both be remembered
while a response to the operator is made.

4. After step 3 is completed, the system must work backwards up
through step 2 and then continue from step 1.

The above is an ordinary sequence of what might be required, but
gives some notion of what the operating system must do in a process
control application. The critical thing is timeliness of response, as
otherwise a very ordinary batch operating system would suffice.

Although the operating system is a computer program providing
services to the applications programs, these services cannot be allowed
to be beyond the control of the applications programmer as they are in
traditionalybatchyprocessinggsystems using their operating systems.
Such is the danger of subtle ambiguities and such is the need for rapid
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response in emergencies and timely response in all circumstances that
the programmer must have ultimate control of the I/O devices,
physical memory, task priorities, exception processing (such as
overflows, which cannot be allowed to simply crash the program), and
data integrity.

6.4.2 Buying a RTOS

There are many operating systems around, such as Unix and its clones,
MS-DOS and CP/M for microprocessors, etc. Few of these are real-
time operating systems. The computer manufacturers, such as Digital
Equipment Corporation, Data General, IBM, and Hewlett-Packard
have real-time systems for their systems: Intel created IRMX for its
microprocessors; IBM produced CSOS for its 9000 microprocessor
series; DEC has RT-11 and RSX, etc. Some other systems have been
developed as real-time versions of non-real-time operating systems,
such as real-time Unix versions, and standards are being developed by
IEEE under the name Posix in its Standard 1003 groups.

It is arguable that if the computer is fast enough and the number of
possible tasks small enough, an interrupt-handling operating system
may be unnecessary. Some small commercial systems simply time-
slice the available resources and allocate them to the tasks in turn.
This simplifies the possible number of logic paths and reduces the
potential for software errors; it relies essentially on sense lines for
control line signalling.

6.5 VERIFICATION AND VALIDATION

In an attempt to approach software design and implementation in the
same systematic way as other branches of engineering treat hardware,
the field known as software engineering is being developed. The
approach is to be systematic at each step, from specification through
design and coding to testing, maintenance, and updating. The goal is
that the software should meet the needs of the purchaser, and an
important stage of this is verification and validation (V &YV). This in
principle, and sometimes in fact, applies to each version of the
software, before delivery and after repairs, both in place and pre-
delivery. We paraphrase ANSI/IEEE terminology (Thayer, 1990) as
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Verification is the process of determining whether or not the
products of a given phase of the development cycle fulfil the
requirements established during the previous phase. It also is
used to refer to the act of such determination, including
reviewing, inspecting, testing, checking, etc., the items,
processes, documents, and services.

Validation is the process of evaluating the system at the end of
the development process to ensure compliance with the system
requirements.

These definitions are subtly different, with verification considered
to apply to particular activities within the overall development and
validation connoting a determination that the entire system is suitable.
Sometimes the two are considered together as a single topic ‘V&V’.
The topic is an important part of software engineering (Francis, 1990)
and standards have been developed (Horch, 1987); one book devoted
to the question is Quirk (1985).

The overreaching problem is that real-time systems have special
requirements. They must be very reliable, because in the real-time
environment (such as process control) the consequences of failures can
be catastrophic (e.g. in nuclear power plants or aircraft flight control
systems) or at least very expensive (as in assembly line control). The
environment can make unexpected and conflicting demands on the
software (as when alarms go off in an unexpected combination), and
the demands may be simultaneous rather than sequential. The system
must meet deadlines, in which output commands (for example) must
be transmitted every few seconds or milliseconds.

The implications of this can be almost overwhelming if the system
is using interrupts, for interrupt response is a branching operation in
the software. Hence the path through the execution could in principle
be almost any sequence of interrupted procedure calls, i.e. the order
of computation is not fixed. Yet the software is expected to be at least
fail-safe, and preferably it should be fully recovering or fail-
operational. Under these circumstances, the design of the software is
very difficult and the verification and validation can seem nearly
impossible. Certainly there have been some notable failures in
software.

The first thing about V &V is to give the user a chance of designing
the software in a sensible and co-ordinated manner. Currently this is
seen to be specifications at several different levels, and testing and
documentationatieachilevelassitidevelops. This is simply not a closed
book yet; design, as in so many fields, is partly an art form practised
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by highly talented individuals.

The next thing to do is to code the design well. This will for
practical purposes mean coding in a language which can be read by
other programmers and into a program which can be changed without
using obscure ‘patches’. This means ultimately a carefully chosen
higher order language for most of the programming, structured
programming, and detailed programming standards. Few
programming standards specific to real-time systems have evolved; it
is felt, however, that programs should be re-initializable, and it should
be possible to synchronize routines, to designate portions un-
interruptable, and to restrict communications between certain
branches.

The verification portions of V&V are performed for each stage in
the development process. This may be seen as a common sense
management approach in which procedures are applied to ensure that
the system specifications reflect the job’s functional requirements, the
software specifications satisfy the system specifications, the design
meets the software specifications, and the code meets the software
specifications. Each of these verification stages will have several
steps. For example, steps ensuring that the code meets specifications
may include analysis of the program, step-by-step walkthrough of the
code, formal program-proving methods, and execution.

The validation portion of V&V may overlap heavily with the
verification. In fact, sometimes, particularly for small programs
created by small groups, little distinction is made between them and
V&V is considered a single process. The goal of validation is to
demonstrate by operation that the final system meets the user’s
functional requirements (as opposed to verifying that a step in the
development has been properly performed). This will require
exercise of the entire actual system if this is feasible. Frequently, the
software package will be first shown to execute on a large computer,
then on the target computer, then on the target computer in a real-
time mode, and finally on the target computer in the actual system and
interfaced to the actual devices used. A goal of the testing is to
execute each logic branch, each I/O statement, each algorithm, etc.,
and it should be possible to determine how many times each unit of the
program and each logic branch has been tested so that 100% testing
can be verified.

Demonstration of functional suitability requires extensive testing,
and there should be an a priori test plan. The test cases and their
nature are an important issue in themselves and fall into two
categories: systematic and statistical. The former can be designed to
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test specific properties of the system, and an expected reaction
predicted and compared to the actual reaction. The latter uses
randomly generated data (such as interrupt times) and the results must
be evaluated.

With systematic testing, a further breakdown of test types is
possible: white box, in which the program is known to the tester
(who may then purposely aim to exercise all paths) and black box, in
which the tester aims to ensure that all reasonable cases are attempted.
In either case, the generation of the test data will require, among other
things, a familiarity with the system requirements and environment.
In principle a set of expected outputs for each input set should also be
prescribed. This all becomes a difficult job, requiring considerable
skill and knowledge from the responsible engineers. Finally the tests
must be evaluated and documented.

Statistical testing uses randomly generated data and hopes to be
content with random answers. Thus measurement data are simulated
with a random number generator and the computer output is checked
for mean and standard deviation of commands, probability of software
failure, or expected number of remaining software errors. The
biggest cause of concern is perhaps the timing and interaction of
interrupts.

Statistical testing has two possible approaches: pure statistical testing
(no failures in N tests = ? about probability of failure) or indicator
cases (with random data, manually verify correct operation and
estimate vulnerability). In either case, the hope is that the randomness
introduced may find difficulties that systematic testing might miss.
For this reason, and because of the sheer number of tests which can be
required, statistical testing is often a complement to systematic testing.

For all of the above, the results must be examined to determine
whether the program operated as per specifications. This can be the
difficult and expensive part of testing. Here systematic testing at least
has an expected result, while statistical testing may need some
qualitative evaluation. Analysis is clearly necessary, regardless of the
formalism used.

6.6 SUMMARY AND FURTHER READING

Software engineering is a problem for all computer software vendors,
programmers, and users. Thus it is still being studied by computer
scientists.In, this chapter.we have,only touched on some of the issues
— language choice, verification and validation, special languages,



Summary and further reading 137

operating systems — that affect the control systems engineers. The key
issue for such an engineer is that the system must operate in real time,
probably uses interrupts, and must not contribute further to any
abnormalities that occur in operation of the system. This last aspect is
the overriding one for any component of the control system.

There are many places where it is possible to learn more than one
wants to know about the software issues. A book extending this
chapter is Holland’s (1983). Languages are just one of the topics
covered by Sinha (1986), which includes the work of Ahson (1986).
A control system oriented textbook is Bennett (1988).

Mainstream languages such as FORTRAN, ADA, C, etc., usually
have a number of textbooks plus specification books associated with
them. For example, C is to be found specified in Kernighan and
Ritchie (1978) and discussed in such as Schildt (1988).

Special languages, or special versions of general languages, are to
be found in manufacturers’ documentation. Hence the robot language
VAL is in Unimation’s documents (1979), although popular
descriptions such as Shimano’s (1979) also can be found. PLC
programming is also in manufacturers’ documentation, although the
book of Kissell (1986) is very helpful. Manufacturers’ documentation
is typified by such as IBM’s (1983, 1983-4, 1984). An earlier book
on NC machine programming is Pressman and Williams (1977).

Software engineering is actively pursued in journals and magazines
such as I[EEE Computer and I[EEE Transactions on Software
Engineering. Extensive coverage in books is just starting to become
evident, in texts such as Sommerville (1989). Books on special aspects
of software engineering are more common, although the treatment of
validation and verification by Quirk (1985) is one of the few of its
type.

Operating systems are in a number of texts, including Lister and
Eager (1988). A more specialized concentration on real time aspects
is given by Allworth (1981) and a critique is presented by Stankovic
(1988). A recent textbook is Joseph (1989).

Applications are usually described in journals, such as IEEE Micro,
Automatica, and IEEE Control Systems Magazine. Useful
information for the non-specialist is frequently to be found in the
popular magazine Byte. Books such as Sinha (1986) and Sinha (1987)
also have examples.



7
Communications

In this chapter we consider the connection of computer control system
components at three levels: simple wiring, instruments to computers
using digital signalling, and computer networking.

7.1 SYNOPSIS

The control computer must communicate with its sensors and
actuators, its operators, and other computers. The CPU, as we saw in
Chapter 5, communicates within the computer system by signalling at
low voltages along data, address, and control buses. These
communications are partly with interface devices for contact with
other parts of the control system. These communications devices are
of several types and levels of sophistication.

Some aspects of the communication system are simply those of
wiring and grounding, with the constraint being that the magnetic
fields of the various plant components should not cause excess noise in
the communications signal.

Another issue is that instruments and actuators, in their
communications with the computer, should send and receive signals
easily recognizable by the computer. If the signals have been
converted from analog at the source and are digital (as they may be to
avoid certain noise problems or to allow time sharing of the wiring)
then an agreed protocol must be used for the messages, e.g. RS-232C
or IEEE 488.

If computers are to communicate, then they may be networked.
Local area networks (LANs) are used for many communications tasks,
among them factory communications. Standards are emerging and
developing from among several possibilities of physical configurations
and protocols. One potential standard is the manufacturing
application protocol (MAP) and associated technical office
protocol (TOP). A likely solution is that present systems will evolve
to such a standard but will have several different communications
LANs with gateways connecting them.

These all may be used in a single factory, as in Fig. 7.1
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Figure 7.1 A Computer Integrated Manufacturing (CIM) system usually
requires communications between operations at various levels, from the
lowest Direct Digital Control (DDC) to the Management Information
System (MIS). The communications may be done in various ways.

7.2 SENSOR WIRING

The computer system necessarily communicates with the instruments
and actuators over wires (or more recently fibre optic cables and
occasionally radio links); for a multi-computer configuration, it must
also communicate with other computers. In the following sections we
look at the problems and principles of wiring and its protection,
particularly with regard to sensors.

Interference with signals is always a potential problem, and the
engineer’s resort is to attempt to plan for it by following established
standards. Although cost of materials can be an issue, installation
labour costs and their possible trade-off against maintenance and
troubleshooting costs are a prime systems engineering consideration.

7.2.1 Wiring, grounding, and shielding

It should go without saying that wiring should be of adequate size for
the load carried and should be physically protected from abrasion,
accidental cutting, and similar events. Colour coding is necessary, and
cabling should be used where possible so that maintenance may be
carried out.



Sensor wiring 141

Cabling needs are defined by standards issued by agencies such as
the SAA in Australia and NFPA in the US. Defining characteristics
include size, material, and number of conductors, and requirements
are in terms of current capacities, voltage drops allowable, costs, etc.
Power cables (such as nominal 1 mm?2 copper, approx. AWG #14,
suitable for a 1kW motor drawing 10A at 115V) will exhibit
resistance of perhaps 0.03€Q/m and capacitance of 100pF/m, so that
100m of two-conductor cable will have about 6Q resistance and
0.020 UF capacitance; instrument cabling for 4-20mA may be smaller
from a current carrying point of view, but will then exhibit (in
nominal 0.5mm?2 size) an order of magnitude more resistance and
perhaps an unacceptable voltage drop. Also, long cables in particular
may be involved in transmission line effects (reflection, etc.) and
although 2km cables have been demonstrated with low level (x10mV)
signals, even 10m cables can cause problems. The standards also
define things such as insulation types and armoured cladding
restrictions on number of conductors.

Digital signalling over wires is another possibility, and one that is
increasingly feasible with smart instruments and actuators, but here
the capacitance and inductance effects may adversely affect transient
response.

Part of system wiring is the supply of power to the system devices,
including computers, sensors, and actuators. Aspects of wiring to be
considered include straightforward properties such as wire size (for
which tables of ampacities are available), cabling, protection in the
form of fuses and circuit breakers, and grounding. Indirect effects
include the electromagnetic interference which power lines may have
on sensors, computers, etc. Although power supply is well beyond the
scope of this book, an elementary introduction may be found in Webb
and Greshock (1990).

Voltage is not an absolute quantity, but a potential difference
between two points. For voltages to be meaningful signals (and also
for safety in circuits — a matter of lesser importance for us but very
important in medical instrumentation) they must all be measured
against a stable reference point, called the circuit common. When a
circuit is linked to other circuits in a measurement system, the
commons are usually connected together to provide the same common
for the complete system; the latter may in fact be the universal
common - earth ground — and the connections may be to a ground
rod, water pipe or power line common. The problem due to not
having a common ground is'that'an extraneous current may flow in
the circuit between the two different ‘grounds’ of the instrument and
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the computer, yielding an erroneous signal.

The need for all instruments to be connected to a common ground,
such as an earthed heavy copper strip (so that there is low resistance to
the ground reference point and hence a large current carrying
capacity) may impose impractical burdens on the system because of
the size of the installation; it is one thing to have a common ground
for a single laboratory or room and quite another to have one for a
large plant. So, it may be necessary to tolerate some ground loops,
with stable grounds being provided for groups of instruments.

An alternative to having voltages ground-referenced is to use
differential voltages to carry the signal. The signals are differentially
amplified, and since any ground loop voltages now are present in both
paths, they will cancel out because they are common mode (common
to both inputs). As the inputs to the differential amplification are not
identically loaded, the differential amplifiers must have large input
impedances, much larger than the source impedances. This helps
ensure a high common mode rejection (CMR), as does having the
source impedances balanced.

Even with the above, it is quite possible to have extraneous signals
at the output of long wires to the instruments or actuators, due
primarily to capacitive coupling of the instrument cabling to nearby
lines. The differences in the amount of pick-up can be reduced
substantially by twisting the wire pair carrying the differential signal.
This makes the capacitive coupling substantially the same for the two
wires of the pair so that high CMR is maintained. Twisted wire pairs
are a common and cost-effective way of carrying signals, and are used
in many applications, including telephone connections to local
exchanges.

A further improvement can be obtained by shielding the signal pair,
i.e., surrounding the signal-bearing lines with a conductor and thus
inhibiting the capacitive interference. A typical high-quality cable has
a foil shield around the signal pair and a copper drain wire. The
shield should be connected to the signal ground rather than the
amplifier ground, but not both (which would form a ground loop
whose currents might induce coupling in the shielded pair). If the
instrumentation amplifiers are also shielded by their metal enclosures
and chassis, then these enclosures are attached to the cable shield and
hence to the signal ground. No commons other than the signal
common should be connected to the shield, however, as this would
lead to ground loops and defeat the purpose of having differential
amplification.
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High frequency interference, usually called RF (radio frequency)
interference, is also found in many environments. It can be due to
such sources as sparks, flash lamps, and laser discharges, and the
‘spikes’ which can render digital equipment inoperable. Usually the
circuit must be enclosed in a metal shield and shielded cable used. RF
shielding should be grounded at both ends (to prevent RF reflections),
however, in conflict with the conditions for common mode shielding.
Thus the best shielding will have two separate shields: an inner shield
for low frequency interference and an outer shield, terminated at both
ends, for RF interference.

7.2.2 Isolation

Sometimes two circuits must be isolated from each other. A striking
example occurs when medical instruments are electrically isolated to
prevent any possibility of power supply voltages reaching the patient.
Isolation transformers are effective up to about SMHz, above which
they are ineffective due to stray capacitances.

Excellent isolation can be obtained using opto-isolators, which
comprise a light source—detector pair in which the incoming signal
flashes the light and the detector senses the flashes and outputs an
appropriate signal. No electrical signals need cross the interface.
Light sources include neon bulbs and LEDs, while detectors such as
photoconductors and photodiodes are frequently used. The method is
particularly appropriate for digital signals, as the systems handle high
frequencies and discrete signal levels well.

7.2.3 The fibre optic alternative

Many of the above problems can be avoided by using fibre optic
technology to carry the signals around the plant. These systems are

* insensitive to electrical noise,

« automatically carrying differential signals (i.e., presumably the
sensor and the receiver are electrically at different common
levels),

e high speed devices, and

« used for digital signals.

The basic cost can be higher than twisted wire pairs, but the many
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problems avoided, plus the potential for networking (section 7.4.2)
are making this an increasingly attractive alternative.

7.3 COMMUNICATIONS NETWORKS

One of the reasons for using a computer element is that
communications of various types in principle becomes rather easy:
simply use the address and data lines cleverly. For a number of
reasons, including desire for standardization of the interfaces and
because the range over which the simple 0-5V low power signals on
the computer’s buses can be transmitted is limited, there are several
ways of organizing the communications, depending upon the task.

1. Modems (Modulators/Demodulators) for communication
between computers — usually one pair at a time — over telephone
lines.

2. Local area networks (LANs) for communication among a
number of computer equipped elements.

3. Commonly found connections and protocols for interfacing
computers with their peripheral devices. These are particularly
evident with microprocessors and include RS-232C serial
connections, IEEE 488 instrument bus, and Centronics printer
ports.

We look at those in the next few sections.

7.3.1 Standard I/O arrangements

The number of ways of connecting devices to the computer would
appear to be almost endless. Some instruments are smart, as more and
more are becoming, and hence provide some data smoothing,
linearization, and A/D conversion, but there is still a demand from
users to have straightforward connections with the computer. From
this demand have evolved several conventions for instrumentation, of
which we look at two. The first is the RS-232C connection, originally
defined by the EIA in the US and also called, particularly in Europe,
the ISO V24. The alternative is the general purpose interface bus, or
GPIB, with the IEEE-488 bus being the defining standard, and
occasionally known as the Hewlett-Packard interface bus (HP-IB) in
honour of theymanufacturerswhordefined the first version and helped
make it a de facto standard.
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RS-232C, called V24 in Europe, is only semi-standardized in that
many implementations extend the definition or make presumptions
about the hardware applications. Among the common factors are that
the data is sent serially (i.e. one bit at a time) over the connection,
only one wire is used for the data, and there is a 25-pin connector at
each end of the cable. Of the several response, etc., signals available,
in many cases only a few are actually used. The transmission signal
levels used are £10-+12V, and the receiver is intended to register a
mark (or logic 1) on receipt of +3V and a space (or 0) on receipt of

The range of an RS-232C connection is limited by the noise
sensitivity of the data lines, which in some receivers need change by
only 1.5V relative to GND to signal a mark or space and thus false
signals may arise in electrically noisy areas. Overall, RS-232C
transmission is defined for 15m range at up to 19200bits/s data rates;
special implementations can obtain slower bit rates at ranges of
50-100m, while personal computer data exchanges tend to be at
115kbps (kilo bits per second) over 1 or 2m.

To circumvent the noise problem, RS-422 and RS-423 schemes may
be used. These are variants of RS-232 in which a pair of wires is used
for each of the data links, and the signal is defined as the difference
between the two wires. The effect is that noise, which would tend to
affect both wires equally (common mode), does not appear in the data.
The differences between the two schemes are due to the fact that
RS-422 uses only the line difference for signalling and hence may be
biased as desired, whereas RS-423 has the data line pair balanced with
respect to ground potential. Both have ranges up to 2km before
distortion and noise become problems; RS-422 allows data rates up to
1 Mbps and RS-423 allows up to 100kbps.

There are a number of differences between the RS-232C and GPIB
(IEEE 488), including the fact that the latter is capable of carrying 8
bits in parallel, but the most striking one is a philosophical one: GPIB
is a bus system in many ways similar to the computer’s internal
structure of data/address/control lines. The idea is shown in Fig. 7.2.
The controller will almost always be the computer, and the devices
could be either instruments or actuators. The terminology of the bus
has the controller, plus listeners and talkers (who receive and transmit
data, respectively).

The bus has 16 signal lines plus several ground return lines. Eight
of the signal lines are used for bus operation, three for handshaking
(whichrissthersignalvandireply which verify that the communication
channel is open) and five for bus management. The other eight lines
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Figure 7.2 The IEEE 488 (GPIB, HPIB) is a bus oriented
communication system with a central controller. It is used, for example,
to have a data recording system poll the various sensors for data.

are bi-directional data lines and are used to carry both data and
address information. The connector is a 24-contact type. Signal
levels are TTL (OV for true and 5V for false logical). Typical
maximum transmission distance is 20m divided by the number of
devices connected, and 2m cabling lengths are typical. Up to 30
different devices may be addressed, but 15 is a more realistic limit to
the system’s capability. Short ranges can carry very high data rates:
20kbytes/s for a few metres or tens of metres using IEEE-488
versions.

In operation, the controller polls the devices to find if they wish to
receive, transmit, etc. It then sets up the conversations, one talker and
one or more listeners at a time, and commands the data transfer to
take place. IEEE 488 does not specify signal coding, but ASCII
(American Standard Code for Information Interchange) is commonly
used.

We mention the Centronics connection only because it is so
popular. It is used principally for printers, although of course it can
be used for other applications. There are eight data lines, so bytes
may be carried in bit-parallel form, plus at least two control lines and
several ground lines. The minimal control lines are a data-ready
strobe and a receiver-acknowledge signal, used for simple poll-
response confirmation, called handshaking.
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7.4 COMMUNICATION BETWEEN COMPUTERS -
NETWORKING OF SYSTEM ELEMENTS

Networking is a very new element on the control system scene; the
standard approach has been to have multiple computer elements in a
hierarchy with a master—slave relationship. This is evident in multiple
computer devices such as robots, where the Unimation PUMAs, for
example, have microprocessors controlling each joint and robot
control is by a minicomputer supervisor.

Advances in computer networking, the sheer number of computers
in a large plant (when counting all the microprocessors in the
controllers and smart instruments), and the desire for more
management information on activities (CIM — computer integrated
manufacturing) have all combined to make pursuit of LAN ideas in
manufacturing plants a topic of much interest, with emphasis currently
on MAP (manufacturing applications protocol) and SP50 field bus.

Computer networking developed originally because of a desire to
save cabling costs in large computer systems with shared resources.
Thus printers can now be shared by several computers without
running cabling from each computer to each printer; several user
terminals (which tend to generate data at relatively low rates) may be
attached to a single communication line, etc. When computer systems
such as those at universities, comprise a group of terminals, possibly
in a separate building from the computer centre, the network concept
requires one line from the terminal room to the centre whereas the
direct plan requires one line per terminal; the potential cost savings
are obvious. The disadvantage of this approach is the need for
increased sophistication at the nodes of the network, for each element
must now be able to deal with the communication system as well as the
computer elements.

Networks are also attractive for control systems, for similar
reasons:

e cost savings due to less cabling;

» possible control advantages because of interactions of control
elements (without need for a central communication node); and

+ flexibility of equipment choices provided that the network contact
points are compatible.

There are three properties which characterize a network: the
physicalutopology;thentechnology of implementation, and the
communication protocols.
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7.4.1 Topology

There are three building block topologies for a network: star, bus, and
ring. An implementation may be purely one or another, or may
involve combinations of the three.

The star topology has the outlying elements all connected
individually to a central element (Fig. 7.3(a)). In a control system, this
would have all instruments and controllers connected by individual
cables to a central computer, probably in a central control room.

In the ring topology, the cable is laid in a closed ring shape as in
Fig. 7.3(b). Communications are usually uni-directional, and often
two rings with contra-directional data flow are used. The ring’s
advantage over the bus is in reliability: a single break in the cable will
still leave open a communication path between any two elements in the
ring provided bi-directional flow can be allowed.

A bus topology for the system is quite like the bus layout of the
CPU itself. Here (Fig. 7.3(c)) a single cable runs through the plant
and the various instruments and controllers time-share usage of the
wire. Traffic is usually bi-directional on the bus.

(@ (b)

—
hd

(c

)
BJ:'
Figure 7.3 Networks can be configured with various topologies. Here we

have in pure form (a) star, (b) ring, and (c) bus topologies. S denotes
server or supervisor and U denotes user.
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For many applications, a combination of star with either bus or ring
layouts is useful (Fig. 7.4). This is particularly appropriate to
decentralized control, as control elements and their instruments may
be placed in a star layout near their required plant locations (an
increasing possibility because of improved hardening of computer and
other electronic equipment). Then only required information is
placed on the bus for communication to other control locations or the
central control and monitoring room. A further alternative is the
bus-bus topology, using IEEE 488 buses for short distance
communication between decentralized controllers plus a long distance
line for plant communication.

Main LAN g]

To telephone
leased lines

>,

00 OO e

Figure 7.4 There is no technical reason that topologies cannot be mixed,
with various buses attached to a master Local Area Network (LAN). Itis
even possible to send plant data over the telephone system. In this diagram,
the circles are local LAN or communication supervisors, and the squares
represent devices, possibly including inter-network ports, which are
supervised.

7.4.2 Technology

The technology of the implementation is a major determinant of
communication rates and distances for acceptable signal-to-noise
ratios. Although radio is a possibility (an early network was the
Hawaiian Aloha radio communication network), the current choices
are basically twisted-wire pairs, coaxial cabling, fibre optics, and
occasionally unguided laser light communication. The interfaces are
almostycertainlyvimplementedswith solid state electronics, and in
commercial applications the electronics may be a set of one or two
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integrated circuit (IC) chips.

The possible communication speeds of the three main contenders
are shown in Table 7.1. Most of these are well in excess of the
requirements of control systems; 1000 sensors sending their 16 bit
data 100 times per second requires only 1.6 Mbps (million bits per
second) of capacity plus overhead. Noise problems are likely to at
least contribute to making a choice, as industrial plants generate much
electrical interference due to motors turning on and off, high voltages
in power lines, etc. On these grounds fibre optics are receiving
increasing attention for communications over multi-hundred metre
distances; coaxial cabling is a very common choice within plants, and
twisted wire pairs can be used over short distances (metres).

Table 7.1 Communication media — rates

Medium Cost Cost Datarate  Length
(units/m) (units per (km)
connector)
Twisted-wire pair 0.1 0 10Mbps  several
Coaxial cable 1.5 12 10 Mbps 25
50 Mbps 1
Fibre optics 0.5 30 100 Mbps 100

(to 10 Gbps)

The tabulated values are typical rather than maxima. Twisted wire
pairs constitute an inexpensive but noisy and vulnerable carrier
medium. Coaxial cable is very popular, while fibre optics are fast,
noise insensitive, and safe in an inflammable or explosive
environment; they are still unfamiliar and expensive, however, and
are unable to carry electrical power.

7.4.3 Communication protocols

The communication protocols are the rules which determine how the
network resources are shared. The first choice to be made is between
a centralized controller of the network and distributed control. In
fact, it is arguable this is the fundamental determinant of the network
data.flow..Certainly;.control systems can — because of their real-time
communication needs, particularly in an emergency situation — have
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requirements not found with data communications for banks or even
telephone conversations between individuals.

Centralized control means just that: there is a single central unit
(probably the central computer) which is master of the system. All
other units wishing to transmit must gain the permission of the master.
The master can also override the slaves. The CPU usually functions in
this role within a single computer system, with demands conveyed via
interrupts and sense lines and the CPU setting up communication paths
such as DMA (direct memory access). The network is philosophically
an extended version of the computer bus concept.

In distributed control all of the units attached to the network bus
or ring are essentially equal, although this is a fairly pure form since
priority setting is often possible. The units must contend for the use
of the network. Some of the possibilities are CSMA/CD, token rings
and buses, and register insertion rings.

CSMA/CD stands for carrier-sensed multiple-access with collision
detection. It dates to a radio data communication network (ALOHA)
and is analogous to one even when implemented over cable. A node
wishing to send a message checks the communication medium to see if
it is in use (carrier sense). If so, the node waits. If not, the node
begins to transmit its message. If another node has also been waiting
and starts to transmit simultaneously, the messages interfere; both
transmitters will sense this (collision detection), cease transmission,
and retry the transmission some random time later. Available
commercially, under such names as Ethernet, these systems give good
performance when lightly loaded. A problem is that a maximum
delay that a particular message might endure cannot be guaranteed.

In token-passing networks, a short data sequence called a token
passes from one node to another in sequence on the network. A node
receiving the token, but no other node, is allowed to transmit its
message if it has one. Upon either not having a message or on
completion of its transmission, a node passes the token (i.e. sends the
token code) to its successor on the net. The most famous token
network is a ring network implemented by Cambridge University and
called the Cambridge ring. Token-using networks can be arranged so
that maximum delay is restricted (to the time for which all other
nodes send one message plus the time for sending a node’s own
message), but on the average a minimum wait of the time for the
token to pass through half the nodes is entailed even when the network
is lightly loaded.

Buffer-insertion rings = theéré seems to be no point in having
buffer-insertion buses — use a two-message length buffer at each node.
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A node wishing to transmit fills one of its buffers so that it will be
ready to transmit if given the opportunity. If a break in transmission
by other nodes occurs, the node starts to transmit from its buffer
(similar to CSMA). If another message starts to pass through while
this node is transmitting, the message is fed into its second buffer and
passed on only when it has finished its own transmission, i.e. it saves
rather than cancels as in CSMA/CD systems. This system has been
implemented so far at a university (Ohio University’s DLCN/DDLCN
— a variation of the Cambridge ring also using a partial buffer) and
has the potential of higher throughput than other schemes. It can be as
rapid in response as CSMA/CD; but it does not appear possible to
guarantee an upper bound on the delay.

7.4.4 What’s happening — MAP/IEEE 802.4 and others
Manufacturing application protocol (MAP)

The evolving standard for control systems applications networks
appears to be MAP, which implements a token-passing bus approach
to the network. The concepts are defined by IEEE Standard 802.4.
In fact, networks are defined in terms of seven layers (see Table 7.2)
according to the Open System Interconnection (OSI) reference model
of the International Standards Organization (ISO).

Table 7.2 ISO Model

Layer Description Layer function
7 Application Program program
6 Presentation control Translate format
5 Session control Make and keep connect
4 Transport end-to-end  Error check
control
3 Network control Message routing
2 Logical link control Intranet error check
Medium access control
1 Physical control Signalling physical connect

This_model is partly the result of liaison between the IEEE and the
European Computer Manufacturers’ Association (ECMA) begun in
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1981. The IEEE standards apply to the bottom two layers of the
model. The logical link control falls under IEEE 802.2; medium
access control and physical control are covered by 802.3 for
CSMA/CD buses, 802.4 for token-passing buses, and 802.5 for token-
passing rings. Other standards are under development.

In the case of MAP and the similar proprietary ARCNet, the
network is physically of bus structure and operationally a token bus,
in which the token passes sequentially from station to station. After a
station finishes transmitting data frames, it sends a token-containing
frame to its successor. The successor, now in ‘possession’ of the
token, may transmit its data frames if it has any. When finished, or if
it has no data, it transmits the token to its successor, and so on.
Various procedures, mainly based upon the transmitter of the token
listening to see if anything happens, are available for establishing if a
successor has failed or gone off-line, for adding new stations to the
bus, for setting up priorities for stations, for limiting the number of
frames transmitted when in possession of the token, etc.

Standard 802.4 describes three media and transmission methods.
These are indicated in Table 7.3; notice that data rates are upward of
1 Mbps.

Table 7.3 Media and Transmission

Data rate Medium Drop cable  Signalling
1 Mbps Coax 25-50ohm  Manchester
(RG-6,RG-11 CATV) <350mm Coding
5 & 10 Mbps 75 ohm semirigid RG-6 FSK direct
Baseband ‘very short’
1,5, & 10 Mbps CATV AM three-level
Broadband

The token-bus system helps provide some of the properties needed in
factories: flexibility in topology, with trees, stars, and repeaters;
upper bound on response time; reliability checking; possibility of
having a master station. Range is dependent upon the speed desired
and the number of repeaters, but the order of hundreds of metres is
achievable.

Although"MAP was developediin part from manufacturers needs, it
1s in some respects an ‘overkill’ for the needs on the factory floor.
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This may be seen by examining Table 7.4, derived from LeFebvre
(1987), which compares functional requirements of the six levels of
the National Bureau of Standards model of factory computing systems.

Table 7.4 Functional requirements and suitable communications
networks for levels of NBS factory model*

NBS factory Data type Time Possible
level (nature) scale network
Accountin g Hours MAP/T OP
Corporate} Inventory Ethernet
Plant Data processing etc.
(Batch orientated)
Area Data consolidation T Seconds MAP
Cell } Coordinationd MAP
(Intermittent)
Workstation Real-time data msec mini-MAP
Equipment Direct Digital Control proprietary
(PLCs, PIDs) (High Speed Periodic) network

* Derived from LeFebvre (1987).

The last two, or maybe three, levels involve communications of a
rather specialized type, where the programmable controllers and
devices do the actual process control. They operate in real time and
need information often, but in small amounts; e.g. each device needs
an 8-bit byte of data every few milliseconds (ms). Although MAP is
applicable in principle, it appears that not every computing device
needs the full generality of MAP. In fact, the Instrumentation Society
of America (ISA) has proposed a set of standards for this level which
in effect has only layers 1, 2, and 7 of the OSI model. Implemented in
a form called Mini-MAP, it is compatible in most respects with MAP.
The primary difference, and the reason the devices will not be plug-
compatible but will need bridges, is the use of a carrier band. This
gives frequency modulated signals rather like frequency shift keying
(FSK, in which a different frequency is used briefly for each symbol)
superimposed on a carrier. Cable distances are limited to 1.5-4.5km.
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LAN alternatives to MAP

There are competing alternatives to the MAP token-bus systems. One
of these is the common Ethernet approach, which some plants are
finding adequate in spite of suspicions that its CSMA/CD protocol is
not suitable for time-critical communications; one significant
advantage is that front offices already have Ethemnet installed, so
plant-wide networking for such purposes as implementing CIM
reduces to connecting the rest of the plant.

A somewhat different approach uses a bus structure similar in
concept to the computer’s internal bus, for communications. The
approach may be called a field bus, and essentially has a simple bus
such as a twisted wire pair with access controlled by a single
supervisory computer. Not atypical is Intel’s BITBUS, in which as
many as 256 modules are connected to up to 10km of a twisted-wire
pair with communications at 2.4 Mbaud. Concentrators can be used to
connect a number (say 16 or so) I/O devices to each module
connection, while gateway modules are one bus-connected way to
allow communications with parallel input or output devices. The host
computer can also, using other buses, networks, or modems, connect
to other parts of the system.

Another variation is Europe’s SP50 field bus, currently being
defined and standardized. The underlying philosophy is to replace the
present approach of wiring individual 4-20mA signal devices to their
appropriate sources or sinks, sometimes over long stretches of wiring,
with a digital link shared by many devices. Part of the definition
effort is devoted to defining and subdividing the OSI physical layer
appropriately; the likely outcome will have one protocol for existing
systems which derive their power from the field wiring and another
protocol to meet requirements of higher performance systems
including for example PLCs.

Although serving a communication function, field buses are not
considered true networks, but are perhaps best considered a notch
down from networks in sophistication. Claimed advantages of this are
that they are simple in concept and installation, use existing
technology, and, because they are like field wiring rather than a
communications system, can be handled by electricians.
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7.5 NETWORK ARCHITECTURE - CENTRAL vs.
DISTRIBUTED CONTROL

Once it has been decided that a plant will have sensors and actuators in
various places, and that these will be computer compatible, then it is
possible to connect them either to a centralized control computer at
the one extreme or by independently pairing sensors with actuators at
the other. The trade-offs include optimality and (perhaps) computer
cost-effectiveness in the first case versus fault isolation and short
cabling in the second. In fact, because of the ubiquity of
microprocessors in loop controllers, PLCs, and smart instruments,
and because microprocessors are relatively easily networked, many
systems are naturally employing distributed, hierarchical control.

Decomposition of a system into a hierarchical one can be done on
several different grounds.

1. System structure This can seem very natural to the designer.
For example, a pump motor may itself be a controlled device and
may in addition be used to maintain a liquid level. Although the
level error might in principle be used directly in control of the
motor, it is likely that in fact the two loops — level control using
the pump and pump speed control — will be nested.

2. Levels of control In this approach, direct device control will
be the lowest level. Computation of set points for the devices
will be a supervisory level. Adaption of the set point
computations to changing system characteristics might be a third
level in the hierarchy.

3. Levels of influence When this is the criterion, fast time
constant devices will be at one level and slower ones at a higher
level. An example is in control of the aerodynamic surfaces of
an aircraft by an autopilot. These will require tight loops and
rapid response in the presence of disturbances. The navigational
corrections, on the other hand, may be made less rapidly.

4. Theoretical Theoretical arguments involving process models
can be helpful in determining hierarchies and the controllers to
be used at each level. The results are only partial ones, however,
although like many theoretical arguments they can help support
decisions (see Chapter 34).
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7.6 COSTING

Costs are difficult to pinpoint in general. Wiring and shielding may
be more of a labour than a materials cost, for example, while
differential and isolated amplification are design problems. For
standard connection types, the actual computer interfaces can range in
cost from $50 or so for RS-232C connections and several hundred
dollars per GPIB element through several hundred dollars per
computer for a simple CSMA/CD LAN hook-up up to several
thousand dollars for a computer modem. For some computers, signal
conditioning modules are available which take in raw sensor signals
such as those from thermocouples and output RS-232C or IEEE 488
signals; such cost a few hundred dollars per module, where the
module may allow several inputs.

7.7 FURTHER READING

Information on wiring and shielding tends to be scattered, although
some electronics textbooks will contain it and some issues are covered
by standards, or at least by standard practice. Some discussion is in
Hunter (1987), and special textbooks such as Webb and Greshock
(1990) are helpful. A recent text on interfacing is Derenzo (1990).

Networks are discussed in the communications literature, e.g. Flint
(1983) or Gee (1983), with a useful summary in Sloman (1982). One
useful text is Tannenbaum (1988).

Details of standards such as RS-232C tend to appear in the computer
literature. The ongoing development of networks in industry may be
followed in the engineering literature, often under the classification of
distributed control (e.g. I&CS, Sep. 1990).

Architecture of manufacturing computer systems is often a topic of
the control engineering periodicals (see e.g. LeFebvre, 1987) and of
texts such as Groover (1987). General theoretical issues are discussed
by Larson (1979), and the textbook by Leigh (1988) has a partial
presentation.

Developments in a manufacturing environment are most easily
followed in the trade journals such as /&CS.
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Control laws without
theory

Many control systems can be and have been set up with almost no
reliance upon the mathematical theory of control. Many more have
been based upon a notion of how the mathematics might turn out but
with no explicit reliance upon that tool. This is true even leaving
aside the PLCs devoted simply to turning on and off the various
machines involved.

Such an approach has a long and partially distinguished history.
Early windmills, with their vanes to keep the main propeller pointing
to the wind, doubtless had no supporting theory, but only the
understanding of some clever inventors of how things worked.
(Similar things could be said of boat designers, who learned from
their successes — and disasters.) The Watts governor, famed as the first
of the explicit control devices, had no theory until Maxwell solved the
‘hunting’ problem in 1869.

Even today, many systems must do without strong theoretical
underpinnings, as the mathematics may be too difficult, too expensive,
or irrelevant. More to the point, a number of systems have not been
modelled in detail, and hence the manipulation of mathematical models
upon which theory is based is not possible.

Such systems are still controlled, however. The control is based
upon the engineering artistry of the designer and the skill of the
system operators, just as was the case with early aeroplanes. In this
chapter we review a few of the schemes in which a system is
compensated and tuned through the use of heuristics and tuning. The
reader will derive from this a notion of what to do when the theory
fails, an appreciation of some real systems and how they are
controlled and operated, and an introduction to the heuristics of
control.
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8.1 SYNOPSIS

The parameters of many control systems may be adjusted to yield
good performance, i.e. the control systems may be ‘tuned’, without
recourse to much theory.

1. PLCs are, by their nature as relay logic substitutes, virtually
theoryless.

2. A new breed of control devices are self-tuning. Their tuning
algorithms were built in by the engineers who designed them.

3. For many of the simpler control laws, and particularly the widely
used PID law and its subsets, there are rules of thumb for setting
the parameters. These schemes typically involve observing
system operation under open-loop or simple closed-loop
conditions, estimating parameters of their responses, and
inferring satisfactory values of the control law parameters.

These all have their limitations, of course, and few engineers would
install them without having a good understanding of the plant.

8.2 PLCs - THE SEMICONDUCTOR-IMPLEMENTED
RELAY BANKS

A great deal of what is taught about control systems seems exotic:
advanced algorithms for shaping missile trajectories, fancy filters for
extracting information from noisy data, methods for moving robot
arms efficiently and rapidly, sensitive instruments for monitoring
pollution. Underlying most of these are much more mundane tasks:
turning equipment on and off, opening and closing valves, checking
sensors to be certain they are working, sending alarms when
monitored signals go out of range. Process control plants, aircraft,
and indeed most controlled systems share this need for simple but
important operations.

The tool for handling these simple operations, of which there may
be hundreds or thousands in a single factory, is the programmable
logic controller (PLC). It is easiest, and also historically correct, to
think of the PLC as effectively a large bank of relays implemented in
a computer. The great advantage of the PLC over relay banks is its
programmability — the implemented logic can be altered by changing a
computer, program, rather than by.changing the wire harness of a set
of relays.
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Implementation of logical commands does not require the engineer
to be a theoretician, but a careful and thorough understanding of the
plant and its elements is necessary. We have already met much of the
PLC’s hardware in Chapter 5 and hinted at its software in Chapter 6.
In this section we partially reprise those presentations and add some
discussion of applications.

8.2.1 The basic scheme

At its simplest, the PLC implements turning on a motor (say) via
logic. The simple form of the operation is shown in Fig. 8.1(a), a
relay form in Fig. 8.1(b), and a PLC implementation in Fig. 8.1(c).

(@) ()

POWER MOTOR POWER
(] T o
1

Switch
RELAY Relay solenoid

POWER — T
Switch

(c)

Switch

Input

Switch | unit

power
COMPUTER

POWER Output
unit

Figure 8.1 The progression in turning a motor on and off from

(a) simple switching of the motor power to (c) using a pushbutton to
activate a computer which, after suitable logic checks, commands its output
unit to allow the power to be connected to the motor.

Because the relays are used in (b), the relay switch need not carry the
motor power and could in fact require only the few volts sufficient to
power the relay coil. The PLC carries this further: input power is
matched to the input unit, and| could be an instrument signal
(4-20mA), the computer is basically a low power 0-5V device, and
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the output unit can match the output command to the motor
requirement, e.g. 120V, 240V, or 400V AC, or perhaps 0-24 VDC.
Further, the computer is able to implement logic such as ‘turn on
motor 2s after switch is closed provided some other (e.g. safety
switch is closed) conditions are met’.

8.2.2 Programming in ladder logic

The PLC turns output commands on and off after making logic
checks. In essence, it implements checks on whether contacts are open
or closed, runs timers and counters, and does sequencing. The usual
logic tests are represented in logic ladder diagrams and
programming of the computer can be done from those diagrams,
although manufacturers may offer other options.

The basic elements available in the PLC and their symbols are
shown in Fig. 8.2.

—— Normally open contact input
— Normally closed contact input
_< )_ "Coil' output

-6"9— Timer symbols

Counter

Sequencer

Figure 8.2 A few of the symbol types used in representing PLC
programs. These are not standard.

Along with the basic logic functions, PLCs are now available with
arithmetic capabilities. These capabilities are sometimes combined
with a special purpose auxiliary module to allow continuous (rather
than just on—off) output commands. These modules may even have a
PID capability (section 8.3), which overlaps into the ‘tuning’ area and
definitely requires more than logical decisions from the engineer or
technician setting up the program.
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In using the PLC, the logic program - the logical relationship
between inputs and outputs — must be determined. There may be a
great many instructions of the type

1r the motor switch is on and the appropriate alarms are oFF
THEN start the motor turn-on sequence.

and the components must be assigned codes (often numbers) that are
related to the I/O wiring of the PLC. Thus the command above might
translate to:

1r normally open 0011 is closed
anp normally closed 0001 is closed
anp normally closed 0003 is closed
tHEN operate sequencer 0201
with 2 second steps
to close switches 1011 and then 1012 and then 1013
to the ‘coils’ 1111, 1112, 1113 respectively

The corresponding ladder diagram is in Fig. 8.3.

Power Rail

1011 0001 0003

1011 111
]

1012 1112
|
1

1013 1113
-

Ground Rail

Figure 8.3 A simple PLC program in ladder logic. When pushbutton
1011 is pressed and safety interlocks 0001 and 0003 have not been tripped,
then.after.two,seconds,a,countersissstarted. This successively trips switches
1011, 1013, 1012 to do the motor start-up sequence.
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8.2.3 The programming of PLCs

The standard way of programming the PLCs is to enter the ladder
diagram into the computer using a special keyboard and to look at the
display on a dedicated device, either a VDU (computer visual display
unit) or liquid crystal display. The display will look much like Fig.
8.3, and is said to be easy for technicians to work with. Hard copy (in
the form of printer output) is easy to obtain.

Programming of PLCs has also been done in other languages,
notably BASIC and its relative FORTRAN and, to a lesser extent,
versions of Pascal; one assembly language type approach is that of
Siemens’ STL. These can be particularly useful if the PLC also allows
arithmetic functions and proportional control laws.

8.3 TUNING OF CONTROLLERS

When the control computer’s output is in other than a simple logical
relationship to the input, there are usually a number of parameters
which can be selected. Such selection is called tuning of the controller
and is often refined even after theoretical studies, often with the aid of
simulators or with the actual system. In some cases, perhaps driven
by necessity or convenience, this adjustment is done without theory.
This theoryless tuning can be done by special self-tuning controllers, a
recent innovation, or by manual means starting with rules of thumb.

8.3.1 Self-tuning controllers

When command signals to the process are functions of errors between
desired and actual outputs, the determination of what functions to use
and what the parameters of the functions should be is at its core a
matter requiring some theory. Long experience with certain function
types, plus a certain ad hoc intuitive justification has allowed many
practitioners to manage with only a modicum of theory. So, instead,
they use now-standard functions and ‘tune’ their parameters to the job
at hand.

Since this tuning required manipulating the parameters to achieve a
certain desired response pattern to system transients due to start-up,
set point changes, or disturbances, it was perhaps inevitable that
computerspweregprogrammedyto, do the pattern recognition and
parameter manipulation. = Controllers using such techniques are
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adaptive controllers (Chapter 31), although the special nature of their
functions and implementations has led them to be described as ‘self-
tuning’.

The usual function implemented in commercial self-tuners is PID,
or three-term, control (see section 8.3.2). The tuning algorithms are
mostly proprietary, but would (at least philosophically) be related to
the manual tuning algorithms (section 8.3.3). A special subroutine in
the control computer may be visualized as overseeing the operation of
the PID law and changing the three parameters of that law when the
error between desired process output and actual process output shows
patterns (such as oscillations) indicating change was necessary.

Claimed advantages of self-tuning, some proven in a research
environment and others also established in an industrial environment,
include the following.

1. Skilled process engineers are not needed to tune the process

initially.

2. Control will be quite good regardless of set point changes or load
disturbances.

3. Technicians on start-up can spend their time on tasks other than
tuning.

4. The plant is always in tune, so its operation is more efficient.
This can result in savings in energy and materials, and
improvement has been shown to be substantial in some research
programmes.

As commercial self-tuning controllers may even be delivered with
‘good guess’ initial parameter values, the control engineer may well
see this as theoryless control of a device. A responsible engineer,
however, might be unwise to install one of these (or any other) black
boxes ‘blindly’ without having some notion as to what it does.
Particularly important may be considerations of what happens to the
algorithm when things go wrong with the plant. Typical desirable
capabilities may be as follows.

1. The ability to find out the current parameters and to manually
override them.

2. The ability to enable and disable self-tuning.

3. The ability to instigate a special plant input disturbance-like
signal to cause a self-tuning cycle.
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Of course, if manual tuning is available and is to be used, the
process engineer must have some notion of how to do the tuning. This
is the topic of the next section.

Several commercial PID controllers are self-tuning (Clarke, 1986).
One of the first of these was the Foxboro ‘Exact’ self-tuner. While
manual tuning and set-up are of course possible the basic self-tuning is
based upon the tracking of error transients introduced by load-
disturbances (Fig. 8.4) The disturbances are assumed to be of the form
of step inputs.

Step Response Error

_ /\\/ t
\/ ‘.
Figure 8.4 A self-tuner may apply a small perturbation and measure the

error response. One algorithm uses the peaks e; , €2, e3 to set new PID
parameters. After Clarke (1986).

The transient is tracked whenever lel exceeds a user-set noise band and
the algorithm looks for three successive peaks e, e, e3 as shown. The
computed values

e
Overshoot = e_z

€3—e
ex—el

Damping =

are compared with user-prescribed values. If the computed quantities
are too small, for instance, it is inferred that the gain is too small and
the gain is increased; if peaks are indistinct, the integral and derivative
timesparametersyaresreducedsn There is an elaborate set of interlocks
which guide the tuning so that the transients take on a desired form
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and size; these have not been published in the open literature.

Another self-tuner is that of Turnbull Controls, for which the
details have again not been published. This appears to perform a
system identification and design a PID controller according to some
rule (see Chapter 30 and also section 8.3.2 below).

8.3.2 Heuristics of PID controllers

The standard process control law has a hundred-year plus history,
rules of thumb for tuning dating back fifty years, and possibility for
implementation with purely mechanical or pneumatic controllers. It is
called the three-term, or proportional-plus-integral-plus-derivative
(PID), law and has as a special case the proportional-plus-integral (PI)
law. The PID rule, relating the controller’s output command u(t) to
its input signal e(¢) as

t

u(t) = Kp e(t) + K; Je(s)ds + Kq %2 (8.1)

is often built into commercial controllers, with the designer or
operator expected to set the three constants Kp, Kj, and Ky according
to his application. A popular alternative form of this is

u(t) = Gy e(t)+ j(e(s)ds)+Td Mﬁ} (8.2)

where T; is called the integral action time or reset time, and T4 is
called the derivative action time or pre-act time.

Because the output depends upon the sum of three terms, these are
sometimes called, logically enough, three-term controllers. Other
names include loop controllers, PID controllers, and process
controllers.

One sampled-data or digital computer version of the above is
defined by using a trapezoidal approximation for the integral term and
a simple first difference for the derivative, to yield a near-equivalent
form



168 Control laws without theory
i(nT) =i(nT-T) + (e(nT) + e(nT-T))/2

u(nT) = K, e(nT) + K; T i(nT) + K4(e(nT) — e(nT-T))/T (8.3)

where T is the time between successive computations (and between
samples, and between commands). Suppressing the T in the indexing
and incorporating the T's in the constants yields

i(n) = i(n=1) + (e(n) + e(n=1))/2
u(n) = Kpe(n) + Kii(n) + Ka(e(n) - e(n-1)) (8.4)

The equation and notation of (8.2) also have a digitized form.

Such controllers are frequently used in large systems which are not
modelled sufficiently for extensive analysis to be done, as often they
can be tuned to give satisfactory performance. In the subsections
below we develop the heuristics associated with each of the three
terms and then present a few of the tuning rules which have been
proposed.

It is possible to argue that the various terms of the three-term
controller are a good idea — especially since the result is so often
satisfactory. In this section we discuss the P-term, then P+I, then
P+D. These are of course not derivations but justifications. A more
profound question is: why do the simple control laws often work as
well as they do?

Proportional control — the P term

Manual tuning has a heuristic motivation which is fruitfully traced to
gain insight into the classical approach to control system design. If a
plant is not responding accurately to commands sent to it, the first step
is usually to introduce a feedback loop, compare the actual output to
the desired output, and send a command to overcome the difference.
In Fig. 8.5(a) is shown a schematic for this configuration. (We
remember that this is in fact an abstraction in which a number of
realities have been ignored: desired output is probably a number
rather than a signal; actual output is probably a signal which measures
output using a transducer; error may be either a number or a signal,
but the controller (Fig. 8.5(b)) is probably a digital computer device
and hence works with numbers; plant commands may be voltages,
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hydraulic pressures, or other signal carriers. Our implicit assumption,
made explicit here, is that such scaling as is necessary has already been
done.)

(CY
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Figure 8.5 The three-term, or PID, or loop controller. (a) schema for
inputs, (b) an industrial controller (see Fig. 5.7) opened to show three
adjustment dials; the set point may be input using the front dial.
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Given the simplifications, we still find this a useful model. To give
ourselves a notation, we define

desired output = input = r(¢) (or in sampled form r(nT),
denoted by r(n))

actual output = output = y(¢) (or y(nT) or y(n))
error signal = e(t) (or e(nT) or e(n))

control signal = u(t) (or u(nT) or u(n)) (8.9)
and we remark that the definition of the error has
e(t) =r(t) —y() (8.6)

Now, if e(¢) is positive, then y(¢) is too small and a control signal is
sent to increase y(t), with the opposite if e(¢) is negative.
Furthermore, if the magnitude of the error is rather large, to have the
magnitude of the control signal rather large also seems reasonable.
Thus we can argue that a reasonable control law is

u(n) = K, e(n) 8.7)

As the command is proportional to the error, this is called a
proportional (P-type) controller.

The amount of corrective command put out for a given perceived
error will depend upon Kp. Heuristically, we will have a large
corrective effort, and hopefully rapid response, if K}, is large. Also,
we might expect that steady-state error would be small if K}, is large,
since there would be a substantial correction for small e(n). On the
other hand, if the error signal is noisy, there will be a lot of control
effort expended in tracking this noise if Ky, is large. Also, if K is
large and the error can also be large, the command signal might try to
overdrive the plant. Responses of a simple system controlled using a
proportional control only (also called a gain compensation), are shown
in Fig. 8.6. Note that the apparent steady-state error between the
actual output and the desired output (=1) decreases with increasing
gain K, but the oscillation of the transient increases in magnitude at
the same time. In fact, for K, = 2.5 the output maintains a sustained
oscillation.
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Figure 8.6 Step responses of the simple closed-loop system for various
values of proportional gain K. (The examples in this chapter all use the
plant transfer function (Chapter 10) defined by (=s+D)/((s+2)(s2425+2))

Integral control — the I term

Proportional control will not always do a satisfactory job. In fact the
system sometimes acquires a steady-state error. We shall see why
later (in Chapter 17) when we look at the mathematics, but the effect
is similar to that in which we are sending a voltage to a motor which
is supposed to rotate at a certain speed. Here, if the error is zero then
the command is zero and the motor will stop and only restart when the
error is non-zero. Eventually one hopes for steady offset in the output
rotation velocity which yields a steady voltage command which
maintains constant speed. For the error to be small in these
circumstances, however, K, must be very large which, if nothing else,
will entail extremely large voltages to the motor when it is first
switched on and e(n) has significant size.

To overcome the above problem, another term is introduced into
the control law. Suppose that e(?) is integrated. Then the integral will
be small if the system oscillates but will gradually build up if a steady
offset, even a small one, is present. Thus if

t
u(t) = Kpe(®) + K; Je(s)ds (8.8)
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we might expect the steady-state error to eventually disappear, with
the integral retaining the offset information needed for the control to
maintain a constant command. The above is called a two-term or
proportional-plus-integral (PI-type) controller and is quite common.
There are now two parameters to set (K, and Kj) and tuning can be in
stages: first set the rapid transients using Kp and then tune out the
steady offsets at a rate determined by K;. The integral term is
sometimes called a ‘reset’ term and is associated with a minor problem
of its own called reset windup, in which the integral becomes very
large early in the operation (due perhaps to trying to follow big step
changes in desired output) and dominates the proportional term. A
typical remedy is to reset the integral to zero periodically.

The implementation of the PI law in a digital computer is
straightforward, and the reset logic is easy. The implementing
equation will usually be derived from

n
u(n) = Kpe(n) + Ki Y e(i) (8.9)
but will probably effectively accumulate the sum in its own register.

s(n) = s(n-1) + e(n)
u(n) = Kpe(n) + Ki s(n) (8.10)

Another popular variation of this is to compute what is essentially
the variation in the control. Thus, noting that

s(n) = e(n) + s(n-1)
we have
u(n) = u(n-1) + K{ e(n) + Kj, (e(n) — e(n-1)) 8.11)

which has the virtue of maintaining constant control command
whenever the error becomes zero.

The influence of I-terms as shown in Fig. 8.7, is that the integral
termyseemsytondecreasenthepsteady-state error, but increase the
oscillation for the given value of proportional gain.
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Figure 8.7 Step responses for proportional gain = 1 and various values of
integral gain Kj, showing the effect of integral control. Notice that the
response eventually approaches 1. (Refer to Fig. 8.6.)

Derivative control — the D term

In use, the above sometimes need large gains to induce rapid enough
response. Unfortunately the systems then end up lightly damped,
demonstrating overshoot and oscillations of unacceptable levels. For
this reason, the controller should contain a ‘braking’ term, which will
act to decrease the magnitude of the command as the error comes
close to zero at high speed, but increase the magnitude of the
command if the error is diverging from zero. Clearly, then, the
quantity of interest is the derivative of the error, and a candidate
controller is

u(t) =Kpe(t) + K4 Q%%t) (8.12)

Examination of this shows that if r(f) = constant and y(¢) < r and
increasing, then e(f) > 0 and its derivative is negative. Thus u(f) will
be smaller (assuming K4 > 0) than for the P case, so the system’s error
will not pass through zero as rapidly as before and in fact as it passes
through zero, the command will already be trying to slow the system;
hence; the control is proportional to a prediction of future error.
Other cases may be argued similarly.



174 Control laws without theory

Control laws such as (8.12) are proportional-plus-derivative (PD-
type) laws and, although justifiable, can be hard to tune and are less
common than PI controllers. The digital implementation of the law
typically uses a back difference to approximate the derivative, i.e.

u(n) = Kp e(n) + Ki (e(n) — e(n-1)) (8.13)

Examples of PD control are shown in Fig. 8.8. Starting with a
steadily oscillating output with proportional control only, increasing
K4 apparently increases the damping of the oscillation.
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Figure 8.8 The effect of derivative control, demonstrated for various Ky
with Kp = 2.5. Notice the increased damping. (Refer to Fig. 8.6.)

8.3.3 Rule-of-thumb tuning of PID controllers

A common industrial form uses all three of the above to form the
three-term, proportional-integral-derivative, or PID control law. The
implementation may be of several forms, but generically is

s(n) = s(n-1) + e(n)
u(n) =Kpe(n) + K s(n) + Kq (e(n) - e(n-1)) (8.14)
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Tuning with three parameters (plus other parameters such as sample
rate and integral term reset period to be set) can be tricky and it seems
in many cases to be based on perturbation from settings found to be
useful in the past. When starting from scratch on systems in which the
steps are allowed, two approaches may be used: the first uses the
controller in a closed-loop situation, while the second starts from the
system’s open-loop step response.

Even when well tuned, PID controllers have a problem in that they
do not take explicit account of time delays, as opposed to time lags.

Closed-loop tuning

A typical and famous algorithm is that of Ziegler and Nichols (1942),
as follows.

Step 1. Operate the system with the loop closed and with K; and Kq4
set to 0.

Step 2. Start the system and vary K until the system begins a steady
oscillation. Set Kcrit = K} at oscillation, and let Pcyi; = period
of oscillation.

Step 3. For P control, set
Kp =Kt /2 (8.15)

Step 4. For PI control, set

K; = K,/T;, where T; = 0.83 Py (8.16)

Step 5. For PID control, set

Kp = 0.6 Kcri[
Ki = Kp/Ti, where Ti =0.5 Pcrit
K4 =KpTy, where Tq = 0.125 Pyt (8.17)

An example of the result of this approach appears in Fig. 8.9.
Otherymethodsyalsorexistiforsrule of thumb parameter settings. In a
variation of the above, for example, the initial value of Kj, is chosen so
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that the system exhibits a decaying oscillation in the response, with
successive peaks a fraction (say 25%) of the previous peak. Notice
that these schemes work on the plant with the control loop closed.

Step response

20

t-sec.

Figure 8.9 The effect of Ziegler—Nichols tuning, demonstrating
Proportional only (P), Proportional plus Integral (PI), and Proportional
plus Integral plus Derivative (PID) control for the system used in Fig. 8.6.

Open-loop response (reaction curve) based tuning

Another possibility is to find the open-loop plant’s response. An
example is the transient-response method (Astrom and Wittenmark,
1990) as follows.

Step 1. Find the open-loop step response for the system. From this
are found the three parameters:

R = the slope of the response,
K = ratio of output change to input change, and
L = the apparent time lag before significant response occurs.

See Fig. 8.10.
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Open loop step response

t- sec. 20

Figure 8.10 The step response of the plant (—s+4)/((s+2)(s2+25+2)) alone,
i.e. the open-loop system. This response is called the reaction curve.
Compare with the closed-loop responses in Fig. 8.6.

Step 2. For P control, set
G =1/(KRL) (8.18)
Step 3. For PI control, set

G =09/(KRL)
T;=3L (8.19)

Step 4. For PID control, set

G =12/(KRL)
T,=2L
Tq=L/2 (8.20)

Using these rules on our example system results in the curves of
Fig. 8.11.

as variations, including Cohen and
(1984) and Clarke (1986).
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Step response

0 t- sec. 20

Figure 8.11 Reaction curve tuning, showing P, PI, and PID control for
system of Fig. 8.10. Compare with tuning of Fig. 8.9.

8.4 OTHER COMPENSATORS

PID controllers are among a class of control laws, which might be
called compensators, whose function is to shape the response of the
open-loop system to have desirable properties. In the frequency
domain studied in detail in Chapters 15 and 20, they are in essence
filters which shape the error signal so that the plant responds ‘well’.

The basic form of such compensator elements is the phase-lead
phase-lag element

iu(t) = —auu(t) + K, (e(r) + bye(t)) (8.21)
which has a digital form
u(k+1) = —bu(k) + Kq { e(k+1) + ae(k)} (8.22)

where the exact characteristics for frequency shaping depend upon a
and b (Chapter 20). Setting the parameters requires at least some
knowledge of the underlying theory, but some precalculated
relationships have been proposed.
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One design for the form (8.22) has been proposed (Yeung and
Chaid, 1986) which uses frequency response characteristics and which
requires the designer to choose two of his parameters:

Wo: roughly the desired closed-loop 3dB bandwidth, i.e. the
frequency at which the gain is down 3dB from the DC
value.

¢: phase margin desired (typical choice is about 45-55°).
Frequency domain parameter related to damping.

Sampling period T must also be chosen. Then a design rule is as
follows.

Step 1. Find the open-loop gain IG(w,)l and phase arc(G(w,)) by
opening the feedback loop and applying frequency w, to the
controller input. Measure the outputs.

Step 2. Compute the intermediate parameters

0 =-180° + ¢ — arc(G(®o))

o = 1 - IG (W)l cosO
T 1G(wo)! cos 0 — 1G (wo)12

cos 0 — IG(wo)!

h = GIT) tan (@oT/2) sind ®23)
Step 3. Then the controller parameters are given by
g= =@Mk
1+(2/T)ah
1+(2/T)h
1+b
1 1+a (8.24)

PI and PID control gains designed on similar grounds are also
suggested. A potential problem for the user is that the choices of
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bandwidth and phase margin may not be arbitrary, and if any
difficulty arises it may be necessary to plunge into the theory or at
least to allow a cascade of compensators.

8.5 FURTHER READING

Theoryless control is not a standard topic in textbooks, so a further
reading list is somewhat restricted. One cannot properly advise that
theory be ignored, but engineers are often well served by these rules
of thumb.

PLCs are inherently theoryless. Their use is described in
manufacturers’ literature. One of the few extensive textbook
descriptions is Kissell (1986).

Although theory is absent, it is still possible and desirable to be
systematic in planning and programming PLCs. One systematic
review and programming approach is described by Pessen (1989).

Self-tuning regulators are a field of their own, and although we will
present them along with adaptive control theory, use of such devices
without theory is probably best described in manufacturers’ literature.
Some of the issues are discussed by Astrom and Higglund (1988), who
also discuss PID controllers. Another discussion of self-tuners is that
of Gawthrop (1987).

For three-term controllers, further reading can be found in
manufacturers’ literature, in a few texts such as Astrém and
Wittenmark (1990) and Stephanopoulos (1984), where the latter is
notably from the class of chemical process control textbooks, and of
course from isolated technical articles such as Ziegler and Nichols
(1942). Both Astrom and Higglund (1988), and Bennett (1988)
present discussion, including various forms of the implementations
and engineering considerations such as bumpless transfer (to allow
switching from manual to automatic mode without transients) and
anti-reset windup (to prevent such effects as slow settling due to
build-up of the integral term during saturation or set point changes).
An engineering look at the topic occasionally appears in the technical
magazines; an example is St. Clair (1991).

We also mentioned that there is a class of design rules which
require a theoretical background, but for which rules or design tables
have been deduced. In such approaches the engineer needs some
appreciation of what is happening, but need not perform all of the
calculationsspOnesuchsapproachsisithat of Knowles (1978).



9
Sources of system models

In previous chapters we have virtually ignored the system being
controlled. Knowing a temperature was to be controlled, it was
implicit that a temperature sensor was to be used to measure the
output and a heater of some kind to cause the output to vary, but the
mechanism of heat transfer was ignored. It was even suggested that
the loop could be tuned by formulae which barely recognized the
nature of the controlled process. None of this is completely true, of
course, as a good engineer will have a notion of how the system
works, and how it reacts to input and he will be influenced by this in
many aspects of engineering the system. So, while the previous work
did not use mathematical models of the controlled plant, these will be
pervasive in what follows. In fact, the use of mathematical models is
fundamental to use of control theories.

This chapter considers models, in particular ordinary differential
equation models — but first looks at modelling as a scientific and
philosophical exercise. We consider a simple and common controlled
system, i.e. a DC motor, and its responses in certain types of control
configurations with continuous elements. Then we present several
examples which show models developed for different fields from
differing points of reference: a rocket model from laws of motion, a
liquid tank model from thermodynamic principles, a black box model
using input—output data, and the nature of modelling of sensor noise
and disturbances to the system. Then, because so much control theory
is associated with linear systems, we demonstrate how models are
linearized and mention a rationale for doing so. Finally, we consider
what happens when we sample such systems, i.e. what they look like
from within the computer, which sees only samples of the output.

9.1 SYNOPSIS

It is often useful to study models of systems rather than the systems
themselves: Commonly uséd are'Scale models, analog models, pilot
plants, simulations, and mathematical models. All are used in
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engineering, but the most commonly used in control systems studies
are mathematical models.

Of the many types of mathematical models, we deal primarily with
differential equation models, exemplified by the equation

d2e  do
T2 + dr =Kmnva

for describing a motor’s shaft angle 6 as a function of the applied
voltage v, with parameters T and Ky,. This is an approximate model
based, as many are, on the laws of physics plus careful engineering
approximations.

A common alternative, particularly in computer control, is a model
such as

y(kT) = 4.5y(kT-T) — 3y(kT-2T) — 0.5u(kT-T)
— 0.2u(kT-2T) — 8e(kT-T) — 9e(kT-2T)

which relates the sampled outputs y of a paper press (paper basis
weight) to the command inputs u (steam pressure at drying cylinders)
and other inputs e (errors due to noise and disturbances for examples)
at times kT, where T is the sample period of the system and % is an
indexing integer.

Models are essential for the development and analysis of computer
control algorithms, and for this reason the present chapter is devoted
to them.

9.2 OVERVIEW

Modelling has been defined as ‘a deliberate intelligible cognitive
activity aimed at abstracting, and reproducing in some convenient
realms of discourse, features of an object or system of interest to the
modeller’. The words here are carefully chosen to rule out the trivial,
such as assertions that ‘we all carry within us models of the world’s
behaviour’, and to emphasize utility by not requiring the inclusion of
features not of interest, such as thermodynamic considerations in
simple spring-mass systems.
We build models to achieve an understanding of:

1. the inherent nature and characteristics of the system;
2antheresults of future.changes;insthe system; and
3. the system’s response to external stimuli.
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Modelling is generally regarded as indispensable for gaining
understanding of the behaviour of complex systems, but it must also
be recognized that it is in part an art form, as is much of engineering.
Unfortunately for the user, there is no comprehensive, consistent
theory of modelling, there is no set of theoretical notions which form
an adequate basis for the existing methodologies, and there are no
good sets of modelling heuristics nor notions which would lead to such
heuristics.

In spite of the above, engineers must have models to work with and,
although many subsystems and systems have already been modelled,
they must often construct models. To this task, they bring their
experience and knowledge plus a great deal of ingenuity; they attempt
to be systematic, in a way extending the so-called scientific method —
observe the system, formulate a theory, predict new observations,
experiment, refine theory if necessary, etc. — and organized, perhaps
in the manner advocated by Murthy et al. (1990) for mathematical
models, who insist that first it is necessary to define the problem to be
solved carefully. Then the system must be characterized, a step which
requires deep knowledge of its physical aspects and involves
considerable idealization and simplification. Next, a mathematical
formulation, dictated by both the characterization and by ad hoc
intuitive considerations, is selected, and the model’s variables are
related on a one-to-one basis to the variables in the characterization.
The resulting mathematical model is analysed, and the variable
behaviour is compared to data from the real system. If the data do not
agree, according to a pre-defined criterion, then it is necessary to
back-track and make changes in the characterization, the mathematical
model, or both.

Whether the engineer has been completely systematic or, more
likely, a combination of systematic, ingenious, and resourceful in its
development, the model must — in the end — be useful. For this, it
must be parsimonious, having only the required level of detail. Thus
for example a model of a machine may ignore long-term changes in
behaviour due to wear and very short-term effects of spikes in the
electricity supply to the motor. In addition, the model should be valid
in the sense that enough evidence has been obtained to show that it is
adequate to the task at hand, i.e. that it correlates with observations of
reality and that its theoretical base is adequate.

There are a number of types of models; the overwhelming caveat
with all of these is that the model is not the real thing, and it may not
perform identically.
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1. Scale models are usually undersized but exactly proportioned
models of physical devices such as the aircraft models placed in
wind tunnels to show aerodynamic effects. They can be much less
expensive and easier to study than the real thing, but have the
potential problem that observed effects (such as drag) may not
easily scale up to full size.

2. Analog models are based upon the notion that two systems
show structural similarity in their system models. For example,
one physical quantity such as an electrical current in a circuit
may be modelled analogously to another quantity such as
displacement in a mechanical device or flow of a liquid, and
hence the quantities may show similar behaviour. The use of the
electrical analogy allows electrical circuits to be constructed
which may be operated to show how the mechanical system, say,
will operate.

3. Pilot plant models are operational systems which are smaller
versions of systems to be implemented. They are common in
universities, which cannot afford and do not need full scale
processes, and for other studies. Arguably similar in some
respects to scale models, the results may for various reasons not
scale up to full sized processes.

4. Simulation models are systems which purport to approximate
real system behaviour by the clever use of computer programs.
For our purposes they are means of solving mathematical models
of systems in which numerical quantities represent real quantities.

5. Mathematical models represent the real system by sets of
differential and difference equations, with variables assigned to
represent real quantities such as voltages, displacements,
temperatures, concentrations, etc. The advantage of such models
is that the tools of mathematics may be brought to bear to
establish stability, expected performance, etc. These properties
may be difficult to show conclusively experimentally, a fault
shared by the other model forms.

Our primary tools are mathematical models and their expressions in
simulation models.

Simulation models
For simulation programs on digital computers, there are a number of

specialypurpose;computerglanguages, although in fact a simulation can
be written in a general purpose language, even in machine code. The
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special languages are usually devoted to certain classes of problems,
and their advantages are that they automatically do much of the
‘house-keeping’ commonly needed by problems of the class they serve.
Thus the differential-equation oriented languages will supply
numerical integration procedures as part of their implementations,
while discrete event languages have a built-in list processing to keep
track of event statistics and forthcoming events. SIMULINK, EASYS5,
SIMNON and PSI are among the languages/programs especially suited
to control systems studies, with the last two particularly easy to use
for learning purposes.

Simulations have a certain attraction in that they tend to be
repeatable, require only a modest computer and a long time (or a
large computer for lesser time) plus (considerable) programming.
‘Experiments’ are usually easily performed on the simulated system —
just make another computer run — and models can be very elaborate
indeed. The latter feature, with the possibility for consideration of
subtle non-linearities and intricate logical configurations, provides
some of the incentive for simulation modelling.

The problems with simulation are many and are mostly the obvious
ones: the simulation model may be wrong (as any model may be
wrong), the implementation may be wrong or misleading, and in any
case the simulation allows ‘experiments’ rather than structural
analysis. An elaborate model may require much programming, which
may not be cheap, and much computer time, which fortunately is
becoming cheaper.

Simulation models will be shown briefly in a later subsection and
are used in several places to demonstrate points.

Mathematical models

As soon as we wish to apply a theoretical technique, we need a
mathematical model. Partly for this reason and partly for the other
reasons listed above for modelling, suitable models are usually part of
the knowledge of the computer control systems engineer.

The models used are mostly ordinary differential equations, with
difference equations used in computer control. Furthermore, these
equations are almost always linear with constant coefficients. That
this is often appropriate is perhaps a surprise; this issue is commented
upon in section 9.5. If non-linearity is a critical part of the system,
we still tend to use linear models to attain insight before using
simulation to enable further studies.
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9.3 A TYPICAL SMALL PLANT: MODEL
DEVELOPMENT AND USE FOR A DC MOTOR

The traditional model presentation in textbooks is of the electric
motor, and many examples are motivated by its control. We show

such a model development here and include the effects of controlling
the motor using some actual devices.

9.3.1 The model

The common mathematical model of a DC motor has

o
e

=—-o+ Kv(t)

A
2|
-~

3
]
e

9.1)

where

0 = shaft angle relative to some reference (radians)
® = angular velocity (rad/s)

T = time constant (s)

K = gain coefficient (rad/s/V)

v = input voltage (V)

As we explore this, we shall see that many simplifications have been
made. It is not ‘correct’ because it ignores certain known effects, but
it is correct enough for its usual intended application, and thus it is
very useful.

We will also add to this model to make a model of a controlled
system: we shall assume that the shaft angle is measured using a
potentiometer and the rotation rate is measured using a
tachogenerator. The resulting closed-loop system will give us
considerable insight into the operation of controlled systems.
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9.3.2 Derivation of the model

The essence of a direct current (DC) motor is that a magnetic field is
created, using either a field current i in a coil or a permanent magnet,
and a polarized rotatable coil called an armature is placed in this field.
The polarization is maintained using a current i, in the armature, and
the magnetic effects cause the armature to rotate. The motor may be
either field-controlled (i.e. i; = constant and input is to the field) or
armature controlled (i.e. i = constant and input is to the armature),
but the latter is much more common because it has good speed control
characteristics, whereas the former is preferred where high starting
torque is required. The basic configuration and a more detailed
representation are in Fig. 9.1.

Field Circuit

Ei( i
| Twy'S
Amnature Circuit 0 %

Figure 9.1 A model of an electric motor, showing both mechanical and
electrical effects. After Chen (1975).

Load

The motor modelling couples two effects: the mechanical system
described by Newton’s laws and the electrical system described by
Kirchhoff’s laws. The assumptions concerning the mechanical system
are as follows.

1. The torque applied by the fields is proportional to the two
currents, ir and i,

Torque =T =Kpiais

= Kii, (if = constant) 9.2)
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2. The moment of inertia of the armature and any attached system is

given by J.
3. The only appreciable friction effect in operation is viscous
friction
- de
Friction = fy Pl fm® 9.3)

and coulomb and static frictions are neglected.
The assumptions concerning the electrical system are as follows.

1. There is a back electromagnetic force (emf) due to the armature
rotation

Back emf = v, = Ky 0 = K}, % 9.4)

2. For voltages within specifications the armature circuit will not
saturate. The armature circuit exhibits both resistance R, and
inductance L, in series so that the circuit is modelled by

Raia + La %l—ta + Vb = Va (9.5)

where v, is the applied voltage input.

Using the above assumptions, we are left with coupled linear constant
coefficient ordinary differential equations for the motor.

2
Motor equation: J % =Y (torques)
do .
=~ fn g, + Kiia (9.6)
Circuit equation: Ryiy + L, g T =Va 9.7

oLl Zyl_i.lbl
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Elimination of the armature current then yields

dz0

30 )
JLaE}f{‘*’ (JRa + fmLa) dr2

de
+ (mea + K[Kb) Et— = K[Va (9.8)

Because L, is usually quite ‘small’, this is approximately

d20 do

which is often written

d2e do

where

JR

I/ | :
T = — = DC motor time constant (s
KtK b+ f m Ra ( )

Ko oo K

- DC motor gain constant
KKy + fm Ra &

in ((rad/s)/volt) 9.11)

We remark that the model was developed carefully from assumptions
about the motor and was explicitly simplified by the ignoring of L,.
Thus this model is almost surely ‘wrong’ in both the assumptions and
the simplification, but it is also ‘right’ in being useful for many tasks
and satisfactory for prediction of performance of many systems.

9.3.3 Feedback control of the motor

A typical control task with a motor is to have it produce either a set
speed of 'rotation @y or a'desired shaft angle 04. The latter in
particular will almost certainly require feedback control, with the
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angle measured, the measurement converted to a voltage of level
appropriate to control, the measured value compared to the desired
value, and the two numbers used to generate a command voltage to the
motor. A simple such arrangement is shown in the block diagram of
Fig. 9.2.

Amplifier Motor >0

Measurement
device

Figure 9.2 An abstraction of the motor model into a block diagram,
showing angle feedback.

In this example, the measurement device may be a simple
potentiometer, geared to the motor shaft, with output 6, volts
proportional to the shaft angle 6. The desired angle 64 is also a
voltage, perhaps from a manually-set potentiometer with voltage in
the same range as the measurer. The voltage differencing can be done
with a simple electronic circuit and the result then amplified to a
voltage of a level appropriate for driving the motor. In equations, we
have

0a = Kpotz Oext
e = ed - em

Va = Kamp 9.12)

In these, the amplifier is assumed linear with an amplification of
Kamp while B¢y, is the externally set desired angle in radians (or
degrees) and Kpot = Kpor; = Kpory is the appropriate voltage gain per
unit angle (say 15V as 0 ranges from —x to & radians).

With the model now specified in equations (9.8)—(9.11) the task is
to design the amplifier gain so that response is ‘good’. This task is
tackled in several ways in future chapters, but here we note that for
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this simple situation, we are studying the second-order ordinary linear
differential equation

d2e dé
Tz + a= Km Kamp Kpot (Bext — 6) (9.13)

which can be written in the form

dze de
T@+E+K19=K19ext (9.14)
and that the design parameter is K1 = Ky Kamp Kpot» Where K and ©
are motor parameters.

If the motor speed is also measured, then the system can have a
block diagram as in Fig. 9.3.

04 Amplifier L Motor > 0

Rate 1@, Rotation rate
—] measurement j=g—
device

amplifier

0 Angle
measurement | g
device

Figure 9.3 The motor block diagram when both shaft angle and rotation
speed are measured and used for control.

In this configuration, the speed of rotation is measured by, for
example, a tachogenerator giving output 8, (volts) and this is
amplified to give Ky amp Om (volts). The last is added (or subtracted, if
the designer wishes) to the error signal e to give the input s to the
amplifier. Hence we now have the system described by
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d2e de de
T 5;2— + -(E = Km Kamp [Kpot(eex[ - e) + Kr,ammech a] (9.15)

where it is assumed that 0, = Ky d0/ds (volts). Rearranging gives
the differential equation for analysis as

420 do
T+ [1+ K2l g =K10=Ki0x (9.16)

Both parameters K; and K, are to be selected by analysis and
implemented by choosing or designing amplifiers and measurement
devices.

9.3.4 System studies

In selecting parameters for the motor control problem, the engineer
will be presented with the classic choice of slow and steady, or rapid
but oscillatory, in addition to the need to avoid instability (Fig. 9.4).
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Figure. 9.4 Unit step responses such as might be possible for the motor’s
shaft angle and many other systems. Ideally, the output would overlie the
input step, but a frequent engineering trade-off is between rapid reponse
which-overshoots:the.desired.value.and oscillates, and slower reponse.
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All these respond to a sudden change in desired angle Oy, a so-called
step input. The setting of a constant desired angle is called the set
point; if the system were required to track a changing input Oex(?),
such a tracking problem would probably require different amplifier
gains even though the basic trade-off is the same.

With variable amplifiers, an engineer might well tune this process
manually. Analysis, however, will tend to give insight as to the
available trade-offs, the achievable goals, and the chance of instability.
Hence, modelling and the analysis of models are important parts of
control engineering.

Analytical studies may be performed using a number of tools and
criteria. We meet conversion to discrete time systems in Chapter 12,
design criteria in Chapter 13, and controller analysis and design in
most of the theory sections.

Studies can also be done using simulation, which becomes almost a
necessity if non-linearity, such as amplifier saturation, is introduced.
A SIMNON digital computer simulation program for the motor is
shown below.

CONTINUOUS SYSTEM motor

STATE omega theta

DER omegadot thetadot

vin=if t < 1 then O else 1.

thetadot = omega

omegadot = —omega/tau + ka* vin/tau
tau : 0.1

ka: 2.

END

9.4 MATHEMATICAL MODELS FOR CONTROL
SYSTEMS

Control systems engineers are unlikely to be required to develop a
model from scratch, because they are usually working with systems,
or at least components, which are fairly well understood. They should
be aware of how those models arise, however, and particularly how to
develop ‘black-box’ models. Thus a systems engineer is often
required to have at least a rudimentary understanding of the physics,
chemistry, biology, etc., of the systems to be controlled, even if the
detailed model is supplied by specialists.
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Control systems models range from input-output (black box)
models to postulated-form (mathematico-physical, theoretical) models.
The usual level is an intermediate one: the system is represented as an
interconnection of subsystems on physical grounds and the subsystems
are then modelled, using physical laws to supply the form and
parameter fitting (grey box) to supply the numerical values. The
distinction may be seen by considering the motor in the previous
section; mechanical and electrical laws determine the form of the
input—output relation for any DC motor, but the actual numbers come
from a combination of simple tests and physical arguments.

The black box approach is called system identification by
control systems engineers; it is an extensive branch of the field which
we shall meet in Chapter 30. Done off-line it is truly system
identification, or at least parameter identification. Done on-line,
identification becomes an important part of adaptive control and self-
tuning control, the latter of which is a special case of the former and
is a commercial product. Most identification is, in effect, parameter
estimation, since most algorithms have strong implicit or explicit
assumptions about the system built in.

For examples of mathematical model development, we show the
following.

1. On the basis of kinematics and electrical principles, an electrical
motor model was developed in section 9.3.

2. A generic response model is mentioned in section 9.4.1.

3. The laws of motion yield models for studying rocket trajectories.
A simple such planar model is discussed in section 9.4.2.

4. Conservation of mass and energy give the basis of a model of
temperature T and depth & of a liquid in a tank in section 9.4.3.

5. Kinematics via Lagrange theory give a simple robot arm model
in section 9.4.4.

6. System identification methods (Chapter 30) give a paper press

model mentioned in section 9.4.5.

Noise and disturbances are mentioned in section 9.4.6.

Physical arguments and knowledge of the system provide models

of computer sampling in section 9.4.7.

% =

The above exemplify the types and origins of models of use in
control systems studies.
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9.4.1 A generic response curve model

Mathematical models may be built in several ways, but most seem to
reduce to a combination of physical principles with examination of
response curves. Thus, in the approach of simply fitting a response
curve, a system may have a sudden step change in input at a time
arbitrarily called 0 and have the resulting response of Fig. 9.5. From
this, a guess is that the system is roughly modelled as a time delay and
a first order response, i.e. that it can be described by the differential
equation

[EPpp——

b/a

Step Response

Lecpecccnncancnnncnnacns

Figure 9.5 For simple modelling, it may be sufficient to get the response
to a step at time O and note the asymptotic value, b, and the delay before
response begins, T.

%f = —ax(t) + bu(t-T) (9.17)

where u represents the input and x represents the output. T is the time
delay, and T = 1/a is the time constant. The Laplace transform of this
is

sX(s) = x(0) = —aX(s) + b esTU(s) (9.18)
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so that the quantity

X(s) _ beT
Us)"s+a ©.19)

which contains no initial conditions, is the transfer function of the
system (whatever it is). Notice that there is no underlying
understanding of the system involved, only a guess and a curve fit; this
is a type of ‘system identification’ (Chapter 30) and is very commonly
used.

9.4.2 Modelling an exo-atmospheric rocket

Let us consider a rocket launch guidance task and for simplification
take a two-dimensional plane approach, considering only vertical and
horizontal coordinates. This is not completely unrealistic because
space launchers seldom do elaborate cross-plane manoeuvres because
of the fuel required. Then the situation is as in Fig. 9.6.

Figure 9.6 _Coordinates.and. variables used in developing an exo-
atmospheric rocket flight model.
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Taking the coordinates

x = horizontal distance (metres)

y = vertical distance (metres)
and the definitions

y = pitch attitude of thrust (rad)

u = rate of change of attitude = command quantity (rad/s)
T = rocket thrust (N)

g = gravity acceleration (m/s2)

G = gravitational constant (Nm2)

m = vehicle mass (kg)
m = fuel burning rate (kg/s)
we can apply Newton’s law to obtain the equations of motion.

X = force in x-direction/mass

_ (=mg + T)in x-direction

m
"G ©20
and similarly
-Gy Tsiny

5 = @t (9.21)
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0 with motor off
B T,(t) with motor on

- 0 with motor off
~ |M(t)  with motor on

V=u (9.22)

One notes that this simplified case is non-linear and time-varying.
It involves four differential equations: two of first order and two of
second order. The approximations for thrust and mass rate are results
of design, the characteristic operation of rocket motors, and
observation; actually, they tend to have initial transients and final tail-
offs, plus a slight fluctuation during flight.

The model can rapidly become elaborate. The first step is to
include the actual rocket vehicle rotational dynamics, i.e. its rotation
about its centre of mass: we make the further definitions shown in
Fig. 9.6.

Defining the quantities

J(m) = moment of inertia about centre of gravity (N—m)
= function of mass
d(m) = distance from c.g. to engine mount (m)
= function of mass
a = vehicle body attitude angle relative to horizontal
pitch attitude (rad)
angle of thrust relative to vehicle axis (rad)

S

p = atmospheric density (=poe-*# where py is the density at
zero altitude and £ is a constant)

we may use the torque equation

2
J(m) gd—t% = (applied torques)

=—d(m)Tsind (9.23)
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We remark that J and d depend upon m because the centre of
gravity of the vehicle shifts toward the motor as the fuel burns. The
control equation (9.22) \ = u will now be replaced by a command on
the body pitch attitude o, implemented by commanding gyros in the
vehicle to change their settings. The result is that

y=0+9d
d = C¢ (01, Olges)
ades =NC (x;y,k,}.’,\lf) (9.24)

in which both the vehicle control function C; and the navigation
function N must be designed by the control systems engineering team.
A further elaboration is to consider atmospheric flight, in which
case the forces of drag and lift must be accounted for. These are often
taken as
Drag along axis = C4(B)pAv2 (N)

Lift perpendicular to axis = Cp(B)pAv2 N) (9.25)
where

p = atmospheric density = poe-k#
A = effective vehicle cross-sectional area (m2)

B = angle of attack
= angle between body axis and velocity vector

= a—tan—l{ i—; ] (rad)

Ca(B), CL(B) = drag and lift coefficients as functions of angle
of attack
v = speed (or velocity magnitude)
= (2 +32) (i)
h = altitude above reference

=2+ 5’2)5— hp (m) (9.26)
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Since these forces effectively operate through a point called the
centre of pressure cp which is different from the centre of gravity cg,
the distance between them must be defined. Usually the cp is a fixed
function of the vehicle shape and hence is fixed relative to, say, the
motor attachment point. Thus we need

dcp = distance from rocket motor attachment to ¢p (m)  (9.27)

A result of all of this is that the model quickly builds to a form such
as the following:

-Gx Teosy Ci(B)pA vZcosa + CL(B)pA v2sina

Y Emeey2dT m m
. __ —Gx Tsiny Cy(B)pA v2sina — CL(B)pA v2cosa
Y= m x2+y2)% m m

J(m) ch(zx =Y (applied torques)
=—d(m) Tsind + (dep - d(m))CL(B)pAv2 (9.28)

in which the various quantities were defined above.

In this gradual building of a model, the key tools were Newton’s
laws of motion. Three dimensions require further refinement, and of
course the navigation and attitude control laws must be defined.
Elaborate analyses and simulations need even more elaborate models,
and the latter will often use much more detailed gravitational models,
thrust depending upon external air density, non-constant mass flow
rates, etc.

9.4.3 Process control of a tank’s contents

Whereas the rocket model above was based upon the laws of motion,
the models of chemical processes are based upon conservation of mass
and energy and upon the nature of chemical processes. Fundamental
are the simple laws governing contents and temperature of a simple
tank, as in Fig. 9.7.
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INLET

Water level

AN

Figure 9.7 A liquid tank, with input of water and heat, and output of
heated water, for development of a process model.

Conservation of mass

Taking the contents as liquid and ignoring evaporation yields the
expression

d(mass O(fi tcontents) = mass flow in — mass flow out (9.29)

so that with a substance of density p and a tank cross-section A (m2)

and substance depth # we have, for flow rates Fj and F, at inlet and
outlet respectively,

d(pAh
4oAR) _ o F, - poFs 9.30)

or, if the density is constant independent of temperature,

A%:Fi—Fo (9.31)

Conservation of energy

For the energy balance; we consider the energy input and output in the
substance and the energy supplied by the heater at rate . We assume
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Energy in substance o< cp (T — Tref) (9.32)

where T is actual temperature and Ty is a reference temperature for
the approximation. Then we have

f t o
d(energy o :ﬁnk contents) = energy flow in with substance

—energy of outlet substance
+ energy input by heater
—energy losses

d(PAh Cy(T—Tret)
( 1(91t - )=pF iCp(Ti—Tref) = PF oCp(T —Trer) + Q—(losses) (9.33)

Using constant values of p, T, ¢p, and ignoring losses gives

A d(gtT =FiTi—F0T+‘Q‘ (9.34)
P

Using the chain rule on the left-hand side and substituting from (9.31)
yields

aIr_r (1 Q9
Ab'g =Fi(Ti=T)+ 5 (9.35)

From a controller’s point of view, A, p, and ¢p are parameters, h
and T are variables representing the state of the substance in the tank,
and F,, Fj, and Q are possibly either given or controllable variables.
For example, F, and T may be requirements on the tank output
imposed by other operating considerations, while the input flow F; and
the heater input Q may be manipulated to achieve those ends.

Once again the model can rapidly become more elaborate. In a
continuous stirred tank reactor, for example, a simple exothermic
reaction A — B takes place and the heat is removed by a coolant.
Thus we must account for the concentrations of A and B in input and
output.
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We define

V = volume of mixture in tank
Pi, P> Po = densities of input, tank, and output streams
Fi, F, = volumetric flow rates of input and output streams
T;, T, = temperatures of input and output streams
CA;» CA,CA, = concentrations of A in input, tank, and output (moles/vol)
cB, CB, = concentrations of B in tank and in output (moles/vol)
r = rate of reaction per unit volume
hi, h, hy = specific enthalpy content of input, contents, and output
cp = specific heat capacity of reacting mixture (9.36)

Then total mass balance requires

d(pV)
T piFi— poFo £ (mass consumed or generated) (9.37)

Mass balance on component A requires

Q%D =caFi-caFo-1V (9.38)

Energy balance gives approximately for a liquid
Energy = Internal Energy + Kinetic Energy + Potential Energy
and for a stationary tank

d(Energy) _ d(Internal Energy) d(Enthalpy)
de - dt - de

which with H defined as total enthalpy gives

dH
a = PiFi hi(T;) — poFoho(To) — O (9.39)
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Since H is a function of the temperature and composition of the
liquid substance

H=H(T,cAV, cgV)
we can find from thermodynamics that

di _oH dT _oH d(caV) _9dH  d(c8V)
dr =9 atocw) at toy) a

dT ~
=pVep @t Hp (caiFi— cagFo—1V) + Hg (0—cp Fo + rV)(9.40)

where H denotes a partial molar enthalpy.
Substituting this in (9.39)

dT -~ -
pVep gy — Ha (caFi=cagFo —1V) — Hp (~cBoFo + V)
+ piFihi(Ti) - PoFoho(To) - Q (9-41)
From the definitions of the various concentrations, etc.,
piFihi(Ty) = F; [eaflA(T) + picp(Ti-T)]
Do Foho(To) = Fo [ cag HA(To) + ca Ho(To) ) 9.42)

Provided the tank is well stirred, the output has the same
characteristics as the tank contents, so that T, = T, p, = p, etc. Hence
we have

daT ~
pVCPE[=FipicPi (Ti-T) + (Ha-Hp)'V-0 (9.43)

Introducing the assumptions p; = p (the density of the liquid is
constant), r = koe E/RTc, (for the reaction rate dependence on
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temperature and concentration, with ko, E and R as parameters), and
the notation J = (H A— HB)/(pCp) into equations (9.37), (9.38) and
(9.43) gives the system model as

dv

o =Fi-Fo

d—gtA E‘(CA, CA) — koe ERT cp

(g €(T T) - Jkoe—E/RTcA—m (9.44)

In this model, ko, E,R,J and cp are parameters characterizing the
process. Of the variables, various combinations may be control
variables to be manipulated, output variables with desired values, and
externally affected variables which act as disturbances to impede the
achievement of the output values desired. For example, F, and cp,
(and hence by implication ca,,) might be specified, Q and F; might be
manipulated, and ca; and T; might be characteristics of the incoming
liquid which vary due to disturbing factors beyond immediate control.

Once again the modelling can be extended to encompass more
issues. Here we have used mass balance, energy balance, and
thermodynamic processes to give an illustration of the evolution and
reasoning in developing system models.

9.4.4 Dynamics of robot arms

The equations associated with robots are complex mostly because of
the complicated set of several links, each movable with respect to
some others, which comprise them. Entire books are devoted
to deriving these equations for specialists, and indeed a number of
interesting control tasks are associated with robots: movement
of individual links with precision and speed; planning of trajectories
of the manipulator; using feedback from sensors such as joint angle
measurers, tactile and proximity sensors, vision systems. This does
not even mention the systems design tasks involved in selection and
installation, design of processes, etc.

We derive the kinetic equations of the simple manipulator of
Fig. 9.8 simply to show what the equations of real systems might look
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like and also to demonstrate the application of lagrangian kinetics
(following Snyder, 1985). The system consists of a telescoping radial
arm which can rotate at angle 0 in the vertical plane. The mass of the
telescoping arm and load are modelled as mass m; at radius r, and the
outer cylinder is modelled as having fixed mass m at fixed radius ry.

(@) (b)

X
Figure 9.8 A simple planar robotic manipulator in which the arm
assembly rotates and the arm itself extends. (a) The robot and (b) a
coordinate system and definition of variables.
The lagrangian for this system is
L=K-P (9.45)

where K is the system’s total kinetic energy and P is the total potential
energy. If an actuator torque T is controlling a rotary variable, then

d dL dL
T =a 5—% (9.46)

while a force F applied in the direction of motion of the prismatic
joint in the r-direction gives

L 3L
ti’; - g—r 9.47)

(s3]

F =

(B}
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We must now find L in terms of r, 7, r1,71,0, and 8. We look first
at the fixed length outer cylinder. The kinetic energy K is given by

Ky =4m Vi (9.48)
which is easily shown to be
Ky =dm, 202 (9.49)

Its potential energy P; is due to gravity acting upon the mass and is
given by

Py =myg rsin@ (9.50)

For the telescoping arm, which can both rotate at rate 6 and extend
at rate r, the expressions are

Ky =3myr202+4m; 12 (9.51)
Py =mygrsin® (9.52)
From these we find that
L=K +Ky—P—Py
= %mlr% 02+imyr202+4im 12 —my grysin®

—mogrsin® (9.53)

Computing the partial derivatives as in (9.46) and (9.47) then gives
the differential equation model

(mlr% +mar2) 6 + 2myr 0+ g(mri+mar)cos®=T

(9.54)




208 Sources of system models

In a system such as this, the control task will ordinarily be to choose
and implement force F and torque T, possibly by commands to
electric motors or hydraulic actuators, which will move the
manipulator from one position coordinate set (rj,0;) to another set
(r,05) in a smooth and safe manner. The mass my may be variable as
the manipulator picks up and moves objects or fixed because the
manipulator is a welder or spray painter unit.

The equations of motion are notably non-linear, and if the desired
positions are specified in cartesian coordinates (x,y) =
(horizontal,vertical) centred at the rotation axis of the arm, then even
the coordinate transformations

x =rcos6 r=x2+ y2)5

y =rsin® 0 = tan-! H (9.55)

are non-linear.

The situation is much more complicated in three dimensional
motion with an industrial robot and indeed entire books are devoted to
deriving the transformations. A standard representation in terms of
generalized coordinates in an n-vector ¢ is that

D(@)g +C(g.pg4 +g(@) =1 (9.56)

where 71 is the vector of applied generalized forces. The matrix D(q)
is the generalized inertia matrix, C(q,§) is a matrix containing what
are called the Christoffel symbols of the first kind and are results of
the centrifugal and Coriolis forces, and g(gq) arises in the
differentiation of the potential energy terms.

9.4.5 Presses

One of the more famous examples of adaptive control application is
the work of Astrom et al. (1977) on the control of paper making
machines. We will meet this again in Chapters 30-31.

The results of this modelling effort gave the surprisingly simple
sampled data model
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Y(KT) = =0 y(kT=T) — 02 y(KT-2T) + P u(kT-T)
+ Bou(kKT=2T) + Y1 e(kKT-T) + Y, e(kT-2T) 9.57)

and it was found through recognition methods similar in philosophy to
least-squares data fits that (approximately)

o =45 a3 =30
B1 =05 P2=-02
1=-80 y=-90

where the quantities involved are y(kT) = paper basis weight = output,
u(kT) = steam pressure to drying cylinders = control variable, and
e(kT) = ‘noise’. T is the sampling period for the computer to measure
and command the process, so that kT is the time, k=0,1,2,...

Such black box methods have been shown to be quite useful and are
at the heart of some commercial controllers which have a self-tuning

property.

9.4.6 Modelling of noise and disturbances

An important part of the design of many control systems is allowing
for extraneous inputs and for unmodelled plant characteristics. The
undesired inputs consist of such effects as sensor noise and random or
varying environmental effects such as gusts on aircraft. Unmodelled
plant effects can be unknown or known, but ignored, characteristics,
such as non-linearities or high frequency vibration modes.

Noise, such as measurement noise, is usually modelled as being a
random process with certain known statistical characteristics
(Appendix C). The common characteristics assumed for a noise
process M(#) include stationarity (the properties of the process do not
change over time — used in property 2 below), ergodicity
(probabilistic properties can be approximated using time averages),
and that certain second order properties hold. Thus it is often
assumed that the process has zero mean (average) value (properties 1
and 3 below) and that at any instant it has a gaussian (or normal)
distribution (property 3). A further common assumption is that the
process is white noise, which means among other things that n(¢) and
N(1) are uncorrelated for ¢ # 7 (property 2). In summary the three
properties are:
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L. &Mm®I=0

2. & ME)NT®)] = R(t-T) = R3(t-7T) R20
S(w) =#(R(7)) = R = constant

3. pM(») =NOR) (9.58)

where S(w) is the power spectral density of the process, #(-) denotes
the Fourier transform operation, and R(t) is the auto-correlation
function.

Many models assume coloured noise rather than white noise. This
is based upon either physical arguments (about the auto-correlation of
the noise or the frequency band it must use) or on measurements of
the noise (which are inferred from measuring known signals). In this
case S(w) is not constant, and of course then the auto-correlation R(t)
# 0 for some T # 0. This situation is often modelled by assuming the
noise is the output of a linear system with white noise input. In
particular, the output can be ‘computed’ as the convolution

V(1) = [ h(=1)n(¥) dt = h()** (1) (9.59)
and it follows that

Ry (1) = h(TD)** h(—=1)** Ry (7)
Su(®) = IF (D)2 Sy(w) = IH(0)2 Sn(0) (9.60)

Such a model, with a carefully chosen linear system, is often an
approximation used in analysis, with the input noise chosen to be
white.

Disturbances are modelled in several ways, depending upon the
analysis tools available and of course on the physical situation. One
way is as a noise, often a low-frequency one. A second way is to
suggest that the disturbance is always a special signal, typically a step
or ramp, appearing as an input at a particular point of the system; this
represents situations such as changes in quality of a process input
material or flight into a high altitude jetstream. A third way is to
consider all signals of a certain class, such as all those with bounded
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square integrals. This last we might denote as d(f) € D where D is a
set of signals

D={d@: [ld@idi<1]} (9.61)

9.4.7 Sampling of data

When computers are used for control, the data are discretized, i.e.
converted to computer approximations for which the accuracy is finite
and determined by computer and converter word length; at best, with
a 12-bit ADC, the precision is within 1 part in 213, about 0.0125%, of
full range. This effect is usually ignored, simply because other errors
in the system (also frequently ignored) contribute 1-2% or more to
output variation.

Another problem arises because the computer computes
incrementally and sequentially in time. Thus, the data are sampled
and the outputs occur only intermittently, albeit usually regularly with
period T seconds, where T is typically in the range 0.1-10 s (with the
option of much higher and lower values if appropriate). So, between
samples the computer must generate commands which apply until the
next are computed and output. Both effects must be allowed for in
modelling and are discussed further in later chapters.

A summary of what we will need is straightforward. First, we
cannot use differential equation models for our analysis, or not for all
of our analysis; instead, we use difference equations such as the press
model in section 9.4.5. These models work with samples of the
signals, as defined by

Input (¢) T=nT, n=0,%£1,%2,...

Output(r) = 9.62
utput(?) {Undefined (or 0) t#nT (9-62)

and sometimes represented mathematically using the Dirac delta
function J as

Output() = T Input(s) 8(t-nT) (9.63)

The physical situation and its representation are shown in Fig. 9.9.
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@)

Input — Sample and Hold ADC COMPUTER

®)
T..
Input x COMPUTER

(Periodic Switch)

Figure 9.9 Modelling the computer input interface: (a) the devices; and
(b) modelling as a periodic switch.

The zero-order hold is a component peculiar to computer (and
other sampled-data) systems. It is a device with the property

Output(¢) = Input(nT) nT <t < nT+T (9.64)

used for the output, to approximate the physical device(s) of computer
output buffer-DAC combination, as in Fig. 9.10.

Thus if the computer outputs a command u(kT), the plant receives
the signal of Fig. 9.11.

Interpreting the computer output as impulses leads to the standard
model of the ZOH as having characteristic

Uout (1) = u(kT) kT <t < kT+T (9.65)
The Laplace transform representation of this characteristic is

1-eTs
)

ZOH(s) = (9.66)

9.5 LINEARIZATION

It is surprising that most control theory results apply to linear constant
coefficient ordinary differential or difference equation models;
exceptions are in the optimal control field (Chapters 26-27), where at
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Figure 9.10 Modelling the computer output interface: (a) the devices; and
(b) modelling as a switch leading to a zero-order hold (ZOH).

Output signal u(t)

u(t) = u(kT)

—_r

KT-T

kT

KT+T

]
KT+2T

1

Time t

Figure 9.11 The computer’s output hardware produces a square voltage
pulse when the computer sends an output number.

least the forms of results can be found for non-linear ordinary
equations, and some parts of the Lyapunov stability theory (Chapter
16). Yet the world is a non-linear place, exhibiting at least the
properties of saturation (a maximum rotational speed for a motor, for
example) and, in the case of digital systems, non-linearity due to the
minimum resolution with which finite-length computer words can
represent numbers.
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There are at least two reasons for concentrating on linear constant
coefficient ordinary differential/difference equations.

1. Because so much is known about vectors and matrices from
linear algebra and from the theory of linear transforms (such as
Laplace, Fourier, and z), many useful results are available.
Generalizing the system model seldom leads to results amenable
to implementation except in special cases.

2. The linear models are a reasonable approximation precisely
because we use them in automatic control systems. In what seems
a circular argument, by using a control system to force the plant
to function ‘near’ an operating point, we keep deviations from
linearity ‘small’ so that the linear assumption is a reasonable one.

Obtaining a linear model from a non-linear one is, in principle,
straightforward — we use a Taylor series expansion of non-linear
elements about the proposed operating point and retain only the linear
term.

As an example, suppose a system is known to be modelled by the
differential equation

X =flx.x,u) (9.67)

where f is a known and sufficiently smooth function, i.e. its partial
derivatives exist and are not too large numerically. Suppose that
X = xref(2) is known to be the trajectory description when uee(t) is
applied, so that

Fref = f(Xrefs Fref» Uref) (9.68)

Consider varying u¢(t) by an amount Au(t), with the result Ax(z),
so that

A).C' =f(.x1-ef + Ax’ xref + M’ uref + Au) (9.69)

Provided the partial derivatives exist, a Taylor series expansion
may be performed, yielding
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where * denotes the point (xref (£), Xref (£), Uret (£)) for evaluation of the
partial derivatives.

Suppose Au can be made small enough that Ax is small; further
suppose that the second partial derivatives are small. Then the above
is approximated by

ser (2

AxAx

A2 + - (9.70)

*

AxX =a(t)Ax + b(t) Ax+ c(t) Au (9.71)
where
) d
=g§* b=§§* c=51;‘* (9.72)

Then under these assumptions, we now have a linear ordinary
differential equation in place of the original non-linear ordinary
differential equation. If we further have u;ef = constant and
Xref = Xef = 0, then a(2), b(¢), c(¢) are constants, which is even simpler.

Cases of such linearization abound, although often the linearization
is done at the stage of original model construction. Consider a few
examples.

1. For the rocket flight, if the engine burn is a short one, the mass
may stay nearly constant — near enough that it can be treated as
constant by the guidance algorithm. Similarly, for short periods
of time, the altitude may be constant enough that the gravity can
be treated as constant in magnitude and the orbital arc short
enough that the gravitational direction is also constant. Then the
rocket is described by linear ordinary differential equations, even
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without the Taylor formalism; in fact, some of the terms are
truncated after the constant term in their expansions.

2. Aerodynamic drag and lift forces are proportional to air density
and to speed squared, but at near constant altitude and speed
linear or even constant, approximations may be good enough.
This is particularly true if the objective is to understand an
autopilot which will maintain a constant altitude and speed.

3. In mechanical systems, non-linear frictions such as stiction
(opposing the initial movement) and speed-squared drag are both
present and often ignored.

And finally, if linearization is not good enough, or if it is not
known whether it is good enough, what can be done? Usually, the
engineer needing answers will use whatever he can learn from the
linear model and check it with a simulation. Frequently much design
can be done for regions of the operating regime of the plant; for
example, helicopters are ‘close enough’ for linear approximations to
apply to within +5km/hr or so of cruising speed of perhaps 85 km/hr.

9.6 MODEL ERRORS

There is little doubt that models will be ‘wrong’, although for many
purposes they will be adequate. Some techniques make implicit
allowance for possible modelling errors; for example, one of the
jusiifications for allowing gain margin and phase margin in frequency
domain design (Chapters 15 and 20) is to allow for actual device
transfer functions being different from the design standard, due
perhaps to component tolerances. Other methods admit to explicit
allowance for modelling inaccuracies, provided that some model
allowing for the inaccuracies is present.

One method for incorporating inaccuracy is to assume that the
output depends on the modelled effects plus noise. In such schemes

y(@®) = F(y(t),u(1),T; T<1) + n() (9.73)

where F is a known function developed from physical considerations
and 1 is a ‘noise’ of character which allows for model errors. A small
white noise might be used to compensate for unmodelled high
frequency effects, for example.
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Another approach treats the model as known to within a parameter
set 0, with a particular piece of hardware representable as a function

y(®) = F(y(1),u(1),6,7; 1<) (9.74)

where 6 € ©. One might then design around a particular value of 0,
around the average value, or around a worst-case value. Particularly
in the latter cases, one might need a characterization of ©, such as

O@={0:ll01<1) (9.75)

All of these are made more precise in Chapters 10-11 when we
start working with specific model representations.

9.7 COMPUTER ASSISTANCE

Computers are used in simulating models, which usually means
solving the differential equations describing the system, and in
parameter estimation forms of system identification (Chapter 30).
Some computer assisted control systems design (CACSD) programs
also allow the manipulation of models, such as the building of system
models from subsystem models, and the simulation of model
responses.

9.8 COMMENTARY

Mathematical models attempt to represent the real system by sets of
equations whose variables and parameters are (hopefully) predictors
of variables and parameters of the real system. In control systems, the
only class available is that of ordinary linear differential equations
with constant coefficients and difference equations of the same kind;
some randomness is acceptable, provided it is gaussian and not too
complicated in its time evolution, but even this variation complicates
things. It is indeed fortunate that this restricted class allows us to
obtain some quite useful results.

The advantage of mathematical models is best seen by first looking
atithesalternativessywhichyonlysallow us to experiment upon the model
and hence indirectly on the system. Then we may miss a revealing
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experiment because only a finite, usually small, number of tests are
available to us. By contrast, the tools of mathematics allow us to
analyse the structure of a mathematical model and hence of the system
it (hopefully) represents. The example of Maxwell, who demonstrated
that Watt’s governors needed damping to operate stably and without
oscillation — damping lost because of improvements in machinists’
abilities to build to close tolerances without friction — is an early
demonstration of the value of analysis. One can also envisage a great
deal of effort being put into simultaneously controlling several outputs
of a process to selected values when analysis might demonstrate that
this was impossible without a change in the process (Chapter 22).

The disadvantage of a mathematical model is that it is so seldom
computable in a useful form. Computers can be used to convert the
equations to numbers, of course, but these may or may not be helpful
of themselves. Even if closed form expressions can be found, they
may give little insight into the system.

Nevertheless, control theory is essentially applied mathematics, with
a whole tool kit of techniques, including graphical ones, which help to
make it an enjoyable and useful field. A large fraction of this book is
about those techniques.

9.9 FURTHER READING

The question is: where do the mathematical models needed for
analysis come from? Our answer has been indirect, through examples
and some discussion, but several different approaches have been
demonstrated, including Newton’s laws of motion, thermodynamics,
and Lagrange methods. One observation is that a great deal of
knowledge of the process is needed before it can be modelled. Many
control engineers will find that they must either use a black box model
with an identification algorithm (Chapter 30) or a published model
concerning the plant to be controlled. For either of these, the control
engineer will find that having basic knowledge of physics (and
sometimes chemistry and biology) will be very helpful.

A major discussion of mathematical modelling in a broader context
than control systems is in Murthy et al. (1990). More immediately
devoted to dynamic systems is (McClamroch, 1980).

A few simple models are given without derivation by Astrom and
Wittenmark (1990, App. A). Dorf (1989, Ch. 2) gives the models of
severalzcomponents;zwhilesFranklin e al. (1990) present models of
several interesting systems. Stephanopoulos (1984, Part II) presents
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models of chemical processes and was the source of the presentation of
section 9.4.2. The modelling of joint movements for robots is
covered in a number of texts, including (Paul, 1981) and (Snyder,
1985).

Linearization is done more elaborately in such texts as (Skelton,
1988, Ch. 3). Some studies of non-linear systems were published in
the 1950s and 1960s by authors such as Gibson (1963).

Specific examples of applied or studied models of real systems are
usually kept within industry, partly because they are too long and
complicated to publish in a textbook. Significant studies are
occasionally reported. Examples are found in the text of Grimble and
Johnson (1988) (Volume 1 has a shape controller for a steel mill;
volume 2 has a drill ship positioning system, plus more steel mill
problems). Many texts have summaries and leads to real problems.
The IEEE Reprints and the IEEE Control Systems magazine also lead
to such models; Kalman Filtering (Sorenson, 1985), and Adaptive
Methods for Control Systems Design (Gupta, 1986) exemplify the
former, while the CACSD Benchmark problems (August 1987,
August 1989, August 1990) lead to others. Solutions to the latter are
available from CACSD system producers such as System Control
Technology, Inc., Palo Alto, CA, designers of Ctrl-C, illustrating both
the problems and CACSD application.
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Continuous-time system
representations

The mathematical model of a plant or process usually comprises a set
of differential equations to describe its operations. For convenience,
these are frequently converted to other representations and this
chapter considers the linear time-invariant systems to which these
representations apply.

10.1 SYNOPSIS

The control engineer’s ‘real world’ can usually be described by sets of
differential equations, as in Chapter 9. Often useful for both
processes and components is the special case of linear ordinary
differential equations with constant coefficients, such as

Y0 + @y 1 y-D + -+ ar¥ + a1y + apy

=bpuum + by qum-D+ .+ brit+ bou (10.1)

where y(® is the nth derivative of the function y(¢) and y and y are the
Ist and 2nd derivatives respectively. Alternative representations of
the essential aspects of such systems are available in the forms of
transfer functions

Y($)  bms™+ by_15m1+ -+ b1s + by
Uis)™  str+apsh-1+ - +a15+agp

(10.2)

or frequency responses

Y GO)mbrGo)m = bnEiGo) -1 + - + bi(jo) + bo
UGo) (o) +a,.1Go)*1+ - + a1(jO) + ag
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where we use the usual notational conventions that j = V-1 and ® is
radian frequency. An alternative notation uses the operator Di = di/d#
to give

(D7 + ap1D™1 + - + ag) y(©)

= (bpD™ + by D=1 + - + bo)u(t)

The above are especially useful for the design techniques
characterized as classical and for SISO systems. The transfer
function can be written in a number of different forms, of which
(10.2) is the direct form; others include parallel, cascade, and
continued fraction forms.

For modern approaches and MIMO systems, a set of first-order
ordinary differential equations is used (called a state variable model)
and in the special case of constant coefficient linear differential
equations this model has a matrix representation as

X = Ax + Bu

y =Cx + Du

These representations are not unique, although the input—output
relationships must be the same for each representation of the same
system. It is sometimes convenient to have the matrices in canonical
forms; one example is the controllable canonical form, which for
the system described by (10.1) is

0 1 0 -0 0 7] 0]
0 01 -0 0 0
X o 0o o0 1 0 |X* U
00 001 0
| G0 —a1 —@& —p-1 1]

]
1}
—
S

o
S8
=
S
3
(=]
[«=]
—_—
»
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Others include the observable canonic form and the Jordan
canonic form. These are useful in certain derivations, although
ordinarily one attempts to use forms in which the state variables have
physical significance.

10.2 TRANSFER FUNCTIONS

Transfer functions allow operation in the frequency- or s-domain of
complex numbers, rather than in the time domain. They are usually
considered primarily with SISO systems, although at least notationally
it is possible to represent MIMO systems. In either case, they apply to
linear ordinary differential equations with constant coefficients; we
will see the difference equation variation in Chapter 11.

10.2.1 Single-input-single-output (SISO) systems

If the differential equations describing a system are linear, have
constant (or highly special) coefficients, and have no time delays, then
analysis based upon Laplace transforms is common and convenient.

We observe that, in the absence of initial conditions, a variable x(¢)
with Laplace transform X(s), i.e.

(o]

x(t) & X(s) = [x(r)estde
0

also has for integer k

kx(t)
d(ftkt & skX(s) — sk-1x(0+) = sk-2x(0+) — - — x*-1)(0+)

where x(0+) is the limit of x(¢) as € —>0 and £>0, and

t
jx(r)dr = ﬁsgl
0
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A time delay, which we will have occasion to use, albeit reluctantly
for continuous time systems even though they are easily handled for
discrete time systems such as those used in computer control studies,
has transform effect

x(t-1) & eST X(s)
Using these properties, we see that the Laplace transform variable s

can virtually be used as a ‘differentiator operator’. For example, the
system

dnx dn-1x dn-2x dx
Tt 1 o Yan2 gt tar 3t agx
dt dr dr dt

dmy dm-1y du
= bm&;;+bm_1 am1 T + b a+bou

has, if we define X(s) and U(s) as the Laplace transforms of x(¢) and
u(r), respectively, a representation (without initial conditions) of

(" + ap-15" 1+ apnps"2 + - + ays + ao) X(s)
= (bus™ + by_15m=1 4+ -« + by1s + by) U(s)

The ratio of X(s) to U(s) is then called the transfer function from
input u(#) to output x(¢), e.g.

X(s) _ bpS™+bu_1s™l+ - +bys + b
Uis) ~ st +an 151 +a,25"2+ - +a1s +a,

(10.3)

Roots of the denominator polynomial are the system poles, and roots
of the numerator are the system zeros. The transfer function
approach has several applications:

*  manipulation into special forms,

« solution of the differential equations represented,

« manipulation (such as reduction or elimination of variables) of
subsystem models to obtain system models,

»  generation of the frequency response.
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Transfer function forms

The expression in (10.3) is a direct form of the transfer function,
but other forms are sometimes useful, particularly if the transfer
function represents a filter or control law to be implemented. The
basis for two of these is the fundamental theorem of algebra, which
allows the numerator and denominator polynomials to be factored to
first-order terms, as in

X(s) (s=51) (5—52) -+ ($=5p)
U6)=HO =K (53 (52he)  (s=h)

where s;,i=1,2,...,m are the zerosand A; j=1,...,n are the system
poles. These may be combined in a variety of orderings to give
cascade or series forms, such as

H(s) = Hy(s) H(s) - Hi(s)
where

(s=sia) - (S=Sim) .
Hi(9) = Ki (s ) (s—k,-,,:,-) i=1,2,....k (10.4)

Another possibility is parallel form, exemplified by
H(s) = Hi(s) + Ha(s) + - + H(s)

with the H;(s) similar in form to the factors in (10.4). A further
possibility is the continued fraction form, exemplified by the
special case of the Cauer form (used in filter network realizations):

H(s)=
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The utility of the above forms is both analytical and, in some cases,
synthetic in that computations of control laws may be organized. The
first three structures are shown in Fig. 10.1; the last is met in section
30.2.4.

(@) (c)
] ) b— = H,6)
— H2(S)
Lt Hs) -
(b)
—>-H1(S) - H2(S) Lo - - = L Hi(s) L -

Figure 10.1 The structure of transfer functions. (a) The direct form is a ratio
of polynomials. (b) Using partial fraction expansions gives an equivalent
form, as does (c) using a product form or cascade decomposition.

Example

The following forms can be easily derived for the system described by
the differential equation

y3 + 9y + 23y + 15y =i + 6it + 8u




Transfer functions 227

52+ 65 + 8
H(s) 53+ 952+ 235 + 15

- ()

_ 0.375 0.25 0.375
—s+1+s+2+s+3

35+ 11

1+
125 +

1
(1/30)

Solution of differential equations

The obvious use of Laplace transforms is to solve the differential
equations represented. Thus, if G(s) is a known transfer function
from u(¢) to x(¢) and if u(t) is a form such that U(s) is readily
available, then using the notation x(f) < X(s) to mean that x(¢) and
X(s) form a transform pair in that X(s) is the transform of x(¢r) and
x(?) is the inverse transform of X(s),

x()e X(s) = G(s)U(s)

may often be readily found. In control systems, we often seek the
response to a unit impulse, i.e. the Dirac delta function 8(f) (Fig.
10.2(a)) for which

0(1)=0,t 20

(S
[d(rydt=1,6>0
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This special function, one of a class called distributions, is often taken
as the limit of a pulse of unit area whose width vanishes. This is
shown for a rectangular pulse in Fig. 10.2(a) along with a common
graphical symbol for the function.

Another commonly sought response is to the unit step function Z/(t),
shown in Fig.10.2(b), for which

0 <0
?/(t)={ 1 t20
1
?/(t)«:);
(a)
5(1)
‘ 1/2T
1
l Limit as T->0
t t
T | T

(®)

U@

Figure 10.2 (a) Dirac delta function, 6(¢); (b) unit step function, ().

We note that the transform of the impulse response of a system is
equal to the transfer function.

The actual solution can usually be found using tables of Laplace
transforms, although in general the inverse Laplace transform is
needed. A typical case will require that X(s) be expanded in partial
fractions to forms available in tables and that the tables be consulted.
Hence if
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X(s) o bms™ + byp_18m-1 + - + b5 + by
§)=¢e
"+ ap1stl 4 o ars + ag

then we take
k
X(s)= Y, e-stXi(s)
=1

by partial fractions (out to first-order terms if necessary) and use
tables to yield

k
X0 =Y xi(t-1)
=1

It is presumed this approach is familiar to readers from their
mathematics background.

Example
Consider
1
HO =@+

1 _4
=3~ 4yq 1= Hi(s) + Has)

1
His) =5 o1 =h()
—4
Hy(s) =777 & e = ()

then the impulse response of the model is

h(t) = h1(2) + ha(2)
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Manipulation of representations

The Laplace transform has a number of properties which make it
useful in the study of linear systems: it is a linear operator; the
transform of the convolution of two functions equals the product of
the transforms of the functions; because of these it is easily shown to
be associative, distributive, and (in the case of scalars, but not
matrices) commutative. Manifestations of these properties allow
manipulation of transfer functions almost algebraically and are very
useful in analysing systems. For examples,

a. If X(s)=Gi(s)U (s) and Y (5)=G2(s)X (s), then Y (s)=
G2(s) G1(s) U(s)=G(s) U(s). Thus association justifies generation
of an intermediate signal x(¢) & X(s) or the alternative of a single
transfer function G(s)=Gs(s) G1(s).

b. If G(5)=Gi(s)+G2(s) and Y(s)=G(s)U(s), then Y(s5)=X1(s)+
X5(s) where X1(s)=G1(s) U(s) and X2(s) =Ga(s) U(s). This use of
the distribution property allows, for example, the construction of
control laws in alternative forms (e.g. three-term controllers as
sums of P, I, D terms or as second-order systems).

The most common use is to derive a closed loop transfer function

from the transfer functions of several components.
For the system of Fig. 10.3, we see that

Y(s) =G(s)U(s) U(s) = C(s)E(s)
E(s) = R(s) — M(s) M(s)=F(s)Y(s)

from which a little algebra yields

Y(s) G(s)C(s)
R(s) — 1+ F(s5) G(s)C(s)

as the closed-loop transfer function. The simple manipulations above
are common; more complicated versions of the algebra can sometimes
be done more easily by looking at and manipulating the patterns of the
blocks — an approach called block diagram algebra — as found in
older textbooks.
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- e() u(t)
r(t) *(1)_» Computer -»— Process/Plant = y(t)
\
m(t) ’
- Sensor ~
(b)
+ E(s) U(s)
R(s) C(s) —>=— Gfs) > Y(s)
Y
M(s)
F(s) —<e—-

Figure 10.3 Two representations for a control system. (a) Block
diagram of the physical situation with variables denoted as indicated. (b)
Taking Laplace tranforms allows an equivalent representation.

10.2.2 Multivariable — multi-input-multi-output (MIMO) -
transfer functions

For systems with m inputs and n outputs, it is possible to write
differential equation sets such as

ni m mj
Yaiy®=% 3 Bijiu® i=1,...,n
k=0 = =)

with transfer function representations
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m;
m 2 Bijksk
k=0 )
Yis)=3 —, Ui i=1,..n

J=1 Y Ok sk
k=0

m
= ZlGi,j(s) Uj(s) i=1,..,n
]=

This is more convenient notationally in the matrix form

(Y1) [ G1.1(5) G12(5) ... Gim(s) |[ Ur(s) 7]

Y5(s) Ux(s)
Yo =| . |= G2,1(5) G22(5) ... Gom(s)

| Yu(s) | | Gna(®) Gnals) . Gum(s) || Uns) |

= G(s)U(s)

Since the operators are all linear, this representation can be
manipulated almost as if they were scalars. Thus, assuming the
dimensions are correct, we may find that series, parallel, and feedback
connections may be formed in the expected way. For example, series
connection yields

Y(s) =G(@s)W(s) and W(s) =H(s)U(s)
=Y(s) = G@s)H(s)U(s)

(but not H(s)G (s)U(s) because matrix multiplication is not
commutative).

Parallel connection yields that

V(s) =W(s) + Y(s)

ol LElUMN Zyl_i.lbl
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=V(s) = [H(s) + G(9)] U(s)
Finally, feedback connection, defined by Fig. 10.3, has

Y(s) = G(s) C(s) E(s)
E(s) = R(s) - M(s)
M(s) = F(s) Y(s)

and yields

Y(s) = [1 + G () C)F)]- G(s) CGR(s)
and

Y(s) = G(5) C(s) [1 +F(5) G(s) C(5)] -1 R(s)

where I is the identity matrix. In the basic representation, the matrix
G(s) is n X m and so not necessarily square.

Special forms: the Smith-McMillan form and matrix fraction forms

The notions of system poles and zeros are not so clear for matrices as
for SISO systems (where they are simply the roots of the denominator
and numerator polynomials, respectively). As part of the
determination of this and other questions, it is useful to have a
canonical form for the transfer function matrix. The form used is the
Smith—McMillan form.

The Smith-McMillan form M(s) of a rectangular matrix G(s) is a
rectangular matrix in which the only non-zero elements are those for
which the row and column indices are equal. M(s) may be derived
from G(s) by elementary row and column operations, and the
polynomials making up the rational terms satisfy certain divisibility
properties. In particular, the Smith—-McMillan form of G(s) is
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o= 9)

Ml(s)"dlag{sl(s) da(s) 81'(5)}

where r is the normal rank (i.e. rank for almost all s) of G(s), Vi(s)
and J;(s) are co-prime, i.e. they have no common factors, and

V;(s) divides v;;1(s)

.. =1,...,r-1
8:1(s) divides 8,(s) } =l

Computation of the Smith-McMillan form follows from first
forming

1
G(s) = ) P(s)

where d(s) is the least common multiple of the denominators of all the
terms of G(s) and P(s) is a polynomial matrix. Then P(s) is manip-
ulated using a sequence of elementary operations; each such operation
is representable as a pre- or post-multiplication by a simple matrix
called an elementary matrix. The operations and their matrix
multiplier equivalents are:

* interchange of two rows/columns — the elementary matrix is an
identity of appropriate size in which the required two
rows/columns have been interchanged — pre-multiplication
interchanges rows while post-multiplication interchanges
columns;

» multiplication of a row/column by a constant — the elementary
matrix is an identity matrix except that the desired constant is
placed on the diagonal at the required row/column; again pre-
multiplication affects rows and post-multiplication affects
columns;

» addition of a polynomial multiple of one row/column to another
row/column — the elementary matrix uses the identity with the
polynomial placed in the appropriate row/column — with pre- and
post-multiplication effects as above.
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The elementary matrices used to pre- or post-multiply (L;j,R;) can
be applied to P(s) to create a matrix Q(s)

Q(s) = Li(s) Lig-1(5) -+ La(s) P(s) Ru(s) Ra(s) -+ Rp-1(s)

The particular matrix we seek is the Smith form, S(s), which is
given by

Sis) 0
S@W={ 0 o

S1(s) = diag {M1(5),M2(s); ..., NA5) }

where

with dy(s) = 1, and dj(s) the greatest common divisor polynomial of all
i X i minors of P(s), normalized to be monic, i.e. to have the
coefficient of the highest point term in s be +1.

Example

As in Maciejowski (1989), consider the two-input—three-output system
described by

1 -1
s2+3s+2 s2+43s5s+2

s2+s5s-4  252-5-8
GO =| 2+35+2 52+ 3s+2

s —2 2s — 4

s+ 1 s+ 1
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1 -1
s2+s5s-4 252-5-8
s2 -4 252 -8
s2 + 35+ 2

It is easily shown that do(s) = 1, d = 1, d(s) = s24 and hence the
Smith—-McMillan form of G(s) is

1 0
MG)=| 0 s2-4
0 0
s2+ 35+ 2

The elementary matrices in the transformation are presented in

1 001 0 Ot 0 O
M(s)=[|0 1 0f-% 1 0(0 % 0 |G(s)

-s 0 10 0 1]1 1 21
2 04 ot 1]
-1 1o 1[0 1
1 00 ,

=l -5 41 0 G(s)[_”'l z]
-5 1 -1 3 3

Using the Smith—-McMillan form, a number of useful definitions
may be made.

p(s) = 81(s5) 82(s) -+ 8,(s) = pole polynomial of G(s)
2(s) = v1(s)va(s) -+ v,(s) = zero polynomial of G(s)

ee of G(s)
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If (s—s¢)P is a factor of p(s) {of z(s)}, then p is said to be the
multiplicity of the pole {resp. zero} at so.

Zeros of G(s) are called transmission zeros of the system.
Transmission zeros can be observed to be points at which the rank of
G(s) decreases. Their name comes about because they have the
property that for particular inputs related to the zero locations, the
system will have no output, i.e. they have a transmission blocking
property.

An alternative form for a rational transfer function matrix, which
makes the notation seem even more analogous to the scalar case, is the
matrix fraction description. In this, appropriate (and non-unique)
matrices of polynomials N(s) and D(s) are used to enable
representations such as G(s) = N(s) D-1(s). This is called the right
matrix-fraction description, and N(s) and D(s) are called the
numerator and denominator matrices, respectively. One way of
finding them involves the Smith-McMillan form. In particular, we
write

G(s) = L(s)M(s)R(s)

= L(s) diag {all(s) 52(5) 50 0} R(s)

where L(s) and R(s) are the products of the elementary matrices as
before. Then we define

NM(S) = dlag {1)1(5'), 1)2(3), cees Dr(s)’ 0, ... O}
Dum(s) = diag {81(s), 82(s), ..., 83(s), 1, 1, ..., 1}

so that M(s) = Nm(s) D;,} (s) and, because elementary matrices are
always invertible,

G(s) = L(s) [Nu(s) D7 ()] R(s)

G(s) = [L(s) Nu(®)] [R-1(5) Da(s)] ™
= N(s) D-1(s)
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where the definitions of N and D are obvious. We remark that it is
now clear that a point z is a zero if N(z) is of lesser rank that N(s),
and a point p is a pole if D(p) is of decreased rank (and hence not
invertible at that point). Notice that similar arguments lead to a left
matrix-fraction description:

G(s) = D l(s)N(s)

10.3 FREQUENCY RESPONSE

A very special input to a system is a sinusoid B sin(w¢), and if the
system is linear, the post-transient output is A sin(®¢ + ¢). The effect
of the system is represented by the ratio A/B and the phase shift ¢;
the variation of these with  is the frequency response of the system.
Thus when the input is sin(¢), the steady-state output will be of the
form A(w) sin(wz + ¢(w))

For a linear constant coefficient system described by transfer
function G(s), it is almost always true that the complex function G(jw)
gives the frequency response:

A(0) =1G(w)l

0(0) = arc(G(jo))
or

G(jo) = A(®) eit(w)

This information is usually represented graphically; three different
sets of graphs are in common use.

1. Two plots are used: A(w) vs o, called the amplitude response,
and ¢(w) vs o, called the phase response. Frequently the plots
are A(w) in decibels (i.e. 20 log (A(®))) vs log ® (or  is on a
logarithmic scale) and ¢(w) in degrees vs log . These are the
Bode plots for the system when G is an open-loop transfer
function.

2. One plot of Im(G(jw)) vs Re(G(jw)) is made with ® as a
parameter...An.alternative point of view is that the plot is a polar
plot of radius A(®) and angle ¢(w), with ® as the arc parameter.
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This is a portion of the Nyquist plot for the system when G is
an open-loop transfer function.

3. A plot of A(w) in dB is made against ¢(®) in degrees. With
auxiliary information and when G is an open-loop transfer
function, this log (magnitude) — phase plot is the Nichols’ chart
for the system.

These plots can be very useful because the frequency response can
for some systems, especially electronic ones, be established
experimentally. Many readers will be familiar with the concept of
frequency response specifications for audio equipment; the concept
here is similar.

The frequency response of a system (e.g. an idealized small motor)
with transfer function H(s) = 1/[s(4s+ 1)] is shown in Fig. 10.4.

(a) (b)
40 ; ; . 0 T T
3
% OfF-— N — e — — 2 F
3 °
k] o
= 173
S 2
-4 T
g 0
0.1 100 ? i
o-rad/s
0.01 - rads 100
(c) (@)

Re

H— 1

-180 Phase - deg. 0

Magnitude - dB

Figure 10.4 Equivalent to the transfer function is the Fourier transform
of the impulse response, which if necessary can be found experimentally by
measuring the output when sinusoidal inputs are applied. This frequency
response has three forms of representation: (a) and (b) are the magnitude
and phase of the system (Bode plots), (c) is log-magnitude vs phase
(becomes a Nichols plot with additional information), (d) is a polar plot
(partial Nyquist plot).
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Multivariable Frequency Response

It is quite feasible to plot the frequency responses of the elements of a
G (s) matrix, i.e. to compute and plot G;(jw) for input j and output i
for frequency w. In the scalar case, the magnitude of such a term
represents a gain at that frequency. To extend this concept of gain to
the matrix, it is logical to compute a gain as the magnitude measure of
the output divided by the magnitude measure of the input. This is
done using induced norms as discussed in Chapters 15, 20 and 33, and
Appendix B. In particular, the gain for an input u(¢) is defined as

()l

Gain =
Hu()Il

which can be shown to be bounded, when u(¢) is a mix of inputs at
frequency , by the largest and smallest singular values of the matrix
G(jw). This fact is expressed mathematically by

iyl _

o(GlN < s

6(G(jw))

where the ¢ are computed using a matrix singular value
decomposition (SVD). This of course yields bounds for designing
multivariable compensators.

10.4 STATE VARIABLE REPRESENTATION

The notion of the state of a system is fundamental to the class of tools
of control systems analysis called ‘modern’ and can be defined in
many ways. Common to all definitions is the following set of notions:

The state of a system is a set of variables which, if known at
time #o, is sufficient to allow the prediction of the same set at any
future time ¢ >ty whenever all of the inputs are known for all 7,
to £ 1 <t. The variables are called state variables. The set of
all states for a system is called the state space.
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Note that there is no requirement for the state to be unique or of
minimal size, although the latter is often part of the definition.
Typically, the state of a SISO system will be of the same size
(dimension) as the order of the ordinary differential equation
modelling the system.

The notion becomes more precisely defined — when we restrict the
discussion to systems of differential equations (and hence implicitly to
the physical systems they represent) — to the following:

The state of a system of equations is any set of variables which, if
specified at time #y, provides the information necessary to solve
that set of equations for any ¢ 2 ¢y for any specified set of forcing
functions.

It is fundamental to the state variable approach to systems studies to
assume that the system may be placed in a form in which the variation
of the state variables can be described by a coupled set of first-order
ordinary differential equations, one for each state variable. This
assumption holds for systems of linear ordinary differential equations;
it may or may not hold for other, non-linear systems, although it does
appear to hold for many systems of interest. In addition, the original
model may often be linearized so that a state-space description is
possible for the region of linearization.

10.4.1 Obtaining state-space descriptions — linear systems

A set of ordinary linear differential equations may be placed in the
vector-matrix form

x=A®)x+B(H)u
y=C(@#)x+D()u

where x is an n-vector (i.e. an n X 1 matrix) containing the state
variables, u is an m-vector of the inputs to the system, and y is a p-
vector of the system outputs (whether measurement quantities or
physical quantities depends upon the system being modelled). The
matrices A, B, C, and D are respectively n X n,n X m, p X n, and
p X m; frequently D is a matrix of zeros and so it is not always shown
in the above form. If the original differential equation model has
constant coefficients, then the matrices also are constant.
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Placing a system of differential equations in the above form is
sometimes straightforward, but not infrequently some clever
manipulation is needed. We consider some of the possibilities using
examples of the forms used. We note, however, that the point of the
representation is seldom to convert a simple SISO differential equation
system to this form.

For a simple constant coefficient nth order ordinary differential
equation

dny dn—-ly dn—2y dy
at—,;+a,,_la,:1‘+ a,,_zm+ -+ ay at—+aoy=u (10.5)

we may define the n state variables

. d2 dn-1
x1=y x2=Jy x3=d—t§ o Xp = a,r_%
so that
X1 =Xx2 X2 =x3 .. Xp1 =Xp (10.6)
Then
i dlly dn—]-y dn—2y dy
= g = =0 qurt ~ G2 gz 7~ a1 gy~ a0y +u
= —apX1 — a1 X3~ 2X3 =~ Qp_1Xn + U
Defining
X1
X2
x=] - u =[u]
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— — sem | emn

0 1 0 -0 0

0o 0 1 -+ 0 0
A=l 0 0 o 1 0 B =

0 0 0 0 1 0

-ay -4 @ 0 —ap-1 | _1_
C=[100 - 0] D=[0] (10.7)

then gives the desired form with

X = Ax + Bu

y=Cx (10.8)

This is a simple case of a common form called the controllable
canonical form.

More difficulty arises when derivatives of the control variable
appear, as the state variable form does not allow explicit
differentiation of an input variable to be another variable. (Thus it is
not allowed for u to be defined as the vector

g

for example.) It is usually desired for a SISO system to have the A
matrix be of the form of (10.7) or a somewhat similar form to be seen
below. Even with this proviso, there are several different possible
state variable definitions, each giving somewhat different matrices.
We consider the differential equation
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gn_y_ dr-1y dn-2y dy
dtn + ap1 dtn_l +ay dtn_z + -+ a; dt + aopy

-1
=bp %’:7“+ bm-1 %":m—_l: + -+ by %+ bou (10.9)

and assume m <n. By superposition arguments, we have that if
(10.7-8) give the response to an input u(¢) for (10.5), then

X =Ax +Bu

y=[bo—bsap bi1-bnar - bp1-bpap1]1x+][ b ]u

gives a solution to (10.9). We remark that it is no longer true that the
definitions (10.6) apply; e.g. no longer is x4 the third derivative of the
variable y.

An alternative state variable definition may be justified by
observing that (10.9) implies

Y(O) = bau(t) + [(=an1y(tn) + bp_1u(ty)
+ I(_an—Zy(tn—l) + bp_ou(tp1) + J.(

+ [(~a0y(t0) + bou(p)) dtg) dry) - )dt_1 dy

Defining the variables

X1 = J(—a,,_ly + bp1u + x2)dt

X2 = I(—a,,_zy + by_ou + x3)dt
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X =] (an—ky + b, U+ Xy )d‘

x, = [agy + byudt (10.10)

and observing that this makes

y=buu+x (10.11)
gives, with differentiation of (10.10) and substitution of (10.11), the
result

—_a'l—I 1000 -bn—l‘bnan—l-
a2 01 --00 bp — bpan 2

A= N S B= :

-a 00 :---01 b1 - b
| a0 00 --- 00 | | bo — bnao |

C=[100--0] D=[b,]
with

X = Ax + Bu

y=Cx + Du

This is in fact a commonly seen form called an observable
canonical form.

Another variation may be defined by proposing a structure and then
choosing the coefficients. For example, we propose the following:
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. dxi
y =x1+PBou X1=x2+Puw - E"=xk+1+[3ku

dx
E” =—(0ox1 + Q1x2 + - + Qp_1Xp) + Pru

To find coefficients o; and B;, we differentiate y successively to find
(following e.g. Wiberg (1971))

(Bo] [ 1 0 0 - 071 [ b7]
ﬁl @y 1 0 --- 0 bp1
" a1 - 0 by
B2 | _ | %2 am n-2 (10.12)
A | @ @ a1 | bo

Using this solution, the state equations become

x = Ax + Bu
y =Cx +Du
where
0 1 0 0 0 7 [ B1]
0 0 1 0 0 B,
_ o : | B3
A= 0 0 O 1 0 B=
0 0 0 -0 1
| 0 —a 4 e Gp | | Bn |

C=[1000 - 0] D = [Bo] [ba]




State variable representation 247

The above forms of the A matrix are called companion forms of
the system matrix. A very different form is best approached by using
the transfer function. For the present system, the transfer function is
as given in (10.2), which, by the fundamental theorem of algebra, may
be expanded in partial fractions using the roots (here assumed distinct)
Ai,i=1,2,...,n, of the denominator. Thus by assumption

M+ap N+ a oM 2+ o+ a1 hi+ag=0
and using this, we may expand (10.2) as

Ys) _a (&3 c3
UG) " s—M s Tt

_Sn__
+ s\, +dp

Putting Gi(s) = c¢i/(s — A; ), we see that
Y(s) = Gi1(s) U(s) + Go(s) U(s) + -+ + Gp(s) U(s) + dy U(s)

= X1(5) + X2(s) + - + Xp(s) + do U(s)

Inversion arguments show that we may define x; = A1x1 + c;u
(i=1,2,...,n) and have

y=x1+x2+ - +x, +dou

In matrix notation, this becomes the modal form

(A, 0 0 - 0] [¢q]
0 A 0 - 0 cy
x=|: i DolxH O |u
0 0 0 A,; O Cpol
0 0 0 - A, L[]

oLl Zyl_i.lbl
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If the roots are not distinct, this approach yields a Jordan form
for the A matrix. As given, roots and coefficients may be complex,
and therefore the numbers x; may be complex.

If the eigenvalues are complex numbers, they necessarily come in
pairs. This yields the possibility of using real number representations
by rearrangement. Thus the system with eigenvalues ¢ * jo may be

written
. o ®
X = x + Bu
-0 O
instead of
. o+jo O
zZ= ) z + Bu
0 o-jo

where the matrices B are different in the two representations.
Example

Consider the simple second-order system
Vy+2y+S5y=3u+u

Among its alternative representations are

1 Y(s) _3s+1
’ UGi) s2+25+ 5
5 Y(jw) 3jo + 1

UGw) =~ (5 - 0?) + 2jo

. [01] [O
3. X = 59 X+|1|u
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R

y=[1 0]z
142 0 (3-)/2
S0 W=l o 1225 |V | G2 | ¢
y=I[1 11w
-1 2 0
6. o= -2 1 o+ 114
y=[-1 3]

We remark that representations 3 -6 all have the same input—output
relationship, as can be verified, e.g. by computing (as in section
10.4.3)

%é% =C(sI-A)'B

This emphasizes the non-unique character of state variable
representations.

10.4.2 Multi-input-multi-output (MIMO) linear systems

Compared with SISO systems, provided the systems involved are
linear, MIMO systems are just a little more difficult.

The near trivial case is one in which the systems are uncoupled.
Suppose, for example, that we have systems modelled by

).(,' =A;x;+B;u;
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where the individual system models were developed as in section
10.4.1. Then defining the concatenated vectors

X1 u n
.9 uz y2
X = . u= y = .
Xk Ui Yk

and the block-diagonal matrices

Ap 0 0 0 ] B, 0 0 0

0 Ay O 0 0 B, 0 0

A=| 0 0 A; 0 g=| 0 0 B3 0
L 0 0 0 Ay | 0 0 0 B |
C, 0 0 -+ 0 7] D; 0 0 0 ]

0 C 0 0 0 D 0 0

c=| 0 0 G 0 p=| 0 0 D 0

L 0 0 0 Ck L 0 0 0 Dy

yields the usual general form

x =Ax+Bu

y=Cx+Du

When systems are connected in cascade, so that the output of one is

the input to the next, as in Fig. 10.5, then the situation is only slightly
more complicated.
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U — S1 > Szl—>y

Figure 10.5 Systems in cascade.

In the two-element cascade shown in Fig. 10.5, the two subsystems S;
and S; might have the state-space representations

X1 = Alxl + Blu
y1=Cyx; +Dpu
and, using the indicated naming of elements,
X2 = Ayx; +Byy;
¥2 =Cyxy + Dy

Then one possible state-space description of the entire system, with
input u and output y, is

=o)L a6y 42 [+ [aop)
=5, B,C; A; |[X* |B,D,|Y

y=[D2C; Czlx+[D2 DiJu

Example

Consider a motor in cascade with a compensator, satisfying

) T Ka(i‘ + Bu)
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respectively. For the motor, define the state [x; x2 ]T = [0 61T
the input as v and the output y =x; = 0. Then a state system
representation is

0 1 0
X = 0 _1 X+_Igmv
T

y=[1 0]x

For the compensator control law, let x3 = state, with input ¥ and
output v. Then the (1-dimensional) state representation is

X3 =—oxs3 + K, (B-o)u

v=x3+Kyu

Combining these yields, with system input u and output 6,

X1 0 1 0 X1 0

1 K K,K,
x2|=] O 1 Tm X2 |+ __a%__n_l u
X3 0 0 -« X3 Ka(B-o)

X1

y=[1 0 0]|*

X3

We note that x; and x, retain ‘natural’ interpretations as shaft
angle and rotation rate, but that the rules of state representation
(namely, no derivatives of the input) mean that x3 represents an
integral portion of the voltage v rather than all of v.
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State-space conversion of multivariable transfer functions

The example on page 248 demonstrated state-space representations of
SISO transfer functions, and we saw these were not unique. One of
the potential state-space representations for a matrix transfer function
G(s) can be defined as follows. Let Gi(s) denote the ith column of an
n X m transfer function G(s), so that if Uy(s) is the scalar transform of
the scalar control variable u;(t), we have

Gs)= 3 Gis) Uis)
i=1

Represent G;(s) in terms of an n-vector of polynomials N;(s) and a
scalar polynomial d;(s), where di(s) is the least common denominator
of the m denominators in G;(s). Thus

Gils) = )

where

nrl

di(s) = s" + 2 dijs/
Jj=0

1
Vi,10 + Vi, 118 + 0 + Viying-1 5"

Ni(s) = _
' Visn0 +Vin1 § + =+ + Vi pny 187"
Defining
0 1 0 0-- 0
0 0 1 0-- 0
A=

ol LElUMN Zyl_i.lbl
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B,

!_O_
0

Ci=

V10 Vi 11 * - Vilni-1

Vin0 Vinl *** Vinni-1

we have that one state-space representation of the system is given by

—

A, 0 0 -~ 0 By 0 0 - 0

0 A 0 -~ 0 0 B, O - 0
A : :

L0 0 0 - Ap_ | 0 0 0 -+ By |
cC=[C, C, C.]

In this, if M = 2.%1n; , then A is an M X M matrix, B is M X m, and
C isnx M. This representation is of a type called controllable
(Chapter 22), but may not be observable (Chapter 24); a
representation which is both controllable and observable is called a
minimal realization, and there exist methods, some of which are in
CACSD programs, for finding such representations if the ensuing
theoretical analysis requires them.

10.4.3 Relationship to Laplace transforms

Having seen a derivation of a state-space representation (the modal
form) from a Laplace transform representation, it should be no
surprise to find that the reverse can also be done. We need only use
notation carefully and realize that
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[ Z(xa() | [ Xi)]
Ax0) Xo(s)
X(s) =ZA(x@) = : =

L) | | %000

to see that
X = Ax + Bu
y =Cx + Du

has transform

sX(s) — x(0) = AX(s) + BU(s)
Y(s) = CX(s) + DU(s)

and hence has solution
Y(s) = [C(sI -A)1B + D]U(s)

In the common case for which D = 0, expansion of this is useful in
that we see, from Cramer’s Rule for matrix inversion, that

Y _CcofﬂsI—A}B
()= “HerGI-A)

where cof() is the matrix of cofactors and det(-) is the determinant.
The former is a matrix of polynomials, while the latter is a
polynomial. From the definitions involved, the zeros of the latter are
the eigenvalues of the matrix A and also the poles of the system
represented by the state-space mode.
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10.4.4 Changes of variable - similarity transforms
It should be clear from section 10.4.1 that state-space representations
are not unique. The state variables are sometimes chosen for physical
significance and sometimes for analytical convenience, and
occasionally a representation will be both significant and convenient.

The change of representation of a linear constant coefficient system,
if we perform one, is called a similarity transformation. To perform
one, suppose we have a system described by

x =Ax+Bu

y =Cx + Du

We change the representation, which could also be considered a
change of variable or of linear system basis or of coordinate axes, by
defining a new state vector xr, related to the previous state vector x
by an invertible n X n matrix T, as in

xt =Tx x = T-1xg
Then clearly we have the state equations for xt given by

5(1‘ =TAT-! xt + TBu
y =CT'xt + Du

To see that the transfer function from u(z) to y(¢) is unchanged, we
may directly compute

sX1(s) = TAT-'Xx(s) + TBu(s)
Y(s) = CT-'Xr(s) + Du(s)
This has solution
Y(s) = [CT'(sI-TAT-})-!TB + D] U(s)
=[C(sI-A)'B + D]U(s)
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Canonical forms

The state—space formulations also have canonical forms, just as there
were several standard forms for the transfer functions and one special
form (the Bode form) for frequency response functions. These forms
can be reached by similarity transformations on systems such as

x =Ax+Bu
y =Cx+Du
and involve special forms of the A matrix plus one or both of B and

C. The actual transformations are in the Appendix B.
The observable canonical forms have

. |
ag ...... :I C:[IOO...O]

or

I :
A= ......ga C:[OOO]]
0 :

The controllable canonical forms have

or
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In either case, for n X n matrix A, I is (n—1) X (n-1) identity, 0 is
an n—1 vector of zeros, and a is an n-vector of coefficients from the A
matrix’s characteristic equation. Existence of the transformation
depends upon observability, resp. controllability, of the (A;C) and
(A;B) matrix pairs (Chapters 22 and 24).

Another canonical form uses Jordan blocks, and is a generalized
modal decomposition. A typical form, and its importance as a form,
is that for MIMO systems it yields

Jo 0 0 O B,
0 J 0O B,
A=l 0 0 J 0 B=1 o
0001 0

C=[Cc0 0 Co O]

where the J are Jordan blocks, and the B; and C; are suitably non-
trivial. The significance of this is the interpretation, in which the
system is interpreted as decomposed into controllable and observable
(CO subscript), controllable but not observable (C), observable but
not controllable (O), and neither controllable nor observable (no
subscript) subsystems (Chapters 22 and 24). An alternative
decomposition showing the same is

Ay, 0 A3 O B
A2, Ac A3 Agg B,
A=l 0 0 A o |B=| o0
0 0 Az A__ 0

C=[Cco 0 Co O]

These are useful in decomposing systems, of course, but also in
finding representations which are minimal (in size of state vector) and
having a given input—output transfer function.
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10.4.5 Some state-space descriptions for non-linear
systems

For non-linear systems, generation of a state-space description can be
difficult. One relatively simple case arises when all derivatives are
ordinary, the inputs are not differentiated, and the highest derivative
can be isolated easily. Consider for example a system described by

*y — 9

-dn_y ( dn—l y dn—2y ) dy u )

dm /a1 dm2” T
Using the definitions
d dn-1
f=y 1 =E}ti o xy= dtn—f (10.13)

we immediately have the representation in terms of first derivatives as

X1 =x2 k2 =X3 o kp =X
-xn =f(xn, Xn-1s «evs X1, u)
y=[1 0 0 - 0]x

or

5c=f(x,u) and y = Cx

For systems which seem to exhibit explicit dependence on
derivatives of the control variables, the above does not work directly.
This is because the required form, even for non-linear systems, is

x =f(x,u,)) y=gx,u,i

Here,it,is to.be noted that,the input variables u are not explicitly
differentiated.
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A sometimes helpful interpretation in these circumstances is to note
whether the input variable is a command variable and should have the
highest derivative noted as the actual control quantity. If so, then the
definition of extra state variables may obviate the apparent difficulty.

For example, consider

dy _ f dly a2y ) dy d2u du
TR T T T

and use the definitions of (10.13) plus the definitions

du

plus consider the second derivative of u as the control variable, calling
it . Then we have

Wi=wy wa=®
X1=X2 X2=X3 ' Xp1=3Xn
Xn = f(xn, Xn-15 ..., X1, ®©, W2, W1)
=[100 --0]x
and x, w are easily concatenated into a single vector if desired.
Example

For the translational dynamics of the rocket model in Chapter 9, we
may define the state vector x by

x1 = x = horizontal distance

X2 =X = horizontal velocity
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x4 =y = vertical velocity

X5 =mass

u; = pitch angle

u, = motor on/off command (1 for on, 0 for off)
G = gravitational constant

Ty, = engine thrust
M = propellant mass flow rate
Then a state model is given by

X1=x

-Gx1 cos (u1)
Xy="—"7 95 + Thit
27 x50} + 1P TR T

X3 = x4

-Gx3 sin (u1)
ja = 2 4 Thu
4T xs(d + 2B TN T

X5 =Muy

10.4.6 Finding the system response to input using state-
space and transition matrices

There are several choices for finding the system response to a given
input. Aside from numerical and simulation methods, the details
depend upon the system representation.

«  Numerical methods and simulations such as SIMNON, whether
analog or digital computer based, tend to work with state
descriptions, i.e. sets of first-order differential equations.

s Fordifferentialvequation representations, the usual methods of
solution of differential equations may be used (or attempted).
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*  For transfer functions, the methods of Laplace transforms are
applied.

* For linear state-space models, the methods are those of
differential equations but the details are probably unfamiliar to
the reader and are presented here.

We consider the model structure
x =A()x+B({)u
y =C®x+D()u (10.14)
with initial conditions
x(t0) =Xo

To obtain a general solution, we first find what is in effect the free
or unforced solution and then derive the particular solution. More
precisely, we define the transition matrix ©(#y, t1) as the solution of
the matrix differential equation

dO(, ¢
—((-lt—Ql =A@1) O, 1) O(to, t0) =1

It is readily shown that the transition matrix, which is unique by the
properties of solutions of linear ordinary differential equations, has
among its properties the following.

1. Transition property:
O(12, 1) = O(t2, 11) O (11, %)

2. Inversion property:

O(t1,t0) = ©-1(t, 11)
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3. Determinant property:

h
detO(11,10) = exp[ [trA (1) dﬂ:}
Io

4. Separation property:

O(11,10) = ©(11,0)©-(10,0)
= 0(t1) ©-1(10)

Note the alternative notation allowed by the separation property.
Using the transition matrix, the general solution of the state
equations can be written

t
x(?) = O(t,10) x(t0) + f O, 7)B(t)u(t)dr (10.15)
4]

This may either be checked by direct differentiation (using the
fundamental theorem of calculus, the chain rule, and the Leibnitz Rule
for differentiation of the integral) or derived using the method of
variation of parameters.

From the definition of the transition matrix, it is clear that if the
matrix A is a constant, then

O(t1,10) = O(t1 + T, 10 + T) = O(t1 — 19, 0)

for all t. For such systems, the single independent variable notation
defined by ©(t1,%9) = O(t1,10), ©(t) = O(¢,0) etc. is particularly
appropriate and will be used frequently in the sequel.

In the non-time-varying case for which A is constant, the transition
matrix solves

%Q = A O®) 00) =1
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Among the methods for finding the matrix ©(¢) in the latter case
are Laplace transform methods, matrix transformation methods, and
numerical methods. Laplace transform methods solve

0(t) =1 { (sI-A)-1}

which is in fact straightforward because, using Cramer’s Rule, the
resolvent matrix (sI — A)-1 is rational for each element.

The matrix methods rely upon the matrix interpretation of the first-
order differential system (10.14). Thus the solution is by analogy
with scalars given by

O(r) = eAt

By definition, when matrices are exponents,

CIOE ZM

Using similarity transforms of A, if A has distinct eigenvalues A,
k=1,2,...,n (when A is n X n), then there is a matrix T (the matrix
whose columns are the eigenvectors of A) such that

A = diag (7\.1,7»2,...,7\.“) =T-1AT

Using this fact, we compute

) 10
(o) )= 2 (I_I%t_x { ZM:'T—I_TC/“T—
i=0 )

But since Az = diag (A, Aat, ..., Ant)
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S 2 ((A_m‘, ) (/1_,,:)")
TSl S i! i! i!

= diag(e"lt, eh . et )
Hence we have shown that
O(t) = T diag (eMt,eh2, -, ehnt ) T-1 = TeAr T-!

The third class of methods includes numerical integration and
power series expansion of eAT. We show the second of these, as in
Franklin, Powell, and Workman (1990). It amounts to a truncated
power series expansion for eAT. For some K, define ¥ as

K-1
AT gATg (AT)

and compute it as

2 3 K

Then take
eAT =P(T,0) =1 + ATY

The above techniques fall into two classes: numerical and symbolic.
The choice will partly depend upon the needs of the problem. All
three approaches can be used also to find the forced solution (10.15),
although the input u(#) must be structured appropriately if closed-
form type methods are to be applied.
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10.5 NOISE AND DISTURBANCES

For continuous systems, the models of noise can be either in state-
space or in transfer functions, but will follow the notion mentioned in
section 9.4.6 of white noise driving a linear system. In such cases we
have for scalars

m
Y Bis
=

n-1
st + z a;st
1=0

H(s) =

(D" + 0 D1+ -+ 00 w(E) = M(0)

v(®) = (B D™ + -+ 1D + Bo)w(®)

Sp(®) =R

So(w) = IHGw)I2ZR
where H(s) is the transfer function of the linear system and R is the
level (variance) of the white noise; D denotes the differentiation
operation, and the above avoids differentiation of white noise even

though for modelling purposes only this makes little difference. One
possible state-space model is

0 1 0 -« 0 0
0 0 10 0 0

X(t) = : : : : : X(t) + ﬂ(t)
—0p 0 O 1

vi)=[Bo B1 =+ Bm O -+ 0]x()

and the same result is obtained.

ol LElUMN Zyl_i.lbl
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Models of systems with disturbances and noise

A typical representation of a feedback system with measurement noise
and output disturbances is shown in Fig. 10.6.

+ E(s) U + 1+
() st ce) 22 as) -.—J).—Y(s)

M(s) +
F(s) —<—(¥+ N(s)

Figure 10.6 Typical closed-loop system block diagram.

Here G(s) represents the plant transfer function, C(s) the controller
transfer function, F(s) the sensor transfer function, and Y(s), R(s),
D(s), N(s), E(s), U(s), M(s) are the respective transforms of the
output signal, the input reference signal, the disturbance, the
(measurement) noise, the error signal, the command signal and the
measurement signal. Then transform algebra yields easily

E(s) = R(s) - F(s) (N(s) + Y(S))
Y(s) = D(s) + G(s) U(s)
U(s) = C(s)E(s)

and hence relationships such as

E(s)= (I + F(s) G(s)C(s))'l (R(s) = F(s)N(s) — F(s) D(s))
Y(s) = (I+ G(s)C(s) F(s))"1 (G(s)C)R(s) + D(s))
— G()C()F(s)N(s)
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where the possibility of multi-input-multi-output transfer functions
has been allowed.

The disturbances may be modelled as noise (as above) or as signals
such as steps or ramps, e.g. D(s) = €/s or 8/s2. Alternatively, D(s) is
in robust control theory defined along the lines of D(s) € & where

2 ={D(s): ID(Go)l, < 1}

where p typically is either 2 or o (see norms in Appendix B or
Chapter 33).

Measurement noise N(s) is ordinarily modelled as noise, but
occasionally more like a disturbance in order to represent severe
measurement device breakdown.

The usual state-space studies consider only the noise form explicitly,
with the linear system model often such as

X=Ax+Bu+TIv

y=Cx+w

with input u, output y, state x, and noises v and w. The noises are
assumed to have properties

&lvl=0 & [V(t) vI(1)] = Qd(t—7)
&wl=0 g[w(@) wi(t)] = R8(+-1)
&[x(0)] = xp & [(X(O)—Xo)(x(O)-—Xo)T] =S

In this, w is clearly intended to represent measurement noise, but
the structure is such that if the model is extended so that part of the
state vector is used for colouration of the input noise v, then random
model errors and disturbances can be represented through v.

Model errors are usually taken in terms of either additive or
multiplicative errors in matrices in the representations. Specifically,
for transfer function matrices G(s) in which the nominal or standard
model is Go(s), the usual approach is to take either multiplicative
errors as applying to the output
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G(s) = (I + A(s5)) Go(s)
or to the input
G(5) = Go(s) (I + A(s))
or as additive errors
G(s) = Go(s) + A(s)

If A(s) contains only a few variable parameters, then the uncertainty
is called structured. In much of the recent theoretical development,
the only specification on A(s) is of the form

HAGw) Il < L(w)

for a specified matrix norm and scalar function L. One particular
norm used has been the co-norm

HAGw) Il = sz)pllA(jo)) Il < L = constant

Notice that for scalars, the norm becomes the magnitude of the
complex number, and the co-norm is the maximum value of that
magnitude over all frequencies.

In linear state-space models, the above ideas appear also. Here the
basic model

X = Ax + Bu

y =Cx

has its matrices, particularly the A matrix, allowed to vary. An
unstructured variation is one for which
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while a structured uncertainty tends to be of the form
p
A=A0+29,-A,- -1<6; <1
i=1
and a random variation has
p
A= A() + 2 w ,'Ai
=1

where the w; are scalar noise processes.

Structured uncertainties tend to allow at least the possibility of
parameter estimation and hence adaptive control (Chapter 31) in
controlling the systems. Unstructured variations force us to consider
worst case scenarios and hence conservative designs; these are the
main topic of robust control theories (Chapter 33).

10.6 COMPUTER PROGRAMS

Most computer packages should be able to handle computations of the
solutions of the models for given inputs. Some, such as SIMNON, do
this by simulation. Packages such as MATLAB® will allow conversions
of representations from transfer functions to state—space and back;
sometimes this is done using canonical forms, since then the
coefficients can be written out with little computation.

10.7 FURTHER INFORMATION

Longer discussions of the information in this chapter are found in
books such as Dorf (1989), Phillips and Harbor (1991), and Kuo
(1987). Wiberg (1971) is fairly thorough concerning the state-space
transformations. Multivariable cases are in Maciejowski (1989).
Noise is treated in the signal analysis literature and is introduced in
Appendix C.



11

Sampled-data system
representations

This chapter parallels Chapter 10 for discrete-time systems. Because
difference equations are undoubtedly less familiar to students than
differential equation methods, we also take a brief look at the
characteristics of difference equation time responses.

11.1 SYNOPSIS

The digital computer works in a sampled-data manner, and hence sees
the continuous real world through a picket fence, i.e. only at
particular instants. This sampling is usually done at regular intervals
T (typically a few hundredths of a second to a few seconds). As a
result, computer control works with sequences of data samples and
commands. The model descriptions are often in terms of difference
equations, such as

y(kT) + a1y(kT-T)+ - + ap—2y(kT-nT+2T)+ ap-1y(kT-nT+T)
+ a,y(kT-nT) = bou(kT)+ bju(kT-T)+ -+ + b u(kT-mT)
k=0,1,2,... (11.1)

with the alternative representation using the shift operator defined by
qix(kT) = x(kT+iT) to give

(L+aiqgt+arq 2+ - + anq™) y(kT)
=(bo+b1gl + -+ byg™) u(kT) (11.2)
The z-transform, which could be considered a discrete analogue of

the Laplace transform, proves useful here, giving a discrete-time
transfer function
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Y(z) bo+biz-l+byz2+ -+ byzm
Uz~ 1+a1z'+ayz2+ - +ay,z

from which the frequency response can be calculated as

Y(@2)

U(z) |z =e°T

Alternative forms of the rational function are of course possible.
Models such as (11.1-2) also have state-space models of the form

x(k+1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
which have standard canonical forms very similar to those for
continuous-time system descriptions (Chapter 10), including

controllable, observable, and Jordan forms. For example, an
observable canonical form is given by

a4 100 -0 [ b1—a1by |
- 010 by—ar by
-a3 001 ---0
by—azb
xky=1 . ... . . [xG-D+ e
—An-1 O O 0 e 1 :
| —an 0 O O e 0_ _bn_anb()_

yk)=[1 00 0 - 01]x(k) + bou(k)

11.2 TIME RESPONSE OF DIFFERENCE EQUATIONS

Throughout this book, discrete-time systems — either closed- or open-
loop — are described by relations of the form
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y(k) = —ary(k—1) —az2y(k=2) — - — any(k—n) + bou(k)
+ bu(k-1) + = + bu(k—m) (11.3)

where y(k) is the output at sample number £, i.e. the output at time
kT, u(k) is the input at sample number %, i.e. the input at time kT, and
ai, az, ..., ap and bg, by, ..., b, are known coefficients. There are
many variations:

the coefficients are unknown;

there are multiple inputs, some of them noisy;

the coefficients are not constants;

the y(k) and u(k) terms do not appear linearly; and/or

the representation is in a different form, e.g. matrix form.

el a

However, the above is basic and therefore worth a considerable
amount of study concerning the nature of the systems it represents.
Equation (11.3) is called a linear, constant coefficient, causal
difference equation.

Consider a system model (as above, but with bo=1, b;=0, i=1, 2,
vy M)

y(k) = —a1y(k=1)-ary(k=2)-a3y(k—3)—-- - —any(k—n)+u(k)

Provided a, is not zero, this is an nth order difference equation and
its state-space representation will be an n-dimensional system. The
solutions for a unit pulse at k = 0, i.e. for u(0) = 1 and u(k) = 0 when
k # 0, are given using the roots A;,i=1,...,n of the characteristic
equation of the system:

M+aM-1+aM-2+4-- - +a, 1 A+a,=0 (11.4)
With these, the pulse response solutions y(k), k>0 satisfy
y(k) = c1 M)+ c2 (M) +- -+ cp (Rp)k (11.5)

where the c; are chosen so that y(0)=1, and y(-i)=0, i=1,2,...,n-1.
Because the fundamental theorem. of algebra informs us that indeed
there are n such roots and that, if the coefficients g; are real then the
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A; are either real or in complex conjugate pairs, we know immediately
that the solution will have the form of sums of terms of the forms
ci(rpk and c(rj)k cos(djk + ;).

The handling of more complicated inputs is straightforward because
of superposition and the observation that a function u(k) starting at
time step 0 can be represented as the sum of scaled offset pulses, i.e.

u(k) = id,-ﬁ(k—i) (11.6)
i=0

where by definition the pulse satisfies 8(0) = 1, 8(j) = 0 for j # 0 and
is the Kronecker 6—function.

Then it is easy to see that if we define y;(k) as the response to &(k—
1),1=0,1,..., so that

yilk) = —aryi(k—1) — a2y (k=2) — - — apy;i(k—n) + 8(k—i)

then the response y(k) to an input such as (11.6) is given by

y(k) = Y. diyik) (11.7)
1=0

This argument is more easily and more commonly made using the
pulse response k(k), i.e. the response of the system to a pulse at step 0.
In this case, h(k) = yo(k). Then the linearity and shift properties of
the z transform imply that

yi(k) = yolk—1i) = h(k—1)

so that finally (11.7) becomes the convolution sum

y(k) = idih(k—i) (11.8)
1=0
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= Zuhk=) (11.9)
]:

Ordinarily, the system is causal, meaning that the output cannot
anticipate an input. Causality is interpreted mathematically as A(j) = 0,
for j < 0 and the effect on (11.9) is

k
y(k) = Yu@) h(k-))
0

A change of index variable (replacing i with k—j) lets us write
(11.8) and (11.9) in general as

k
yK) = Y, dejh(j)

j= —00

k
= ¥ u(k-j)h()

j:—OO

or, if the system is causal,

k
y(k) = X, utk=j)h()

j=0

The point of this, besides the justification of the general solution, is
to lead to the observation that the system operation will always be
characterized by the superposition of terms involving the sums of
powers of the roots of the characteristic equation (11.5). These are
called the characteristic roots, the poles, or the eigenvalues of
the system.

Control laws are chosen to affect the system responses. To see how
we can affect this behaviour, consider (11.3) and suppose we choose to
do a simple feedback, i.e. to measure the output at each step k and set
the controller value u(k+ 1) proportional to it. (The k+1 is to allow
computationstimesbetweenymeasurement and command.) Then
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u(k) = Gy(k—1) + ue(k)

where u, is an external signal, and the closed-loop system is now
described by

y(k) = «(a1-boG)y(k—1) - (a2—-b1G) y(k-2) — -
—(@m1=bmG)y(k—-m—=1) = - — apy(k—n)
+ boue(k) + brue(k—1) + - + b ue(k—m)

where it has been assumed that m < n. From this it can be observed
that the characteristic equation (11.4) will become

A+ (a1—-bo G) M1 + (az— b1 G) A2
+ o+ (Ams1=bm G) M1+ @y A-m-2

+ "'+an_lx+an=0

This may of course be expected to have characteristic values much
different from those of the original system. The combination of art
with science for selecting the feedback gain G is one of the problems
we will address in the theory sections.

The above represents response which may in principle be found for
any input u(k) sequence. One particular input of considerable interest
to us is the sinusoidal input

u(k)=Asin(kd + 0) (11.10)

in which typically ¢ = oT because the input is in fact samples taken
every T seconds of a signal of frequency w. By Euler’s rules that

. ejx — e-jx
sinx = 2]

eix — e-ix
CoOSX =7
2
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and the linearity of the response, we see that the crucial element of the
input is e*. Thus let u(k) = Aeik and assume that

1. any transients have died out and the system is in steady state;

2. the system is stable so that the output is due solely to the input;
and

3. the output is of the form y(k) = Bei%k where B may be a complex
number.

Under these assumptions, we look to see if there is a B such that
condition 3 holds. Substituting in (11.3) gives

Be 0k = — g1 Beitk-1) — g, Beid(k-2) — .. — g, Beit(k-n)

+ boAei%k + by Aei¢k-1) + ... + b,, Aeid(k-m)

Eliminating the common factor ej% and rearranging gives the result
that y(k) = Bei¢k indeed holds provided that

bo+ bre-i¢ + bye-2i¢ + --- + b, e-i¢m
T 1+ aeiv+ aze-2i¢ + .- gpe-itn

The complex value B/A depends on ¢, the phase step per time step,
and is usually written as such, i.e. as F(¢) or F(oT). As such, it is
called the frequency response of the system and is often written in
terms of its phase and magnitude.

F(oT) = | F(T)| eiacF@n)

Returning to the original problem with input (11.10) and using the
linearity of the system, we find by little more than substitution that

y(k) = |F(0)| Asin (ko + 6 + arc(F(9)))

where we have used the easily shown facts that IF(¢)| = |F(-¢)| and
arc (F(¢)) = - arc (F(-9)).

Because almost_any periodic input is, by Fourier theory,
representable by a sum of sinusoids,
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u(k) = i cp exp(jop Tk)

p_—.oo

we know that in steady-state operation, a system described by (11.3)
has an output

y(k) = _2 cpexp(jopTk) F(w,T)

p._—oo

Thus it is clear that along with studying the transients inherent in
the system due to the roots of the characteristic equation, the steady-
state as described by the frequency response F(wT) may also be of
interest. We shall see this in future sections.

11.3 TRANSFER FUNCTIONS

Transfer functions, and in fact much of discrete-time system analysis,
are based upon the z-transform (see Appendix A). For our purposes,
we may define the z-transform of a sequence ({...,y(-2),

y(=1),5(0),y(1),y(2),...} as
Y@) =Z0®) = X y(i)z (11.11)
|=—o00
where z is a complex number. This is a linear transformation, with
the commonly used shift property that
x(k) = y(k—)) = X(z) = z7Y(2)
Tables of transforms for common sequences, as in Appendix 1, are
readily available. Thus, one easily finds, either from the definition or

from tables, that

y)=1,i20 & Y@=

Y =ahi20 & Y@=
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and so on, where again < indicates a transform pair. These have
similar appearance to Laplace transforms, and can be manipulated in
much the same way.

11.3.1 Basics of use

The solution of difference equations such as (11.3) is possible with z-
transforms. Taking the z-transform, using zero initial conditions, and
defining Y(z) =Z({y(k)}) and U(z) =Z'({u(k)}) we find this becomes

Y(2) = -a1z71Y(2) —apz2Y(2) = - —apz 7Y (2)
+boU(z) + b1z-1U(2) + - + by, zmU(2)
Hence we find the input—output relationship of (11.3) to be

representable by the transform relationship Y(z) = H(z) U(z) in which
the expression

bo+byz-l + byz-2 + - + by zm
l+ayzt'+azz-2+ - +a,zn

is called the discrete time transfer function. This has the same types
of applications as the continuous time transfer functions in the Laplace
transform variable s, and most of the applications are analogous:
solution of difference equations, manipulation of system
representations, frequency response calculations.

The expression in (11.12) is called a direct form of the transfer
function. Because such forms appear in classical control law designs,
it is often important numerically that they be rearranged. Commonly
used are the cascade (or series) form and the parallel form. Just as in
the continuous time cases of Chapter 10, these are given by H(z) =
H1(z) Hy(z) - Hy(z) where

(z = $i1) =+ (2 = Sivmy) .
Hi(z)=Ki(z “hi1) o (2 = Aivn) i=1,2,...k

and

H(z) = H\(z) + Hy(2) + - + Hj(2)
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respectively. Expanded fraction forms are also possible, and we will
meet the Cauer form in Chapter 30. Mixed forms, such as sums of
cascade forms, are of course also possible and sometimes useful.

For a particular input {u(k)} for which the z-transform is rational
in z, Y(z) is then rational and (in principle) easily inverted. Usually
the inputs of interest are the pulse, step, and sometimes ramp input
functions, in which U(z) is 1, (1-z-1)-1, and Tz-1(1-z-1)-2,
respectively. Another interesting input is sinusoidal, which we
consider below. The usual solution method is simply to find the
expression Y(z) = G(z) U(z) and invert it, using tables as with the
Laplace transform; alternatives include finding numerical solutions by
either long division of the transform functions (in which case {y(kT)}
is given by the coefficients of z-* in the quotient) or by numerical
solution of the difference equation corresponding to the transfer
function.

The forms such as in (11.12) are easily combined both additively
and multiplicatively to yield transfer functions of composite systems.
The manipulations are basically algebraic, although block diagram
algebra, presented in some texts (e.g. DiStefano et al., 1976), can give
guidance as to manipulations needed.

. E@
R(z) - C(2) (i) G,(2) - Y(2)
1
M(z) Fo) |

Figure 11.1 A closed-loop system z-transform model without noise or
disturbances.

The most common example is for a simple feedback control loop
such as in Fig. 11.1, where C(z) is the compensator/controller/
computer transfer function, G(z) the plant or process transfer
function, and F(z) the feedback transfer function (of a measurement
device, perhaps). Y(z) is the z-transform of the output quantity, U(z)
the_transform of the control signal, E(z) the transform of the error
signal, M(z) the transform of the measurement signal, and R(z) the
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transform of the input reference signal. We wish to know the transfer

function of the system from reference to output.
The algebra of the situation gives, for the various signals,

Y(z2)=G(2)U(2) U(z) =C(2)E(z)
EZ)=R(z)-M@Z) MG)=F@2)Y(2)

By simple algebra, we find that eliminating the intermediate signals
E(z), U(z), and M(z) gives

Y(2)=G(z)C(2)[R(z) - F(2)Y(2)]
This easily rearranges to yield

G(z) C(2)
1+ G(z) C(2)F(2)

Y(2) = R(2)

and from this we may read the system closed-loop transfer function as

Yz) _ G(@®)C(2)
R(@) "1+ G(2)C(2)F(2)

Much more complex systems may be manipulated in the same way,
so that the advantage over direct attack on the difference equations is
obvious.

Example

A motor under computer control may be modelled (see Chapter 12) to
have z-transform model

(T+reTh—1)z+ (1 —1e-TIh — Te-Th)
22— (1 +eThyz + e-Th

G(z) =

where T is the sampling period and T is a time lag parameter
characteristic of the motor’s speed of response. We multiply through
by z-2, which gives
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(T + te-Th — 1) z-1 + (1 — te-T/t — Te-Th) z-2
G(z) = 1-(1+eTh)yz-1 +eThz2

Thus if Y(z) is the transform of the output y(k) and U(z) the
transform of the input u(k), we have

(1-(1 + e-Th)z-1 + e-Thz-2)Y(z)
=((T + te-Th — 1) z-1 + (1 — te-Th — Te-Ti)z-2) U(z)
Distributing Y(z) and U(z), interpreting z-Y(z) as y(k—n), etc.,

and a small amount of algebra allow us to write the difference
equation model of the motor as

yk) = (1 +eTr)y(k-1) —eTry(k-2)
+ (T +te-Th —t)uk-1) + (1t —te-Tr — Te-T")u(k-2)
Clearly the steps may be taken in the opposite direction, from
difference equation to transfer function. The difference equation
model is easily simulated, even on a programmable calculator. For

example, u(0)=1, u(k)=0, k#0, and y(k)=0, k<1, allows calculation
of the unit pulse response.

11.3.2 Multivariable transfer functions
The sampled data transfer function situation for systems with m inputs

and n outputs parallels that for continuous time systems presented in
section 10.2.2. Thus, for difference equation sets such as

n; m. m;
200k yill=k) = Y, Y PBijeul-k) i=1,2,...,n
k=0 j=1 k=0

with transfer function representations
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mj

m S Bijxzk

Yiz) = ¥ E—ue) i=1,2,.m

J=1 Zai'k z-k
k=0

m
=Y Gif(2) Uj(z) i=1,2,...n
J=1

We use the more convenient matrix form notation

Y1(2) G1,1(2) G12(2) -+ Gim(2) Ui(2)
Y2(2) G2,1(2) G22(2) -+ Gam(2) Ua(2)
Y(z) = . = . . .

1.2 | | Goi@ Gua@ - Gam@ || U

=G()U(2)

Since the operators are all linear, this representation can be
manipulated almost as if they were scalars, just as was done for the
continuous time case. We summarize the operations here under the
assumption that matrix dimensions are consistent.

Series:

Yz)=G(EZ)W(E) and W()=H@E)U(®)

= Y(2) = G(z) H(z) U(2)

(but not H(z) G(z) U(z) — matrix multiplication is not commutative.)

Parallel: where

WE)=H(Zz)U(z) and Y(z) =G()U(2)
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= V() =W(2)+ Y(z) = V(z) = [H(z) + G(2)]U(2)
Feedback connection:

Y(z)=G()E(z) E@)=U@G-MGiz) MGG =H(ZY()

=YE)=[1I+GEHE]1G(E)U®)
and
Y(2) = G(z) [1 + H(z) G(2)]-1 U(z)

In the basic representation, the matrix G(z) is n X m and so not
necessarily square.

Canonical form: Smith-McMillan form

As in the continuous time case (section 10.2), the transfer function
G(z) has a Smith-McMillan form M(z) defined by

M) = ( M(‘)(z) 8 )

o Vilz ’V_ZQzl,...,v—r(Q
M(z) = dlag{ 31(2) 82(2) 0:(2) }

where r is the normal rank (i.e. the rank for almost all z) of G(z),
v1(z) and 9;(z) are co-prime, i.e. they have no common factors and

Vi(z) divides v,-+1(z)

=121
8:41(2) divides 5,(z) }' ’

This is clearly the same as for the continuous case with a different
argument, and since the manipulations do not depend upon the
interpretation of the argument, the computation of a Smith—-McMillan
form follows the same path as in section 10.2.2.
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The alternative form for a rational transfer function matrix called
the matrix fraction description is also available using non-unique
matrices of polynomials, N(z) and D(z), to create representations such
as G(z) = N(z) D-1(z) for the right matrix-fraction description, and
G(z) = D-1(z) N(z) for the left matrix-fraction form. These may be
derived using the Smith-McMillan form, just as in the continuous time
case section 10.2.2.

11.4 FREQUENCY RESPONSE

For the system frequency response, we assume we have a model such
as (11.1-2) and that the input is u(nT) = eionT. As this has the
z-transform

. 1
{elonT} & T it 1

it is clear that the system output will be

{y(nT)} =Z-1 [H(z) _l—e‘*sz-l} (11.13)
g H(eioT) [H(z) (z=z) ]l = z;
=Z 1[1 —e+joTz-1 7t 2, (1 — z-1z) (1 - ejoT z;-1)

where the sum is over the poles z; of H(z), taken here notationally as
distinct but easily generalized, and the expansion is a partial fraction
expansion of the function in (11.13). On taking the inverse transform,
the terms from the summation will, provided the system is stable (a
topic investigated in the theory chapters, especially Chapters 13-14),
eventually decay so that for large &,

y(KT) = H(eioT) ejokT

The complex number H(ei®T) then represents the frequency
response of the system.
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We should particularly notice that H(ei@T) is periodic in ©T,
repeating for w7 = 2kn for all integer k. A typical response is shown

in Fig. 11.2.
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Figure 11.2 Frequency response of a sampled data system. (a) and (b)
show gain and phase vs. frequency w* sample period T. (c) and (d) show
the same information plotted against log (wT). What is striking is that the
frequency response is a periodic function.

In the multivariable case, again as in continuous time, we evaluate
the matrix transfer function. Thus the frequency response is G(ei@T),
and the matrix gain is bounded by the largest and smallest singular

values:

(G 7)) < W G (eioTy)
lha()ll

oLl Z'yl_ilsl




State-space representations 2877

where u(¢) is any input vector with components at frequency ® and
sampling period T, and y(¢) is the corresponding output vector.

11.5 STATE-SPACE REPRESENTATIONS
11.5.1 Introduction

In this section we explore the use of simple state-space representations,
particularly those for linear constant coefficient systems. We are
concerned with representations of the form

x(k+1) = A(k)x(k) + B(k)u(k)
y(k) = C(k)x(k) + D (k) u(k) (11.14)

where AisnXxn,Bisnxm,Cispxn,D isp X m, and x is the
n-dimensional state vector, u is the m-dimensional input or control
vector, and y is the p-dimensional output or measurement vector. For
many of our examples, m = 1 and p = 1 and the system is said to be an
n-dimensional SISO system.

A very useful alternative time-domain representation to (11.1) and
(11.3), i.e. to

n L
y(k) = - 2 a;ytk-i) + 2 biuk-i) (11.15)
i=1 i=0

is given by the matrix form of (11.14) where in this case x is an
n-vector, B is an n X 1 matrix (sometimes denoted as a vector b), C
is a 1 X n matrix (notation ¢T), D is 1 X 1 (notation d and a scalar),
and A is an n X n matrix. The vector x is the state vector of the
system, y and u are the scalar output and input respectively, and A, B,
C, D (or notationally A, b, ¢T, and d) are constants. We should stress
the dimensional relationships:

1. if there is one control variable, then m = 1;

2. if there are n steps of delay (and n > L), then n is the length of
the state vector;

3. if yis a scalar output, then p = 1; and

4. if by = 0, then the 1 X 1 matrix D(=d)= 0.
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The matrices are not unique for a given input—output relationship
(11.15). The two types of relationships are equivalent, of course, but
will be seen in the sequel to be useful or convenient for different types
of studies.

In this section we simply look at some of the state—space
representations equivalent to (11.15). For this, it is convenient to
define the shift operator ¢ by

gkx(j) = x(j+k) k=integer

Using this notation, which is almost like the z-transform, (11.15)
becomes

n L
y(k) = —Z'i aiqiy(k) + g,o biq-iu(k)

We stress that at this point this is only used for notational
convenience and motivating clarity; we do not yet use any special
properties of the expression.

11.5.2 Special forms

The special forms with which we commonly deal include several very
special ones (where the matrices have zeros and ones in certain places)
called canonical forms) which (because almost any linear constant
coefficient system can be placed into a canonical form) can be treated
with some quite powerful tools.

For a highly instructive case, we choose b;=1 and b;=0, i#1, so
that (11.1) becomes

y(k) = Zi aiqy(k) + u(k-1)

Then defining state variables x; by

xi =y =yk-1) - x.k) =y(k-n+1)
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we can easily show

x2(k) =x1(k=1)  x3(k) =x2(k=1) -+ xp(k) = xp1(k-1)
so that

x1(k) = y(k) = —:zi ail y(k-i) + u(k-1)

=-—a1x1(k-1) —ax2(k—=1) = - —apxp(k-=1) + u(k-1)
y(k) = x1(k)

or in matrix form

[—a, -a, -a3 -a, | 1]
1 0 0 0 0
0 1 0 0 0
x(k+)=| 0 0 1 - 0 |x(k)+] 0 lu(k)
0 1 0 O 0
o 0o o0 o1 o] o

yk)=[1 0 0 - 0]x(k)

To generalize this to cases where b; #0, i 2 0, is straightforward
when we observe that superposition still applies, e.g. that if the input
sequence is delayed by g then so is the output sequence. Thus, if
{y(k)} is the response to {u(k—1)}, then {b2y(k—1) + bjy(k—j+1)}
is the response to {bou(k-2) + bju(k—j)}. More generally, the
response of (11.11) is represented, for by#0, by
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~a, -ay -ay - - -a,] 1
1 0 0 - 0 0
0 1 0 - 0 0
x(k+)=| 0 0 1 .- 0 |x(k)+|0 |u(k)
0 1 0 0 0
0 0 0 0 1 0| 0]

y(k)=[b —ajby by —ayby b, —a,bylx(k)+byuk) (11.16)

This is a common, canonical form and is called the phase
canonical form, the controllable canonical form, or the first
canonical form.

An alternate matrix form may be written by grouping the delays.
Then (11.1) becomes

y(k) = bou(k) + (byu(k—1) —ar1y(k—1) + (bau(k-2)
—a2y(k=2) + (bsu(k=3) — -+ + (bpu(k—n)
—a,y(k—n)) - )))

Using the shift operator ¢ makes the next step seem more obvious.
Using it, we write

y(k) = bou(k) + g=1 (byu(k) — a1 y(k) + g~ (b u(k)
—ay(k) + g1(+++ g1 (bpu(k) — any(k)) - )))

Now define

xn(k) = q-1(byuk) - a,y(k))
=byu(k-1)-a,y(k-1)
Xn-1(k) =bpyulk—1)—ap1y(k—1) + x,(k—1)
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x2(k) =byuk-1)-ary(k-1) + x3(k-1)
x1(k) =biuk-1)-ayy(k-1) + x2(k-1)
y(k) = bou(k) + x1(k)
Substituting the last of these for y(k—1) and rearranging gives

x1(k) =—aix1(k—1) + x2(k—1) + (b1 — a1 bo) u(k—1)
x2(k) = -ax1(k-1) + x3(k—1) + (b2 — a2 bo) u(k—-1)

xn(k) = —an1x1(k—1) + (by — anbo) u(k—-1)
y(k) = x1(k) + bou(k)

or in matrix form

e 0010 b2-azbo
-—a3 cee
by—ash
x(k) =| - x(k=1)+| 757 Lue-1)
-ap1 000 -+ 1 :
-4, 000 -0 | bn—anbo_

yk)=[1 0 0 0 - 0]x(k)+ bou(k) (11.17)

This is the second, or observable, canonical form. Like the first
form, it can be written down directly from the original difference
equation.

Example

The motor under computer control in the example of section 11.3.1
had

oLl Zyl_ijbl

— 1e-Tin — Te-Th)
)z + e Tt
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One possible state-space model of this is

wern =[] [ ST L]

Wl(k)]

yk) =[T + 1e-Tr - 1 T — 1e-Th — Te-Th] [wz(k)

Other forms are of course possible. We stress that the inputs and
outputs, u(k) and y(k) respectively, are fixed by the system definition,
as is their relationship. The model’s internal variables, w,(k) and
wa(k), may or may not be samples of physical variables describing the
motor.

11.5.3 Combinations of state representations

Many control systems are configured with serial connections of
components, as in Fig. 11.3.

— Controller Amplifier Motor  f—s

Figure 11.3 Serial (or cascade) connection of components for modelling.

Often the individual components have well-known models and the
system is to be modelled while retaining information about the
components. This is easily done with state-space notation by suitable
concatenation of the vectors and matrices. Hence if

Y0 == arylk-i)+ S, bie(ki)
i=1 i=1

ny m2y
wik) =-> c;wk-j)+ Y, djy(k-))
Fl 1
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then using the first canonic form of each gives the obvious
representation

0= p)

with
x1(k) = A1x1(k-1) + Bye(k-1)
y(k) = C1x1(k)
X2(k) = Aaxa(k—-1) + Bay(k-1)
w(k) = Cax2(k)

so that, eliminating y(k),

Ay O B,
x(k): ............. x(k_l) + cee e(k__l)
B,C; A, 0

wk)=[0 Ca]x(k)

Expanded, these matrices yield the following form:

-—al —02 o= n-1 —an O 0 vee 0 O 1
1 0. 0 0|0 O-- 0 O 0
) o 0.1 0j0 0« 0 O h-1)+ 0 k1)
X = x(k - e(k -
b b - bml by =G —C =G —6 0
o o0~ 0 O1 0 0 O 0
(000 0]/0 0 1 0] 0]
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A special case arises when the input is more delayed than the output
in the difference equation, i.e. when in

n L
yk) ==Y, a;y(k—i) + go biu(k-i)

i=1

we have L > n. This case has some analogies to having higher order
derivatives on the input than on the output in a differential equation,
and for that reason modellers often seek one of the representations we
have already seen. In fact, it is easy in a computer to store the back
values {u(k-1),u(k-2),...,u(k-L)}, so it is sometimes convenient to
have a state representation for this. This is easily done if we define

wi(k) = u(k-1) wo(k) = u(k-2) - wr(k) = u(k-L)

i.e. wi(k) =w;1 (1=2,3,...,L). Using matrix notation, this is

000 - 07 17
100 0 0
0
wh+)=[ 010 = 0 fomy il luw (11.18)
© 0 0
000 1 0_ 0

Shown below is one of possible ‘fixes’. Starting with a variation on
the form (11.16), but using (11.18) as part of the driving function, we
can work with the concatenated vectors

w(k)
= |1

and the definitions
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0 1 0 0 0 ]

(00 0 - 10

to obtain the representation

1
W 0 0
2(k) = q' 2(k-1)+| 0 [u(k-1)
B|A :
_0._

yk)=[0 0 0 - 0|0 0 0 - 1]z(k)+byu(k)

The dimension of the state is n+L. Even if L < n, we know that we
can use a state of dimension »n — as in all of our representations so far.
This wastes resources (space in computer memory and execution time)
and explains the search for more efficient representations as found in
the literature.

Representation of multivariable systems follows immediately from
presentation of an n X m matrix
) denotes the ith column so that if
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U;(z2) is the scalar transform of the scalar control variable {u;(nT)},
we have

Y@)=3 Gi2)Ui)

i=1

Now we represent G;(z) in terms of an n-vector of polynomials
Ni(z) and a scalar polynomial di(z), where d;(z) is the least common
denominator of the m denominators in G;(z), so that

Gid) = g

and the denominator has the form
ni-1

d,'(Z)=Z”i + z d,-,jzi
Jj=0

Vi1o+ Vi11z+ oo+ U1pm1 201

Ni(z) = : :
Vin0 + Vin1 2 + -+ Vipni-1 zni-1

Letting the matrices A;, B;, C; be defined by

0 1 0 O 0
0 0 1 0 0
A= .
-dip —diqx —dip -+ - ~dipi-1
0 Vi10 Vi11 o Vilni-1

Uint *** Vipni-1
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we have that one state-space representation of the system is given by

AL 0 0 0] "B1 0 0 07

0 A0 - 0 0 BO--- 0
A= B =

| 0 0 0 Ay | | 0 0 0 B, _

C=[C, C - C,]
In this, if M = Y ™ n;, then A is an M X M matrix, B is M x m, and

C isnx M. This may not be the best possible representation,
depending upon the application.

11.5.4 Applications

The use of matrices lends a certain elegance to the representation, but
it has more important ramifications than simply easing the notation
problem since solution is, in principle, straightforward. Observe that
for a system with x(0)=x given and

x(k) = Ax(k—-1) + Bu(k-1)
y(k) = Cx(k)
the solution is

k-1
x(k) = Akxo + Y, AiBu(k-i-1) (11.19)
i=0

with y(k) following immediately. In fact, this generalizes quite nicely
and if matrix methods are used the computations can be simplified.
For the time-varying representation
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x(k+1) = A(k)x(k) + B(k) u(k)
y(k) = C(k)x(k) + D (k) u(k)

it is convenient to define the transition matrix 6(k,j) by
0k,j) = Ak-1)8(k-1,)) 6(G,ND=0 k>j

and write the solution as

k
x(k) = 0(k,))x(j) + z O(k,i+1) B@)u(@)

i=j
When A and B are constants, then
O(k, ) = Ak-i

and solutions as in (11.19) result.

Note that this discrete time transition matrix has the limited
transition property 0(k,j)=0(k,i)0(,j), k2i>j, but would not have
other transition matrix properties (see section 10.4.6) unless the A(k)
matrices are invertible (which they usually are if A models a physical
continuous time system).

11.5.5 Change of variable and similarity transformations

The choice of state variables must not affect the input—output
relationships of the system — otherwise our designs would be
representation dependent — and it is convenient to choose states which

are ‘meaningful’ to us.
Consider

x(k) = Ax(k-1) + Bu(k-1)
y(k) = Cx(k)

with x(0) = x¢ given, and try the similarity transform w(k) = Px(k).
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The system description then is

w(k+1) = PAP-1w(k) + PBu(k)
y(k) =CP-lw(k)

For any k, we can solve to find

k
w(k) = (PAP-1)tw(0) + 2 (PAP-1)i-1PBu(k-i)

i=1

which with w(0) = Px(0) gives

k
w(k) = PAkx(0) + PZ Ai-1Bu(k-i)

i=1

= Px(k)
and gives output
y(k) = CP-1w(k) = CP-1Px(k) = Cx(k)

Thus y has the same dependence on u as in the original representation.

11.5.6 The standard canonical forms

One important implication of the above is that we may use canonical
forms for the system representation when this is convenient, as by
doing so we are not affecting the system behaviour. The important
canonical forms are the controllable or phase variable form (11.16),
the observable form (11.17), and the Jordan form (analogous to 10.6)
which often becomes a diagonal form. These may be obtained in
general using the methods of Appendix B, which are in fact matrix
transformations independent of the model involved.



300 Sampled-data system representations

11.5.7 The z-transform of state equations

The z-transform of state equations follows simply enough in principle
from the operations of the scalar z on vectors and matrices, i.e. the
fact (definition) that

zA =z {a;j} = {za;}
Using this fact and the shift property on the state equations

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

yields

z X(z) - zx(0) = AX(2) + BU(2)
Y(z) = CX(z) + DU(2)

which rearranges to give a solution

X(z) = [zI - A]! [zx(0) + BU(2)]
Y(z) = {C[zZI-A]-1B + D } U(2) + z C[zI-A]-1x(0)

This can give an alternative and useful demonstration of the
similarity transform argument of section 11.5.5. We note that the
original system has z-transform relationship

Y(z) = CzZI-A)1BU(z) + zC (zI-A)-1x¢
while the changed coordinate system has

Y(z) =CP-1(zZI-PAP-1)-1PBU(z)
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= CP-1(P(zI-A)P-1)-1PBU(z)
+ zCP-1(P(zI-A)P-1)-1Px,
= C(zI-A)-1BU(z) + zC(zI-A)-1xg

11.5.8 Transfer function to state-space conversions

We have already seen many examples of transfer function to state—
space transformations (section 11.5.2) and the multivariable case
(section 11.5.3). The coefficients from transfer functions can easily
be read into the observable and controllable canonical forms, so
algorithmic conversion is possible.

11.6 REPRESENTING NOISE, DISTURBANCES, AND
ERRORS

11.6.1 Modelling of noise and disturbances

For discrete time systems, as with continuous time systems, the models
of noise can be in either state-space or transfer functions, but will
follow the notion (see section 9.4.6) of white noise driving a linear
system and parallels the discussion of section 10.5. The mathematics
are somewhat easier for discrete time systems because the noise is
taken as a sequence of random numbers. In such cases we have for
scalars

z Bizi
HG) = i=0

n-1
1 + Z (XiZ‘l
i=0

Vk) ==Y, o;0k=i)+ Y, B;nk—j)
i=1 =0

with input noise uncorrelated
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g[nkne)]= R 8(k))
Sq(eioT) =R
Sv(eieT) = | H(eioT) 2R

where H(Z) is the transfer function of the linear system and R is the
level (variance) of the white noise. One possible state-space model is

— — — =

o 1 0-- O
0O 010 O 0
xktD=| . x| @
| -0 —01 - Ol | 1]

vK)=[0 - 0 Bm - Prlx()

and the same result is obtained.

A typical representation of a feedback system with measurement
noise and output disturbances was shown in Fig. 10.6, and the
discrete-time case in Fig. 11.4 is the exact analog, as are the
definitions of the transfer functions and variable transforms.

D(z)

+ U + L+
A =02 o) 22 6 Y@)

M(2) .

F2) ——N(z)
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Thus G(z) represents the plant transfer function, C(z) is the
controller transfer function, F(z) represents the measurement device,
and Y (z), R(z), D(z), N(z), E(z), U(z), M(z) are the respective
transforms of the output signal, the input reference signal, the
disturbance, the (measurement) noise, the error signal, the command
signal and the measurement signal. Then transform algebra yields
easily

E(z) =R(z) -F(z)(N(z) + Y(2))
Y(z) =D(z) + G(z) U(z)
U(z) = C(z2) E(2)

and hence relationships such as

E(2) = 1+ F(2) G(z) C(2))1 (R(2) - F(z2)N(z) - F(z) D(2))
Y(2) = I+ G(z) C(2) F(2))-1G(2) C(2)R(2)

+ I+ G(2)C(2)F(2))1D(2)

- I+ G@)C@F@)1G(2)C2)F(2)N(2)

where the possibility of MIMO transfer functions has been allowed.
The disturbances may be modelled as noise (as above) or as signals
such as steps or ramps, e.g.

3 dTz-!
DG) =1 or D@ Gy

Alternatively, D(z) is in robust control theory defined along the lines
of D(z) e 2

2 = {D(z) : ID(eioT )Il, <1}

where p typically is either 2 or o as in Appendix B.

Measurement noise N(z) is ordinarily modelled as noise, but
occasionally more like a disturbance in order to represent severe
measurement device breakdown.



304 Sampled-data system representations

State-space studies usually consider only the noise form explicitly,
with the linear system model often such as

x(k+1) = Ax(k) + Bu(k) + Tv(k)
y(k) = Cx(k) + w(k)

with input u, output y, state x, and noises v and w with

&vl=0 EVE)IVT()] = Qd(k-))
&wl=0 Ewk)wT ()] = R&(k—))
ExO] =%,  &L(x(0) - xo) (x(0) - x0)T] =8

As in the continuous time case, w is intended to represent
measurement noise, but the structure is such that if the model is
extended so that part of the state vector is used for ‘coloration’ of the
input noise v, then random model errors and disturbances can be
represented through v.

11.6.2 Model errors

Model errors are usually taken in terms of either additive or
multiplicative errors in matrices in the representations, and the results
are just like those of section 10.5 except that the z-transform appears
in place of the Laplace transform and the state-space difference
equations appear in place of the state differential equations.

11.7 COMPUTER PROGRAMS

Virtually the same programs used in Chapter 10 can be used for many
of the calculations for sampled data system analysis.

11.8 FURTHER INFORMATION

Althoughralmostrallvof thisichapter could be considered analogous to
Chapter 10 with a change of polynomial variable, we have somewhat
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belaboured the point because of some students’ lack of familiarity with
discrete time models, difference equations, and z-transforms. Most of
the information in this chapter is presented in standard textbooks. For
examples, longer discussions are found in books such as Franklin,
Powell, and Workman (1990), Kuo (1980), and Ogata (1987). Noise
modelling is in various engineering communications and random
processes texts, such as Papoulis (1977), and multivariable
representations are in Maciejowski (1989).
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Conversions of continuous
time to discrete time
models

To a computer, a plant looks like a discrete time system even though
usually it is well defined for continuous time. In addition, the
computer issues its commands at discrete times even if the original
control law design was based on differential equations. For these
reasons, it is necessary to be able to convert continuous time
representations to equivalent discrete time representations.

12.1 SYNOPSIS
There are two ways to approach discrete time control:

+ find a continuous time controller and approximate it, or
*  design a sampled data controller using a discrete time model of
the plant.

The conditions under which the approximation method applies are
indicated in Fig. 12.1.

If a control law (e.g. a PID law) has already been designed then it
may be satisfactory to convert it for use in the digital computer. In
the typical situation, a differential equation or its transfer function is
known for the law and the digital computer expression is to
approximate it. For example, if the control law has transfer function
Ca(s), the sampled data transfer function Cy(z) is formed in one of the
following ways.

1. Substitution:

Ca(2) = Ca(s) ls=pr) = Ca(f(2))
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PLANT
—IACTUATOR SENSOR
r—_{_ _____ cLock T
I DAG | Frrr e — ADC l
| {COMPUTER SYSTEM:— 3
SLI T rs— |4
T 4

Figure 12.1 Simple system configuration. Digital aspects can be
considered by either taking the digital equivalent of the plant system (dotted
outline) or by deriving the computer system (dashed outline) from a
continuous time controller.

where the choices for f(z) must be rational in z and common
choices include

z—-1
@ fe) =i
®  fo) =i

2. Pole-zero mapping: If C,(s) has poles at b;,i=1,2,...,n and
zeros at aj, j = 1,2,...,m, then Cq(z) is taken as rational with
poles at ebil, i = 1,2,...,n and zeros at e47, j = 1,2,...,m. Gain
adjustment may be necessary.

3. Cy(z) may be chosen so that the controller’s output is invariant at
the command times k7T when the input is a chosen function,
typically an impulse or a step.

When the plant is to be modelled such that only outputs at discrete
timesrare:necessary-andithesinputssare to be piecewise constants, then
although the methods above are occasionally used, it would seem
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proper that for linear time invariant systems the choice be restricted.

When the original model is a transfer function H,(s), the most
appropriate model is the impulse invariant transformation

z—-1

Hy(z) = 'ia@)

zeq( ;
When the continuous time model is a state-space model such as
x(t) = Ax(¢) + Bu(t)

y(®) = Cx(2)
a straightforward argument gives the sampled data version

T

x(kT+T) = eATx(kT) + { feA(T—t) d’t} Bu(kT)
0

y(kT) = Cx(kT)

12.2 CONVERSIONS OF CONTINUOUS TIME CONTROL
LAWS

Often a plant has been operating quite satisfactorily with analog
controllers but replacement with digital forms is desired to allow logic
decisions, communications with central computers, unit conversions
for data logging, etc. In these circumstances, the engineer has to
replace the analog control element with a digital element as in Fig.
12.2, and there are several ways of achieving this.

PID controllers can be converted using time domain
approximations, for example,

! de(t)
u(t).=Kpe(d)+K; j e(1)dt + Kq _ZT
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becomes

k
ug(kT) = Kpe(kT) + K;T 2 e(jT) + IETQ (e(kT)-e(kT-T))
j:—oo

u(t) =ug(kT)  kT<t<kT+T (12.1)
where the actual calculation may be rearranged for convenience. The

second equation of (12.1) is actually implemented by the hardware of
the buffer and DAC, i.e. the zero-order hold (ZOH).

e() —=— Controller ——= u(t)

U

>S Digital
e(t —_— ——>i —= u(t
() T Controller T9 ZOH ©

Figure 12.2 Desired replacement of an analog controller by a digital
controller with ZOH.

Alternative methods are well known in the digital signal processing
literature and are usually discussed in relation to the conversion of
filter designs; the problem is inherently different from that of
modelling the controlled system, for which we use impulse invariant
designs below. There we need a good model for a physical situation,
with the model applymg only at sample instants. Here we are looking
for useful approx1mat10ns for one type of algorithm to be replaced by
another. Let us review some of the alternatives.

The problem is essentially one of converting a continuous-time
control law characterized by a transfer function

bns™ + bp_15m-1 + -« + by
aps" + ap_15"-1 + - + ay

Ga(s) =

where usually n» 2 m and a, # 0. The object is to find a digital
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computer control law, characterized by its transfer function

doz" + dyzr-1 4+ .- + d,
2t +crzil + -+ gy

Gu(2) =
which in some way approximates G,(s). The methods break into three
classes.

1. Often a substitution of f{(z) for s is made and a heuristic argument
is used for the conversion.
2. Coefficients are found such that for a given input r(z), the two

systems have approximately the same outputs at the sample
instants. Hence, if

u(t) = 1 [G(s)R(s)]

with R(s) = Z[r(?)], and
ug(kT) = -1 [Gy(2)R(2)]

with R(z) = Z {r(kT)}, then it is desired that
ug(kT) = u(kT)

3. Coefficients d; and c; are found such that the frequency responses
of the two systems are approximately the same, i.e. if the input
signal is sinusoidal in both the continuous- and discrete-time
cases, then the outputs should also be sinusoidal and should be
similar in both magnitude and phase at the sample instants. This
translates to a desire that

Ga(eoT) = Gy(jo)

We consider some of the possibilities below.
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12.2.1 Substitutions and their heuristics

The heuristic method is often quite appealing and will work with fast
enough sampling on some systems. A typical argument observes that,
when the sampling period is T,

dx(z)
dt

_ Xx(kT) — x(kT-T)
t=nT T

and also that

kT kT-T
[x(v)dt= [x(1)dt+T x(kT-T)

or alternatively, if I(kT) denotes the integral at time sample kT

I(kT) = ICkT-T) + Tx(kT)

Furthermore, because the Laplace transform operator s corresponds
to differentiation (and s-! to integration), whereas the z-transform
operator corresponds to a forward shift, the above approximations
lead to

(12.2)

as a reasonable substitution for conversion purposes.

Another heuristic argument notes that the original transfer function
has poles at p;, i=1,2,...,n and zeros at gj, j=1,2,...,m. One mapping
from the stable area of the Laplace transform (the left-half plane) to
the stable area of the z-transform (within the unit circle) is

;= osT (12.3)

Using this to map the poles p; and zeros g; of the continuous time
transfer function to corresponding poles and zeros of the sampled data
transfer function, gives
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(1 —z-1enT) (1 — z-1e92T) ... (1 - z-1ledml)
(1 = z-1enT)(1 — z-1eP2T) ... (1 — z-1epPal)

Gi(z) =K

where usually K is selected such that G4(1) = G,(0). An alternate
version of this has

(z —enT) (z - e®2]) - (z — e9nT) N(2)
(z — eP1T) (z — eP2T) ... (z — ePaT)

Gi(z) =K

where N(z) = (z + 1)"1(z2)™2 and m+my =n —m 2 0 are terms to
represent poles at co. This pole-zero mapping technique has had
variable success.

A third substitution can be derived in several ways, but results in
the bilinear or Tustin transformation. Notice that (12.3) also gives
the form

sT =1Inz

Series expansion yields

_1\3 1\
nz=2| 2% 4 1(2—3) + 1(2—1) T (12.4)
z+1  3\z+1 S\z+1

Hence truncation gives the approximation

z -1 2
T a25)

Ca
u
~|N

which is used for the substitution. We remark that this substitution
also maps the left-hand real plane of s into the unit circle in the z
plane. Alternatively, it can be derived as a trapezoidal integration
approximation to 1/s interpreted as an integration operator.

12.2.2 Invariant transformations

Invariant transformations are those in which a selected continuous
time function, when sampled, gives the same samples as a discrete time
system. For example, it might be desired that a discrete time system
have the same step response as the step response of the continuous time
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system to which it is an approximation. In general, we select G4(z) as
‘equivalent’ to G4(s) by forcing, for reference signal r(f) with Laplace
transform R(s) and z transform of its samples R(z), that

G4(z) R(z) = Z [samples of Z1(G4(s) R(s))]
=Ze [Ga(s)R(s)]

Where Z'¢q is a notation for the transformation indicated (Appendix
A). Notice that different inputs may lead to different system
approximations.

The invariant response criterion is necessary for the study of
control systems design. Occasionally impulse invariance is desired for
control law conversion, so that R(s) = 1 and R(z) = 1. In this
circumstance, we have G4(z) selected so that

Gi(2) = Zeq (Ga() (12.6)

Among the alternatives is step invariance, in which

a1 %4

z -1

Gaz) = Gl

This same result is given if the square pulse input

_{ 1 0=<:<T
u(t) = 0 otherwise

is used. This represents the ZOH model of computer output with
buffer and DAC (see Chapter 9) and yields R(z) = 1 and R(s) =
(1-e-Ts)/s so that

Gat) = Zeq [(1 _ C_TS)GASQ]

1 - G,
; z 3eq[ gsgs!]
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12.2.3 Frequency response
Sometimes control law designs are made using frequency responses, so
we can use this as a criterion for the conversion. Heuristic methods
seldom come with guarantees about the response. In the impulse

invariant case of (12.6) signal processing texts (such as Rabiner and
Gold, 1975) show that

T Gyeio) = ¥ Ga(j(o + jk%"]

so that for T sufficiently small and -t < 0T < T,
T Ga(e19T) = Ga(jo)

(By T ‘sufficiently’ small, we need G,(jo + jk(2n/T)) = 0 for k # 0.)
The bilinear (or Tustin) transformation (12.5) yields

21-z71

Direct substitution shows that the frequency response is

Ga(eioT) = G, (j % tan(%z))
so that for small T
Gy(eiol) = G,(jw)

as desired. No guarantees about the pulse response are given by this
approach, but the frequency response is quite good for rapid
sampling.

Example

echniques, a typical analog transfer
d network form
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s
at 1
G(s)=s
E+ 1
converts as
b1+ Ta-z1

Gl =g T+ Tb -1

using the heuristic substitution (12.2). Using the bilinear substitution
(12.4) yields

b (2+aT)-z-1(2-al)
G =, 2+ bT) =12 - bT)

while making the transfer function step-response/square pulse
invariant gives

-— z-—l [e—bT_ 1 + ll :l
Ga(2) = a a
3 1 —ebTz1

The results of these substitutions are compared, for differing values
of sample period T, in Fig. 12.3. Numerical values used were a = 50
and b = 10, and sampling periods T were 0.1s and 0.01s.

It is interesting to remark that all of the step responses appear
reasonably close to that of the continuous time system, although only
G3(z) is exactly correct at the sample instants. On the other hand, a
lag network is supposedly designed for its frequency response
properties, and here the T = 0.01 case, particularly the bilinear
transformation, appears close to the original gain while the T = 0.1
case is noticeably distorted.




Conversions of continuous time control laws 317

@ ()

10
1 2
c
g &
e Q
3 £
0
0 t- sec. 1 0 t-sec. 1
() (d)
0
% (\Alv g 1
® R\ -/I M m &
E AN 'l“|‘ i g
g SN HIRE «
& L Y4 g
= i &
20 0
1 10 100 1000 0 t- sec. 1
w - rad/s
(e) (]
10
0
2 8
2 ©
g 3
8 )
2
2 2
-20
1 1 10 100 1000

- rad/s

Figure 12.3 Examples of responses from various controller
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12.3 RELATION OF DISCRETE TO CONTINUOUS
TRANSFER FUNCTIONS FOR SAMPLING OF
CONTINUOUS TIME SYSTEMS

The problem with the above methods is that, while satisfactory for
conversions of existing laws, they are inexact in various ways as
representations of the computer’s view of the plant. The hardware in
a simple feedback system (Fig. 12.4), in effect, has samplers placed as
in Fig. 12.5.

+ Digital
rt) == | computer

»— Process/Plant = Y(t)

|

Sensor =

Figure 12.4 Simple feedback controller with analog signal differencing.

. T ]
Digital
r(t) = computer ;fﬁ ZOH #» Process/PIant - y(t)

1,

~ Sensor —

Figure 12.5 Elaboration of Fig. 12.4 with sampler and output ZOH.

The sampling of the error signal at the computer's input is obvious.
The output sampler and ZOH are a model of the output buffer and
DAC. The Laplace transform model of the buffer-DAC hardware is

_— e—Ts

ZOH(s) = L
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Using this model and taking transforms (recognizing that the
computer’s operation has no identifiable continuous time variable)
yields a model such as given in Fig. 12.6.

. Els) .. Uls)
R(s) /}_ D(2) _/'/ 1 ZOH[) |~ Gys) — Y(s)
T T
\
S

Figure 12.6 Transform model of Fig. 12.5.

In fact, this mixture of Laplace and z-transforms does not lend itself
to analysis, particularly when the delay term e-7s in the ZOH is also
considered. Thus it is necessary to work with one or the other of the
transforms, and the one of choice is usually the z-transform. All
Laplace transforms must be ‘converted’ to their sampled values.
Then, because the z-transform is additive but not multiplicative, i.e.

Zq {Zx()) +L0(1))} =Ze {AX(0))} +Zeq (L)}
Zeg (L))} A G(0)} # Zeq (L))} * Zeq {(L(2)))

we must convert with care: segments between samplers must be
converted in a block, not factor by factor.

We consider the system in more detail. If we are interested in the
time history of the output y(z) for a given set of computer control
‘pulses’, we can find that the input to the ZOH-plant is

u(®) = Y u(kT)8(t - kT)
k

UGs) = Y, u(kT) e+Ts
k

The plant is a cascade of the zero-order hold
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1—eTs
)

ZOH(s) =

with the plant transfer function Gy(s). Hence

G
Gpo(2) = .‘Z’eq[(l — e Ts) —‘;(—s) ]

=(1 —z-l).?’eq[ E@ ]

From this we argue that
Gp(s)
Yz)=(1- z—l).?'eq[ s ] U(z)

In the configuration of Fig. 12.6 the situation for feedback analysis
is made more complicated. We observe that

e(kT) = samples (r(¢) — m(z))
=r(kT) — m(kT)
E(z) =R(z) -M(2)

m(kT) = Z-1 [(1 - z-l)z‘eq[ _Ci&sz_ﬁ(_s_) ]U(z)]

M) =(1 ‘Z_l)-?eq[ E(‘?ﬂ ] U(z)
U(z) =D()E(2)

where usually D(z) is to be chosen, as it is the computer algorithm.
Algebra then allows us to determine that
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R(z)

E@) = wam]

1 + D(z) (l—z-l)."Z'eq[ s

which gives the system transfer function

(1- z-l)Zeq[ E@ ]D(z)

Y(z) _
R =
@ L) @ -z—l)zeq[ Gg(st(s)]

The alternative symbols

w@=aﬂﬁzdﬁ§q

Gy(s) F(s
GF*(z) =(1 —z—l)z’eq[ 'Lzﬁ ]
allow this to be written as

Y(z) __ D@)G(2)
R(z) ~ 1 + D(z) GF*(2)

and the special case of perfect sensor (F(s) = 1) becomes

Y(z) __D()G*(2)
R(z) "1+ D(z)G*(2)

Example

A motor with transfer function

R S
ol La N ZJI_ELI
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with a perfect sensor of shaft angle has (using tables)

* (0 —=1+e9)z-1 + (1 —e-)z-2
Go@) =TT o) (1 —eo )

where o = T/t. D(z) can be various choices, including the simplest of
proportional control with D(z) = K with gain K to be determined
(using, for example, root locus methods as in Chapter 18). The
closed-loop transfer function in this case is

Kt((a—1+e®)z-1 + (1-e2—ae)z2)
(=) (1-ez-1) + KT ((0—1+e%)2-1 + (1—e0—0e-9)7-2)

and X is to be chosen to give ‘good’ performance (see Chapter 13).

12.4 DISCRETE TIME SAMPLING OF CONTINUOUS
SYSTEMS IN STATE-SPACE

Working in the time domain with continuous time state—space models
is, in principle, straightforward. In this section we first show the
form needed and then show how the computations can be performed.
Consider the continuous time model
x =Gx + Hu

y =Jx 12.7)

We recall from Chapter 10 the n X n transition matrix O(t,1),
which is the solution of

M =GO(t,1) o,7)=1

Using the transition matrix, the solution to a differential equation of
form (12.7) with initial condition x(¢p) = x is
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t

x(1) = O(1,10) X0 + | O(t,))Hu(1)d1
fo

To discretize the above, we note that when the matrices are not
time-varying then @ is stationary. This means that

O(,7) =0(t-1,0) =O(t-h, T-h)

Using this and the fact that time intervals of interest are of length 7,
if u(#) = constant = u(k7) for kT <t <kT + T, we have

T
x(kT + T) = O(T,0) x(kT) + j O (T,7)dt Hu(kT)
0

which, with the definitions

A =0(T,0)

T
B= [0, 1)dtH
0
C=J
gives the standard form

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k)

Chapter 10 suggests several ways of calculating the transition
matrix ©, including numerical integration, using matrix
transformations, using numerical series, and Laplace transforms.

The matrix similarity transforms yield, for G = MAM-1, and
having distinct eigenvalues A;, i=1,2,...,n, that

, ...,ex"T) M-1
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)\.]T_ 1 e)\,2T_1 elnT_l
B=Mdiag(e VR v M-1H

The Laplace transforms yield
A=A (I-G)1)
B= g_l{gs_l_—_sc_tl.} H

A numerical method is

_(.GT _(GTy (GT)
Vel v G 1

A=1+GTy

B =TyH
where we emphasize the series for y is finite, with typical value of k
of about 10-12.

An alternative and approximate method works through transform
approximation. In particular, we have from (12.7) that

+T
x(t+T) = [(Gx(1) + Hu(r))dt
Io
4T

=x(®) + [ (Gx(t) + Hu(1))dt
t

=x(1) + (Gx(¢) + Hu(®)) T
=+ TG)x(¢) + THu(z)

or using a trapezoidal rather than an Euler integration approximation
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x(t+7T) =x(t) +%(G[x(t+ T +x(@®)]+H[u+7)+u()])
= (I—%G)‘1 [(I + g'G)x(t) + gH [u(t+T)+ u(t)]]

This can of course lead to adequate, albeit not theoretically elegant,
approximations.

A newly suggested transformation is the d-operator (Goodwin et
al., 1992) given by

dx(0) _

: dt r=0

XO=) v+ ) - x() o
T

and having effects such as

eAT=1+AT

This is claimed to be particularly appropriate for small sampling
periods T.

12.5 BETWEEN-SAMPLE BEHAVIOUR

The behaviour of the system between samples depends upon the
system. Inversion of Z'eq, for example, to give a Laplace transform
and hence a continuous time function is invalid simply because the
continuous function yielding a given set of samples is not unique; the
method may yield one of the possible time functions. Analysis is
possible, however, provided that the original system is well known
and the input to it is defined for all time.

Theysituationyforpstatepspaceyispparticularly straightforward. Here
we use transition matrices as in
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t
X(8) = (6, kT) x(kT) [ o (r,7)dt Bu(kT)
kT

y(t) = Cx(¢) + Du(kT)

With transforms, the situation is more complicated, as one must use
the modified z-transform, which is beyond the scope of this book. Its
concept is straightforward, as it involves a ZOH(s) in cascade with the
plant Gp(s), but with the response to an impulse sampled at kT + OT,
k=0,1,...and 0 <8 < 1. Thus we have

y(®) = 3—1[(1 _e-Ts) GpT(S) ]

as usual, but

Y(z,9)= z{y(t)|t=kT+5}

Choosing & # 0 gives us the value of the output between sample
instants kT, k = 0, 1, 2, .... For example, the modified z-transform
equivalent of the motor example of section 12.3 can be shown to be

T oo — 1 (z - 1)e-da
2’—1)4-T z +Tz(z—e-0t)

Gp (z,9) = 2(

One notes that Gj(z) is not given simply by 5% G} (z,3), and
detailed examination of the definition of the modified transform shows
why: the nature of the sensitivity of the first sample to its exact
location in time.

12.6 COMPUTER SUPPORT

It is relatively straightforward to implement several of the methods of
this chapter for computation on a personal computer. Commercial
programsy such.as. MATLAB® and Ctrl-C® are programmable
allowing formula-type conversions and transition matrix calculations,
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and they can certainly compute and plot impulse, step, and frequency
responses. Simulation programs also are instructive.

12.7 SUMMARY AND FURTHER READING

The issue of conversion of continuous time transfer functions to
sampled data transfer functions is a standard one in the digital signal
processing literature, such as the classic Rabiner and Gold (1975) and
most other basic textbooks. Application of these methods to
conversion of control laws is to an extent ad hoc, but usually
successful.

Plant representation for the purposes of digital control law design is
usually addressed, more or less well, in textbooks on digital control
systems. The situation with constant coefficient state-space
representation is apparently settled, but the advice with respect to
transfer functions varies. Textbooks discussing the topic include Kuo
(1980) and Franklin, Powell and Workman (1990).

The modified z-transform is not standard in elementary textbooks,
but some do address it. Among those who do are Kuo (1980) and
Ogata (1987), and the former has a table applying to a few such cases.

A discussion of some of the issues and a different candidate
substitution are presented by Goodwin et al. (1992).



13

System performance
indicators

Closed-loop systems are expected to give ‘good’ performance. In this
chapter we introduce some of the properties used to measure
performance.

13.1 SYNOPSIS

Design of any system requires a specification, implicitly or explicitly,
of the desired performance.

1.

The fundamental requirement of a controlled system is that it be
stable, and so that is the first item we review. Two important
definitions are BIBO stability and Lyapunov stability.

There are number of classical servomechanism step response
characteristics which are used as performance indicators and
specifications. We define these characteristics, such as percent
overshoot and rise time, and discuss their relationships in section
13.3. Included are the notions of bandwidth and frequency
response.

Single performance indices such as minimum time to traverse a
trajectory are very useful for some system specifications such as
space vehicles and robot arm motion. These are ultimately
different in nature from the classical servomechanism indicators;
some are also readily amenable to mathematical optimal control
techniques. These indices are the subject of section 13.4.

Many design techniques require that the controlled system have
special properties called structural properties. The most
important of these are controllability and observability, which
have matrix tests and aré given in section 13.5 along with the
notions of sensitivity and robustness.
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13.2 STABILITY

The property of stability is fundamental to good systems and so the
pursuit of control laws which assure stable operation is the sine qua
non of the control engineer’s art: without stablity the rest of the
problem is irrelevant. Being stable means the system does not
oscillate or diverge from desired operating conditions under any
reasonable conditions, but the exact encoding of this notion in terms
suitable for the analysis of systems has led to many mathematical
definitions. In this section we concentrate on two notions: bounded-
input-bounded-output (BIBO) stability and Lyapunov stability.
Methods for testing stability of constant coefficient systems are met in
Chapters 14-16.

13.2.1 Definitions

Definition 1 A system with input sequence {u(#)} and output sequence
{y(#)}, where either or both may be vectors, is said to be BIBO
stable if, for any bounded input, the output is bounded. Thus if all
elements of the input sequence satisfy llu(¢)ll < U < o, then in a BIBO
system lly(¢9)ll £Y < oo, where the Il - Il denotes a scalar function (i.e. a
metric or norm, see section B.13) measuring the size of the argument
and U and Y are scalars.
We remark that an integrator is not BIBO stable, since

t

_[x(r)dt —> o0 ast—oo
0

even for the simple bounded input x(r) = 1.

We notice that this definition refers to a stable system, and hence,
for several reasons, is apt to be misleading. For example, an aircraft
may have both easily maintained and stable flight configurations and
unmaintainable configurations (such as a stall, for instance); it is
difficult to call the system stable, but straightforward to call certain
flight regimes stable or unstable. For such cases, an alternative point
of view refers only to stable operating conditions, rather than stable
systems. We start here by assuming that the inputs are known
(perhaps they are test inputs of a certain type) so that
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x(k) = fa(x(k-1); k) (13.1)
or in continuous time
x=f.(x,t)

is an adequate state-space description of the system. Then we define
an equilibrium operating condition or equilibrium point.

Definition 2 An equilibrium state of a system (13.1) is a vector X,
such that X, = fy(Xe; k) for all k (or x, = 0 = f.(X¢; ?) in continuous
time).

Using this, the notion of stability is related to an equilibrium state
or point.

Definition 3 An equilibrium state x, of (13.1) is said to be stable in
the sense of Lyapunov (stable i.s.L.) or Lyapunov stable if, for any
given & > 0 there is an € > 0 (which may depend upon ) such that for
any disturbance d, Ild Il <&, for which the initial conditions x(p)=x.+d
apply, then the solution x(k), k 2 p, has the property lIx(k)—xll < 3.
The relevant property in continuous time is that if lIx(¢)—xIl < €,
then a stable equilibrium has lIx(f) — X Il < 8 for all ¢ > ¢,.

If, eventually, the error becomes almost zero we have the notion of
asymptotic stability of the equilibrium state.

Definition 4 An equilibrium state X, is asymptotically stable in the
sense of Lyapunov if it is stable i.s.L. and in addition,

Ix(k) —xc Il >0 ask— oo
or

Ix(t) —x. I = 0 ast— oo

Finally, because the i.s.L. stability is defined only in terms of
infinitesimals, we need terminology to describe the situation if the
disturbances are allowed to be ‘large’.

Definition:5vvAnyequilibriumpstate x. is globally (asymptotically)
stable i.s.L., or (asymptotically) stable in the large, if it is



332 System performance indicators

(asymptotically) stable i.s.L.. and € and & are unbounded (except that
€ <9).
The notions of Lyapunov stability are shown in Fig. 13.1.

Figure 13.1 The ideas of Lyapunov stability. Trajectory A stays within
radius & of the equilibrium point and is stable i.s.L., while B diverges from
the disc and is unstable.

13.2.2 Relative stability

Since a BIBO unstable system will eventually have unbounded output
for bounded input, and many unstable systems will have a growing
oscillation for a pulse input, and since we find experimentally that
such unstable behaviour is often close in parameter values to stable
behaviour, we sometimes look for measures of ‘nearness to going
unstable’. Typically, slow sluggish responses are associated with
imperturbability, whereas rapid, perhaps oscillatory, responses are
associated with being susceptible to instability in the face of equipment
parameter variations. Figure 13.2 shows responses illustrating these
features.

The notions are related to having poles/eigenvalues close to the
stability boundaries (i.e. to the imaginary axis for continuous time
systems and to the unit circle for sampled data systems), but the usual
measures of relative stability are gain and phase margins (defined in
the next section) and are encountered when using frequency domain
techniques (Chapters 15 and 20). Indicators of response
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Rfapid, :Oscilz:atoryg

Step Response

Time

Figure 13.2 Illustrating rapid but oscillatory step response and sluggish
response. Choice is often an engineering trade-off.

characteristics are the pole locations for linear time invariant systems;
these are discussed in Chapter 19.

13.3 CLASSICAL RESPONSE PERFORMANCE
INDICATORS

From the classical point of view there are two problems to solve:
achieving satisfactory response to commands and ignoring
disturbances — and there are two approaches to handling them.

Good response means that the error between desired and actual
output in steady state is small (preferably zero) and that the transient
response in attaining that small error is rapid and suitable in form.
The transient response is usually characterized in terms of several
parameters of the system’s response to a unit step in its input, as in
Fig. 13.3.

The details of the parameter definitions vary, but a common set is
as follows: the initial value is taken as 0, and the final value is taken as
yr which is assumed constant.

1. t, the rise time, is the time to rise from 10% of yf to 90% of ys
(the 10-90% rise time).

27" The percent overshoot (PO)'S the percentage by which the peak
value M of the time response exceeds ys, so that
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£

Step Response

0.1

Time

Figure 13.3 Showing response characteristics to input step applied at time
0: delay time ¢4, 10-90% rise time #;, time constant T, 8% settling time f;,
peak time #p,, overshoot My, and steady-state value yr (implying steady-
state error 1 — yy).

(Mpk - yf)

PO =
)t

X 100%

3. Settling time f, is the time for the system output to settle to within
a fraction * d of the final value, so that y(z), ¢t > t;, lies between
ye=0 and yg+8. Often d is taken as 5% or 2% of either yr or of
the input value, which is 1.0 in the case of the unit step.

4. Peak time fp is the time after the input step is applied that the
peak value My is attained.

5. Steady-state error egs is the error between the desired value
(usually 1.0 for the unit step) and the actual value (yr) of the
output once the error becomes essentially constant (assuming it
does).

6. Delay time #4 is the time from application of an input to start of
response by the system. To gain a consistent definition,
sometimes #4 is taken as the time from application of input to 10%
(say) of final value.

7. Time constant T is the parameter associated with the response
envelope (1 — e7) yr of the error; in the absence of oscillations,
it is the time after the start of the response to reach 63% of the
final value.
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Some indicators are defined in terms of the open- or closed-loop
frequency responses, as in Figs 13.4 and 13.5.
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Figure 13.4 Definition notion for 3dB bandwidth wg.
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frequency response plots.
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8. Bandwidth g is the frequency (for a system such as most control
systems, i.e. low-pass) at which the magnitude of the frequency
response has fallen to 4 (or — 3dB down) of the steady value. It
indicates the speed of the system’s response to input: larger
bandwidth is associated with faster response.

9. Phase margin ¢p and gain margin Gy are defined for the open-
loop response of a system and indicate the relative stability (or
closeness to instability) and the damping of the response of the
system. More of either is roughly associated with a more
sluggish response. Phase margin is the phase above —m of the
transfer function when the magnitude is 1 (= 0dB). Gain margin
is the additional gain needed to reach unit magnitude when the
phase is —. The frequencies at which the margins are measured
are the gain and phase crossover frequencies Wgc and Wy,
respectively. These are shown in Fig. 13.5.

The control engineer’s task is to design for ‘good’ dynamic and
steady-state response in spite of parameter variations while ‘ignoring’
noise and load disturbances. The above parameters are indicators of
suitable performance. Typical specifications are:

GMm=6-10dB Om= 35-50°
PO < 15% ess < 0.1%

There are many ways of attempting the achievement of the above
control system properties. Approaches range from ad hoc and
heuristic to sophisticated and mathematically ‘optimum’.

The above have been defined relative to desired outputs. The same
numbers concerning dynamic response affect disturbed outputs, but in
those cases the desired response is still zero error relative to desired
input: it is preferred that the output not reflect disturbances, but, if it
does so, the return to normal should be ‘rapid’.

13.4 MODERN PERFORMANCE INDICATORS

The various response indicator parameters above are ultimately
determined by engineering trade-offs by the engineer who tunes the
control system, often using a control law of pre-specified type, such as
a PID law. A quite different approach is to define a single function
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which is optimized mathematically. The resulting ‘optimal’ control
may or may not be ‘good’, depending upon a number of factors, not
least of which is the appropriateness of the indicator function.

13.4.1 Weighted error approaches

One older approach with much intuitive appeal considers the error
between desired and actual response and attempts to minimize some
chosen function of this error. The error e(¢) between actual and
desired responses is shown in Fig. 13.6(a); the aim is to keep the error
as ‘small’ as possible. Positive and negative errors might cancel each
other, so a possible function uses the absolute value (i.e. ignoring the
sign), e.g.

T
IAE = integral absolute error = I le(t)ldT
0

which would appear to give small errors on average if the controller
can be chosen to make this — or its summation equivalent in discrete
time control — take its minimum value.
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Figure 13.6 (a) Desired and actual step responses; (b) error in step
response and the accumulation with time of ISE, ITAE, and IAE
performance criteria. These can be used as minimization criteria in
optimizing performance.
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Unfortunately absolute values can be difficult to work with
mathematically. Furthermore, one might wish for the cost function to
penalize occasional large errors much more than common small ones.
One solution to both of these problems is to use the function

T
ISE = integral squared error = Iez(‘c) dt
0

A further refinement is to penalize errors which occur late in time
more than early transients. Explicit dependence of the functions on
time can be implemented easily with the following forms:

T
ITAE = integral time absolute error = J le(t)ltdr
0

T
ITSE = integral time squared error = je2(1) 1dt
0

Figure 13.6(b) shows some of these measures for the step response
of Fig. 13.6(a).

There are many variations on the above which might have heuristic
justification. An important one is to use the ISE form but let T
become large; this is a regulator problem of an almost classic type,
but for mathematical naturalness it needs division by T to remain
bounded. This yields the form

T
.1
—_ —_ — 2
MSE = mean square error = Thrnoo T J e2(t)dt

which has been found useful, e.g. when disturbances have the
characteristics of random noise.

13.4.2 Modern control theory and optimal control

Optimal control theory approaches the problem of determining the
besticontrolinvaquiterdifferentmanner from the above. Usually it is
presented in a state-space framework, and a fairly general formulation
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of the problem in differential equation form follows.
Suppose a system with vector control commands u and state X is
described by

x =f(x,u,t)  x(0) = xq given (13.2)

Then find a control law u(x,¢) if possible, or a control history u(z),
such that the scalar functional

Jw) = | g(x(1),u,7)dr

takes on a minimum value and the relationship (13.2) holds. Typically
a boundary relationship x(7) = x; must also be met as a constraint on
the control.

The most common forms of J(u) are the minimum time control, in
which

T
Jw= [dt=T
0

is to be minimized, usually subject to the additional control constraint
such as a bound on a metric llu(¢)ll < U, and the quadratic problem in
which the form

Jw) =xT(T) S x(T) +

T
f {xT(t) Q(r)x(7) + uT(Y) R(t)u(r)} dt (13.3)
0

is to be minimized, where the matrices Q and S are positive
semidefinite and R is positive definite (section B.5).

A common minimum time control problem is that of finding a
control law for the attitude control thrusters of a space satellite such
that the satellite is rotated from an initial state Xq to a final orientation
Xf-in minimum.time while satisfying the laws of dynamics, where the
latter are modelled by a function (13.2). The quadratic functional
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may be viewed as a mathematical generalization of the ISE function of
the previous section.

Although the minimum time criterion may seem obvious, the
quadratic form (13.3) is less so and is worthy of comment. We first
note that using matrices simply extends the ideas of scalars. Then we
consider a scalar form of (13.3). This is

T
Jw) = [(gx2(r) + ru(v))de g20,r>0
0

If x(¢) is an error, then clearly this expression is penalizing error and
control input, with relative weightings r and g. Using these
parameters, we are able to trade-off control input for small error and
vice versa. In many instances, u2? is proportional to power (as in
voltage? or current?) and its integral then is proportional to energy.
The version

T
Jw= [u(r)dt
0

is then a minimum control energy problem.

The optimal control formulation is in principle general, and many
other problem statements may be set up. One, for example, is the
minimum fuel problem, in which

T
Jw= [ lum)lde
0

It is so named because the control is often proportional to the fuel
used, for example, in an aerospace situation.

Comments

Modern control theory is a mathematician’s approach to control
problems. The engineer must still develop an appropriate criterion,
andpityisynoteworthysthatsthesmathematical criteria do not include
monetary cost. Furthermore, the fit of the solvable problems to the
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actual situations can be difficult. One should recall that the optimal
control theory has its greatest successes in aerospace problems, where
minimum time (for an airplane to climb to altitude) and minimum fuel
(for a satellite to change orbit) are relevant and important.

On the other hand, fitting Q and R matrices to real problems is
often an elusive goal when one desires only that rise time and
overshoot be nicely traded off.

13.5 OTHER INDICATORS OF STRUCTURE AND
PERFORMANCE

Other properties of the system, also important to designers, which we
will address are the ‘structural’ properties of state-space descriptions,
i.e. those properties associated with the nature of the interactions
rather than the exact numbers.

13.5.1 Controllability and observability

Two properties of the linear state-space system descriptions, often
needed in proofs about existence of certain types of controllers, etc.,
are controllability and observability. Loosely stated, these are
respectively indicators of whether the model can be driven to a
precisely specified state in finite time and whether complete
knowledge of the state can be extracted from a finite set of
measurements, but it should be recognized that they are ultimately
technical terms. Their primary use is in tests to show whether some
design techniques we will meet later, especially pole placement in
Chapter 23 and state estimation in Chapter 25, can be expected to be
applicable.

The definitions of the terms — we remark that they are considered
together because they are duals of each other in the linear algebraic
sense — help clarify their roles and also why they are technical terms.

Definition A system is said to be controllable if any initial state
x(to) at any initial time 7o can be moved to any other desired state xi,
x(tf) = x¢, in a finite time interval T = # — fy by applying an admissible
control function u(¢), tp < t <t5.

Definition Avsystemyis said to-be'observable if any initial state x(to)
can be determined after a finite time interval ¢ — ¢y from a
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measurement history Y(¢) = {y(1),#o <t <t} and the control variable
history U(¢) = {u(t),t0 <t <t}. Furthermore, given the usual
uniqueness of solution arguments, x(¢), t 2 o, can also be determined.

It is quite possible to have states which are controllable but not
observable, observable but not controllable, both controllable and
observable, or neither controllable nor observable. This
decomposition can in fact be made explicit, as we will see in a
Chapters 23 and 25.

Now let us emphasize what the terminology allows. A pen recorder
may well be such that any pen position and speed can be attained, but
the acceleration is not also specifiable; such a system, while not
controllable in the definition sense, may be quite adequate and be easy
to design control laws for. Similarly, the fact that a radar target’s roll
rate cannot be extracted from the radar tracking data — making the
system not observable — does not necessarily make for a poor radar.
Systems which are observable/controllable may be easier to design for
because more design theorems apply, but systems which are not
observable/controllable are not necessarily inadequate.

The above have been only the main definitions. Variations are
sometimes met in more advanced theory. Among these are output
controllability, controllability and observability of particular states,
and the concept of state reachability. For linear time invariant
systems the distinctions are usually not important. Tests for
controllability are given in Chapter 22, while those for observability
are in Chapter 24.

13.5.2 Sensitivity

Sensitivity of a quantity is defined as the fractional change in that
quantity per fraction change in an independent quantity. Ideally, we
seek highly sensitive reaction to input and low sensitivity to
disturbances and parameter errors.

The usual definition of the sensitivity of T with respect to changes
in G concerns the ratio of the fractional change in each and is of the
form

_ o (ATT
T= AG—=0 (AG)/G

which can also be written when the limits exist as
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d(InT/InG)
5t = dG

~IQ
o e
Q"‘l

Elaboration is given, for example, by DiStefano et al. (1976).

The above notions have recently become prominent again because
of the development of robust control theory. One of the standard
control system configurations is shown in Fig. 13.7.

R(ak=o P(q) G(a)

Figure 13.7 System block diagram model showing disturbances affecting
the plant, noise affecting the feedback signal, with a possible controller
configuration.

Straightforward algebra of the transforms shows that

Y(q) = I+ G(q)K(g)I"'D(q) - [I + G(¢q) K(¢9)]"! G(¢) K(¢)N(q)
+ [I+ G(g9)K(@)! G(9) K(9) P(9)R(q) (13.4)

Then
S(9) = 1+ G(g) K(@)]!
is called the sensitivity function and

T(g) = I + G(@ K@ G(9) K(9)
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is called the closed-loop transfer function. Also,

F(q) =1+ G(q)K(g)

is called the return difference and P(q) is the prefilter. Using
these, (13.4) becomes

Y(q) = S(g)D(q) - T(¢)N(q) + T(q) P(9)R(q) (13.5)

We may note that from the definitions

S(@)+T(g) =1

But it is clear from (13.5) that we want both S(q) and T(gq) to be
‘small’ (which for matrices means that their respective metrics — see
Appendix B.13 — are near zero) so that the disturbances and noise
have little effect on the output. (If T(g) is small but we choose P(g) =
T-1 (¢), then Y(q) = R(g), which is desired.) Usually we are then
involved in a trade-off; one common such trade-off assumes that
disturbances are low frequency events and noise is at high frequency,
so that S(¢g) and T(g) can be small at the appropriate frequencies.

These are consistent with the classical definitions, of course. For
scalar systems, for example, it is easy to show that the input transfer
function with P(g) =1 is

G@K(q)
T@D=Ty6@k@

while the disturbance transfer function is

1
D=1+ 6K

Then going through the formalism of the definitions, we find that
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1

7 = 1+K(q) G(q)

_ —G@K@
ST1+ G(q)K(@Q)

Thus we might choose K large to make S(g) small and T(q) = 1.
However, each 1% error in G may then make for a small change in
T(q) (which is what feedback control is partly about), but also a —1%
change in S(q) (which is already small).

In SISO systems, the frequency response ideas are straightforward.
In MIMO or multivariable systems, the notions need more refinement.
This is particularly so in defining the meaning of ‘small’ and ‘large’
when often not all elements of the matrices S and T behave the same
way, and it leads to seemingly esoteric mathematics simply to express
the ideas. These issues are partly addressed in section B.13 and
Chapters 15 and 33.

13.5.3 Robustness

Related to sensitivity is the idea of robustness. ‘Robust’ is generally
taken to mean ‘the system still works satisfactorily if a large modelling
error has been made in doing the design or if a large disturbance
occurs’. The mathematical treatment of this concept, as opposed to the
heuristic treatment, requires explicit statements of the nature of the
errors and the performance requirements, and the approach treats the
robust control problem as the problem of analysing and designing
accurate control systems for plants which may contain significant
uncertainties. These uncertainties must be defined as to type and size,
and the notion of good performance must be specified. The
uncertainties are described as follows.
For the state-space model such as

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k)

uncertainties are modelled relative to a nominal value Ag as in
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A=Ap+0A
or
A=Ao(I+4)

which are additive and multiplicative uncertainties, respectively. If
they are constrained using matrix norms (section B.13) in a form such
as lISAIl < I, or Al €1y, the uncertainties are said to be
unstructured. If the individual elements of A or A are constrained,
as in

0A = z aiAi

i
where A;is known and -1 < ;< 1, or

SAx = Y x;Giw
i

where w is a vector noise process, then the uncertainties are
respectively called structured and stochastic.

For the transfer matrix model G(g), uncertainty may be modelled
relative to a nominal model Go(g) as in

G(g) =T+ A@g) )Golp)

where |A(®) Il < In(w), or

G(q) =Golg)d + Ag))

where 1A(®) Il < In(w), or

G(gq) =Golg) + 6G(q)

where 18G(w) Il < [,(®).

and output multiplicative errors,
additive error. As shown, the
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uncertainties are unstructured; if only certain elements of A and 6G
are variable, then the uncertainties have structure.

The sources of uncertainty are potentially many and varied:
unmodelled dynamics (perhaps high frequency dynamics), neglected
non-linearities, and parameter variations due to factors such as
temperature and age.

A robustly stable system is then one which is stable for all
uncertainties of the allowed type. A system shows robust performance
if it meets specified levels of performance for all allowed
uncertainties.

13.5.4 System type

In characterizing a feedback system, some linear systems will be stable
plus have the ability to track a polynomial of up to order n—1 with
zero steady-state, i.e. post-transient, error and a polynomial of order
n with a finite non-zero error — briefly the system is of type n. Thus
a type 1 system, the most important for many applications, will have
zero steady-state response to a step input (order 0 polynomial) and
finite error in response to a ramp (constant velocity, or order 1
polynomial) input. We will meet system type in more detail in
Chapter 17.

13.5.5 Reachability

The idea of reachability is essentially that of controllability as
presented here. It came about in part because of more restricted
definitions of controllability, in particular a definition which called a
system controllable if the state xf = 0 could be obtained in finite time
using some control; in this case, the term reachable was used for a
state other than the origin which could be obtained in finite time and
for a system in which all states are reachable.

13.6 SUMMARY AND FURTHER READING

This chapter has been concerned primarily with defining the terms
associated with desirable properties of systems: stability, performance
indicatorsrandrindices; structuraliproperties. In classical analysis and
design, the essence of a system’s response characteristics is due to its
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pole (or eigenvalue) locations, provided that fixed gains are used.
Hence the history of classical control system design is one of obtaining
‘good’ response by using feedback and choosing gains so that the poles
are appropriately placed.

The typical requirements on the system are that it be stable, that the
step response exhibit acceptable overshoot and damping, and that the
steady-state errors be ‘small’. These problems have been classically
attacked in three different manners:

1. by suggesting a form for the control law, e.g. proportional, and
then placing its parameters using trial and error tuning methods;

2. by suggesting a form for the control law and then choosing its
parameters after examining the locus of the pole locations as the
parameters vary;

3. Dby examining the system’s frequency response and then using
compensators and choosing parameters to obtain a desired type of
frequency response.

We meet all of these in Chapters 14-20.

In modern control systems design, the work is primarily with state-
space models. Pole locations are obtained with a fairly general
structure (i.e. with state feedback combined with, if necessary, a state
observer, giving in effect a high order and specialized compensator)
and many elegant results are available. An alternative is optimal
control, in which the control law is a mathematical result rather than a
designer input. Modern control approaches dominate Chapters 22-33.
Design involves

»  specification of performance index,

¢  solution for the form of the required control law, and

¢ manipulation of the parameters of the index to obtain ‘good’
response characteristics.

Most of the topics covered here are in standard theory textbooks,
such as Kuo (1980), Franklin et al. (1990), Dorf (1989), Phillips and
Harbor (1991), Ogata (1987), etc. One text concerned with modern
sensitivity approaches and matrix norms is Maciejowski (1989).

This book also discusses most of the topics. Thus BIBO stability is
covered in Chapters 14-15, and Lyapunov stability in Chapter 16.
Applications of classical performance criteria will be seen in Chapters
l/yand,20;,whileoptimal,contiolyis the subject of Chapters 26-27.
Controllability is discussed in Chapter 22 and observability in
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Chapter 24. Much of this material has also been presented in a similar
manner in Astrom and Wittenmark (1990). The robustness ideas and
some of the classical multivariable ideas are covered in Chapters 15
and 33, and those include references in addition to the above
Maciejowski (1989).




14

BIBO stability and simple
tests

BIBO stability of constant coefficient linear systems, whether
described by differential or difference equations, is determined by the
pole locations of the closed-loop systems. These poles are, by
definition, the roots of the denominator polynomial in transfer
function representations and of the characteristic equation of the A
matrix in state-space representations. The poles must lie in the left-
half plane for continuous time systems and within the unit circle for
discrete time systems. The straightforward way of checking this is to
compute the poles. An alternative that is easy and can lead to other
insights is to process the coefficients of the denominator polynomial of
the transfer function, which is the same as the determinant of the state-
space dynamics matrix. This chapter demonstrates those tests and
shows how they may be used in three different ways.

1. To check whether a system is stable, the test is applied to the
characteristic polynomial describing the system in question.

2. To find the range of a parameter — often a gain K — such that the
system is stable, the system denominator polynomial is used with
K as an unknown. The array then leads to a set of inequalities
which will define the stability-ensuring values of K.

3. To check speed of response, we check whether the poles are well
away from the stability line (Re(s) = O for continuous time and
Izl =1 for discrete time).

Applications 2 and 3 can be combined to give parameter values
yielding fast response.

14.1 SYNOPSIS

For 'BIBO stability of "alinéar System, the integral of its impulse
response (or the sum of its response pulses in the sampled data case)
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must be finite. When the system is described by constant coefficients,
this requirement leads to the fact that the transfer function poles must
lie in the left-half of the s plane or within the unit circle in the z plane,
as appropriate. For testing, one may either:

*  compute the poles; or
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