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Preface 

This book joins the multitude of Control Systems books now available, 
but is neither a textbook nor a monograph. Rather it may be 
described as a resource book or survey of the elements/essentials of 
feedback control systems. The material included is a result of my 
development, over a period of several years, of summaries written to 
supplement a number of standard textbooks for undergraduate and 
early post-graduate courses. Those notes, plus more work than I care 
right now to contemplate, are intended to be helpful both to students 
and to professional engineers. 

Too often, standard textbooks seem to overlook some of the 
engineering realities of (roughly) how much things cost or how big 
computer programs for simple algorithms are, of hardware for 
sensing and actuation, of special systems such as PLCs and PID 
controllers, of the engineering of real systems from coverage of SISO 
theories, and of the special characteristics of computers, their 
programming, and their potential interactions into systems. In 
particular, students with specializations other than control systems are 
not being exposed to the breadth of the considerations needed in 
control systems engineering, perhaps because it is assumed that they 
are always to be part of a multicourse sequence taken by specialists. 
The lectures given to introduce at least some of these aspects were 
more effective when supported by written material: hence, the need 
for my notes which preceded this book. 

By design and because of its background, this book is different and 
unusual. A detailed outline is given in Chapter 1, but here note that: 

• the coverage of topics is exceptionally broad for a book which 
does not claim to be a handbook, although the theory is mostly 
restricted to linear time-invariant dynamic systems; 

• the multiplicity of chapters almost constitutes modularization, a 
property which makes the book a useful elementary reference 
and which leads to some overlap of chapters and repetition of 
basics; 

• the level of the book is mostly undergraduate and elementary, 
with references to more advanced and complete presentations 
added for those wishing to progress further - examples are very 
simple ones, intended to show how the theory translates into 
usable algorithms; and 
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xx Preface 

• the modularization is mostly on the basis of usefulness, as I am 
convinced that so-called unifying theories are appropriate, even 
for non-specialists and students just beginning to learn about the 
subject. 

Thus the book will be helpful to several classes of readers: 

• students, especially undergraduates and early postgraduates - to 
supplement their textbooks and as a handy overview; 

• engineers who are not control specialists - to summarize in one 
place the nature of the field so they can interact with specialists 
or, with this as a starting place, learn enough to help with a 
particular job; and 

• control systems specialists - as a refresher concerning topics 
outside their speciality. 

It is appropriate to acknowledge a number of influences here. 
Although students who made it clear that standard textbooks were not 
entirely satisfactory were the original motivation, the Electrical 
Engineering Department provided helpful support, and my industrial 
experience undoubtedly influenced my attitudes. Several colleagues, 
notably Drs Gerry Ledwich, Gerry Shannon and Pra Murthy, 
contributed by discussing the concepts and conveying their experiences 
in trying various aspects of teaching. 

LCW 
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1 

Introduction and • overVIew 

The feedback control systems specialist has a multifaceted job 
involving several different types of tasks; an alternative point of view 
is that control systems encompass several different sub-specialties 
from which an engineer might choose to emphasize only one or two. 
The aspects of the systems to be understood include: 

1. the process being controlled, whether it be a beer brewing plant, 
a refinery, an aircraft, or an artificially paced human heart; 

2. the hardware, including instruments for sensing, wiring 
carrying data, computers processing data, and motors 
implementing commands; and 

3. the algorithms used and the computer coding which implements 
them. 

People tend to specialize in one or another aspect, and personal 
inclinations tend to lead to at least one traditional demarcation, that 
between the 'control engineer' and the 'control theorist'. The former 
is nominally concerned with hardware, instrumentation, and 
'practical' engineering; the latter is devoted to mathematics and 
computer utilization, with applications, if any, being those with 
advanced performance demands such as in aerospace systems. 

This hardware vs. theory split is common to many fields, but with 
control systems the availability of inexpensive computer power is 
bringing these together again, and in particular is making possible 
many algorithms formerly thought too sophisticated for applications 
such as machine and process control. For example, observer and 
filter algorithms now allow inferences to be made about the internal 
workings of processes without actually measuring internal variables, 
and those algorithms are well understood and easily computed with 
commonly available computers. 

At the other extreme, the desire of engineers to improve control of 
some long established systems, such as steamships, plus the need to 
succeed with new systems such as robots and nuclear power plants, are 
making demands on theorists for more applicable results. 
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The meetings of known theory with present applications and the 
demands for better performance make it necessary for all control 
systems engineers to have an overview of the field. This book is an 
introduction to the elements of the field for those who will have future 
contact with it, either as specialists in control or in other fields for 
which control is a means to an end. 

In this first chapter we present a brief overview of computer 
control systems engineering. In section 1.1 we look at feedback 
control systems, in order to distinguish our usage of the word 
'control' from those who work in what we might call situation 
supervision. Then section 1.2 gives an outline of the sources of 
influences which have contributed to the control systems field, with 
section 1.3 giving three standard problems which are discussed in the 
light of small and large systems. Section 1.4 gives a breakdown of the 
field, similar to that followed later in this book and section 1.5 
provides a list of 'tools of the trade', i.e. a selection of the many 
learned society journals and magazines in the field plus useful and 
available computer programs for studies on personal computers. 
Finally, section 1.6 considers the outline structure and philosophy of 
the later chapters of this book. 

1.1 WHY HAVE FEEDBACK CONTROL SYSTEMS? 

Control systems are needed for simple tasks (e.g. turning motors on 
and off, starting furnaces) and for complicated tasks (such as robot 
motion co-ordination and aircraft autopiloting). Feedback control 
systems are needed because, for various reasons (such as imprecision 
of components and disturbances by external events), the outputs of a 
system cannot be relied upon to be suitably precise - so they are 
measured and the inputs adjusted to allow for the inaccuracies found. 
It is precisely this measurement of output and using the information to 
influence the input, i.e. this feedback, that makes control systems 
fascinating and difficult. 

Primitive examples of the need for simple on-off commands 
augmented by a bit of feedback appear with automatic washing 
machines. A portion of the wash cycle has the drum being filled with 
water and agitation started. The sequence of 

a) water valves opened 
b) water valves closed 
c) gears set to cause agitation (rather than drum spin as in the spin 
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dry portion of the cycle) 
d) motor started 

could in principle be a timed one, requiring only a set of cogs on a 
clock drum. However, variations in inlet water pressure mean that the 
time for the drum to fill will vary, so the solution is to sense water 
level and use this before step b) rather than pure timer activity to 
cause the next step. Thus feedback is needed even at this level. 

More elaborate examples occur with aircraft autopilots, which must 
keep the craft on course and stable in the presence of head winds, 
gusts, varying fuel and passenger loads, etc. Here, course and vehicle 
attitude and altitude must be measured and the craft flown by the 
autopilot utilizing control algorithms to keep these quantities as 
desired. 

Many such problems can be represented by the block diagram form 
of Fig. 1.1. 

Measured 
value 

Measurement 
device 

(sensor) 

Disturbance 

Object 
to be 

controlled 
Output 

Figure 1.1 A typical control system block diagram. The boxes represent 
objects and the lines represent communication paths. Desired value, etc. 
represent signals. 

1.2 INFLUENCES ON DEVELOPMENT OF THE FIELD 

Perspective on a field is difficult to obtain without some knowledge of 
its history. History may be considered as a chronological sequence, 
but we choose to present it as a meeting of many influences, and 
observe that therefore there are a number of tools and approaches 
which do not necessarily sit well together. 



www.manaraa.com

4 Introduction and overview 

One influence has been that of the inventors. Devices which 
demonstrate a feedback control property date from antiquity, and 
include water clocks and geared windmill pointers. The control 
systems field is usually taken to date from James Watt's invention of 
the steam engine governor in 1769. This clever device, still 
observable on vintage steam engines from less than one hundred years 
ago, is shown in Fig. 1.2. The principle is simply one of using the 
centripetal forces associated with the rotation of the motor shaft 
coupled rotating balls to adjust the steam valve admitting steam energy 
to the cylinders. Among the important sensor inventions was Sperry's 
gyroscope for aircraft in 1912-14. 

Figure 1.2 A Watt's governor, used for more than a century to 
regulate the speed of engines, particularly steam engines. This one is on 
a tum-of-the-century traction engine. The engine shaft is geared to a 
shaft which rotates the two heavy balls. These latter are on swinging 
arms whose radius of rotation increases with speed, and these anns are 
coupled using levers to the engine throttle. 
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A second influence has been that of the process control 
engineers, particularly chemical engineers. Many control tasks in 
batch and continuous flow processing have used pneumatic or 
hydraulic controllers. This has limited the range of control 
algorithms to those possible with such elements, and in particular to 
proportional, integral, and derivative control (PID). This technique 
dates back to the mid-19th century and is highly developed and widely 
understood. 

The electrical engineers have contributed their understanding of 
frequency response. This derives from their history in electrical 
power generation, which is usually alternating current (AC), and later 
their work in communications and the associated amplifiers. Key 
advances were those made by Black, whose feedback amplifiers were 
patented in the late 1920s and reported in (Black, 1934), and by 
Nyquist (1932) in a seminal paper on stability and Bode whose studies 
in the 1930s of gain-phase relationships made extensive use of the 
graphical representation associated with his name and were widely 
disseminated in (Bode, 1940, 1945). 

Mathematicians have been a part of the field since Maxwell in 
1868 applied linearization and differential equation theory to 
demonstrate why some of the Watt governed engines demonstrated an 
oscillatory speed profile called 'hunting'. Not long afterward Routh 
related stability to the differential equation coefficients, and Lyapunov 
formed a stability analysis approach which was not rediscovered until 
the late 1940s. Mathematicians also applied some of their concepts to 
creating new approaches to design and analysis. Among these were 
the filter theories developed by Wiener during the second World War 
and later publicly reported in (Wiener, 1949), the state estimation 
filter of Kalman (1960) and Kalman and Bucy (1961), the optimal 
control theories of Bellman (see e.g. Bellman, 1957) and Pontryagin 
and his colleagues (an English transaltion is Pontryagin et ai., 1962) in 
the 1950s, and the sampled data theory originating with the physical 
problem posed by radar in World War II and developed by Ragazzini, 
Zadeh, Jury, Franklin, and others (see e.g. Ragazzini and Zadeh, 
1952, Ragazzini and Franklin, 1958, Jury, 1958). These also lead to 
the branch of control systems studies known as control theory. 

Although electrical engineers influenced control systems in many 
ways, their development of the digital computer has transformed 
the field. Computers were proposed for real-time process control in 
1950, were demonstrated for flight and weapons control systems by 
the mid-1950s, were used in supervisory roles (i.e. in calculating and 
commanding set points for analog control loops) in industry in the late 
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1950s, and replaced the analog elements to become inline direct digital 
controllers shortly thereafter; by the mid-1960s minicomputers such 
as the DEC PDP-8, were coming into common use. The now 
universal programmable logic controllers (PLCs) were first used in 
1969, and since their appearance in 1974 microprocessors have 
gradually come to make the advantages of digital control available at 
almost all levels. 

Mechanical engineers and instrumentation specialists have 
designed many of the devices used in control systems, from refined 
valves to sensitive accelerometers, and their machine tools and the 
robots themselves need control engineering and theory to work well. 

User needs have been spurs in particular directions ever since the 
industrial revolution's demand for mechanical power at constant speed 
motivated Watt. Wartime may emphasize performance regardless of 
cost; industrial users may look for improved profitability. Many 
users look to feedback control to make their tasks possible, just as the 
feedback amplifier made long distance telephony practical. Present 
needs for manufacturing flexibility are driving the development of 
flexible manufacturing systems (FMS), with both devices and 
theory in demand. 

Finally, university academics have contributed to the shaping of 
the field by alternately subdividing the field into special interests 
according to application (chemical, electrical, mechanical engineering; 
mathematics; computer applications) and combining it into a single 
department called 'Control Systems', 'Systems Science', or something 
with a similar name. While subdivision is perhaps natural, the 
combining seems to date from the 1950s and the Massachusetts 
Institute of Technology. 

A legacy of the above influences is that the field is not unified. 
There are many techniques which are widely used in pockets of 
industry, for example. Thus PID controllers are the mainstay of 
process control, whereas Kalman filters and optimal control are 
important tools for the aerospace businesses. Large companies, 
research institutes and universities have the luxury of specialist 
theoreticians for advanced studies, and sometimes a concomitant 
reputation for impracticality. In other situations, process controllers 
know their processes and devices very well, but may either be 
unfamiliar with advanced theories and computer controllers or 
consider them uneconomic to implement. Furthermore, 
instrumentation specialists are important to both fields and to advances 
into new areas such as biomedicine, while computer specialists may 
prove crucial to all applications. The control systems field 
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encompasses all of these, partly because of history and partly because 
of their common core problem: to control an object or set of objects. 

1.3 TYPES OF CONTROL - REGULATION, 
TRACKING, TRAJECTORY DESIGN 

The typical control system problem is presented as one of feedback 
control of some object or group of objects, with the aim of the 
controller to make the output match the input. The presence of 
disturbances, if any, is also modelled as an input to the object, and it is 
usually unspoken that the object may not have precisely the properties 
for which the design was made. A typical block diagram from an 
undergraduate text is as in Fig. 1.1. Also unspoken is the source of 
the input and how it came about. 

Although with some effort many systems can appear to have this 
characteristic form, or 'structure' , it is not always helpful to think of 
them this way. For one thing, real systems may have many (l00s or 
1000s) such loops in them with inputs and outputs coupled. More 
importantly, the design techniques will vary with the overall goals of 
the designer. 

Only a few useful distinctions are made with the terminology. Most 
study, and the easiest, is concerned with single-input-single-output 
(S1SO) systems; the alternative is multi(ple)-input-multi(ple)-output 
(M1MO) systems, sometimes called multivariable systems. Another 
important distinction we shall make is between regulators, 
servomechanisms, and trajectory designers. 

1.3.1 Regulation 

When the error between input and measured output is operated upon 
by the controller to generate the commands to the plant (controlled 
system), there are two common possibilities. The first occurs when 
the input is a constant which is occasionally changed. The value of the 
input is called the set point, and the designer's goal with the 
controller is to generate commands so that the plant output rapidly and 
smoothly, without drama in the form of wild oscillations, takes on the 
value of the set point and then maintains that value in the presence of 
exogenous disturbances. 

A simple example of a regulator is presented in Fig. 1.3. Here a 
water tank is to have its level maintained at a specified depth while 
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water is being drawn off (both purposely and through evaporation). 
A motor drives a pump which adds water from some reservoir. The 
problems for the engineer include how to instrument the tank so that 
water depth is known, whether to specify a constant speed motor used 
in an on-off fashion or a variable speed motor, and what algorithms 
to use in deciding when, and in the variable speed case at what speed, 
to run the pump motor. All of this is for the relatively simple task of 
maintaining water depth at a fixed level, the set point level, in the 
presence of water usage, leakage, evaporation, and other disturbances. 

I 
[ .. p.~E!~_lensor 

........................ 
I 

Computer I 
I Water supply 

l .. _ .. _ "l~_M_ot_or_/p_u_m_p---,----- <==:J 

I 
U Water use 

Figure 1.3 A very rudimentary control system for regulating water depth 
in a tank. 

Another typical example of a regulator is one of the earliest control 
systems: the Watt's governor was a clever arrangement of mechanical 
devices to sense and control the speed of stationary steam engines. As 
such, it was a set point system with the desired speed being the input 
and the actual speed the output. Measurement was performed by 
means of flyballs rotated by geared output of the engine shaft; radius 
of rotation of the flyballs indicated speed, and this radius was coupled 
via levers to steam valves on the engine. The set point became explicit 
and changeable when a spring system for varying the desired speed 
setting was added. 

In current versions of the Watt problem, the set point may well be a 
number commanded by a supervisory technician through a console 
dial or a number in a buffer loaded by a supervisory computer; the 
sensor might be a tachometer, and the actuator a solenoid moving the 
engine's throttle. 
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The regulation problem is so common that a range of methods is 
applicable: off-the-shelf controllers; classical control theory using 
both steady-state and transient performance indicators; modern 
theories of the linear (dynamics) quadratic (performance index) 
regulator (LQR) type. Disturbance rejection is presented differently 
with these approaches, however. 

1.3.2 Tracking and servomechanism problems 

An alternative to the above is to have the input vary in a somewhat 
unstructured manner and require the output to track this input. A 
paradigm problem here (and the one which produced the terminology) 
is the naval gun turret pointing problem of a century ago. A gunnery 
officer rotates a dial to command a gun pointing direction. This dial 
reading is then input to a set of motors which rotate the gun turret 
until the guns point in the required direction. As distinct from the set 
point problem, the input could in principle change frequently and 
unpredictably and the output be required to match it. Such tracking 
problems are called servomechanism problems or servo problems, 
and the designer's task is to have the output track the input rapidly for 
at least a specified class of inputs (such as all those which have a rate 
of change less than a specified value). 

To see the ubiquity of servo-type problems, we notice that in 
section 1.3.1 in the mention of the updated Watt steam engine control 
a modern implementation might require a small motor or solenoid to 
operate the steam valve. We can well envisage that this actuator might 
be required to move the valve frequently and accurately, thus giving a 
servo problem in an overall regulator milieu. A modern example is 
provided by robots, whose manipulators are required to move 
accurately along a designed path. 

Servo motors are among the most common actuators in control use, 
and much effort goes into developing the control electronics and 
electrical devices so that they work well. Servo motors drive the 
moving arms of computer disc drives and the pens of plotters in 
applications that are familiar to most of us; an alternative for small 
tasks is the stepper motor. 

The theories applied here have been classical (of the frequency 
domain or root locus type) and modern (using linear quadratic 
tracking methods). 
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1.3.3 Trajectory design/targeting problems 

There are a number of problems in which the task is neither to 
maintain a level nor to track a signal. One such problem is a 
navigation problem: the automatic navigation from city LA to city 
NY is unlikely to be solved by taking into consideration only the miles 
to go. Rather the system must know where it is, where it is to go, and 
establish some path for going from 'here' to 'there' efficiently. Other 
problems of this type abound: a robot arm may need to move from 
one position to another, carrying a heavy load and avoiding obstacles 
in its work area, in a rapid manner which does not overly stress the 
components; a processing plant may need to be put through a 
sequence of operations to configure from one product line to another; 
a spacecraft may be required to change orbits with minimal use of 
fuel. 

The problems in these cases are often approached using more 
advanced ideas of control theory, such as state estimators and optimal 
control; we shall call them trajectory or target problems. 

1.3.4 Systems 

An important failing of the above classification is that many real 
problems have aspects of all three in their operation. We have already 
seen a simple regulator problem which has a servo motor subproblem 
(i.e. the valve actuator of a constant speed motor). A robot, with its 
problem of suitable arm trajectories, also has servo problems in the 
actuation of particular joints. Process control systems have several 
levels of regulator-type (i.e. constant required output) problems with 
servo actuators. 

A space launch booster rocket needs trajectory planning in real-time 
to layout the most efficient path from sensed position to desired orbit, 
converts that path into a flight plan track to be followed, and 
implements its plans by commands to subsystems which are themselves 
control systems having command following, i.e. servo type, 
specifications. 
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1.4 THIS BOOK: ELEMENTS OF CONTROL SYSTEMS 
ENGINEERING 

Many textbooks concentrate on one or two aspects of control 
engineering, such as theory or computer applications, to the exclusion 
of others; some even specialize as to the level, such as optimal control 
theory for linear systems with quadratic performance indicators, 
algorithms for system identification, or basics of computer hardware. 
A control engineer, however, is necessarily systems oriented, and 
some of the trades to be understood are given below. 

• Systems engineering 
• Hardware 

Instrumentation for sensing 
Hardware for actuation 
Computers - hardware and software 
Communications between elements of the system 

• System modelling 
Mathematical and simulation models 
System behaviour - desired and actual 

• Control theory and algorithm design 
Classical and modern methods, both time domain and 
frequency domain approaches 
Implications of the theory and appropriate applications 

This book can be viewed as having three major subdivisions, 
incorporating the above: 

• Engineering 
• Modelling 
• Theory 

1.4.1 Engineering 

In Chapters 2-8, we consider systems engineering in overview and 
then the practical application material concerning sensors, actuators, 
computers and their programming, and finally a bit of 'theoryless' 
control tuning. 

Systems engineering is the rather ambiguous name given to a 
number of levels of studies of engineering problems. We will take it 
to mean three levels: 
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1. the top level which is the management oriented study of system 
requirements necessary to make basic decisions of strategic type; 

2. the second level which is one the engineer will face frequently -
this entails system planning (but we do not consider the problem 
of schedules and plan implementation); and 

3. the third level which is the component level, and concerns choices 
of hardware, software, and algorithms. 

In most general respects, systems engineering is no different for 
control systems engineers from what it is for other engineers, except 
for the particular problems addressed and for the need to emphasize 
'systems' . Partly for that reason, we address it only briefly and at the 
two lower levels (in Chapter 2). 

The components for implementing computer control systems 

The control task requires measurement, decision, and actuation. 
Hence, the hardware needed consists of instrumentation for sensing the 
process's state, the computer and its interfaces for deciding what 
commands to send, and actuators for implementing the commands. 
The structure of the control may require communications between 
components; the control algorithms are implemented in the computer 
using software. 

To control a quantity, first that quantity must be directly 
measurable or inferable from measurements. This requires sensors 
and, in many cases, transducers (i.e. devices to translate the sensor 
output into a form which is useful for processing - in our case, into 
electrical signals for input to computers). Measuring devices abound: 
it is possible to measure temperatures, radiation of various kinds, 
displacements, speeds, accelerations, forces, voltages and currents, 
etc. Often quantities are to be measured and recorded, i.e. data logs 
are to be kept, even though these quantities are not themselves directly 
controlled. This area is the subject of Chapter 3. 

If quantities are to be actively controlled, then there must be a way 
to influence their values and there must be devices, called actuators, to 
operate the influencers, called control elements. Thus a temperature 
can be maintained only if heat can be added and/or removed from the 
process; turning the heater or cooler on or off, or allowing the 
process to come under the influence of a hot or cold substance, is done 
using some sort of actuator. Simple actuators include on/off switches 
for motors; a complex actuator might use a valve, opened and closed 
by a motor, to allow steam through a pipe to heat a liquid for which 
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the temperature is to be maintained in the presence of heat losses. 
Complex control elements/actuators such as the latter are sometimes 
themselves feedback control systems of the regulator or servo type. 
Chapter 4 briefly considers actuators and control elements. 

In computer control systems, computers are the key and defining 
element. A control systems engineer can have little hope of being an 
expert in this field in which specialties are proliferating. Knowledge 
of how the computer communicates with devices connected to it is 
essential, however. Furthermore, the control task is not the usual data 
processing or number crunching task of elementary computer courses: 
it must operate in real time, and for large systems it is inherently in a 
multitasking environment. These features mean that the control 
systems engineer needs some appreciation of interrupts, of real-time 
operating systems, and of the programming language implementation 
being used. In many cases, these tasks are taken care of with off-the­
shelf systems, particularly those allowing only logical control, (or 
programmable logic controllers, PLCs) or simple PID (proportion­
integral-derivative) controls handling only one loop, and those 
allowing structured supervision and monitoring of such 
straightforward algorithms. Chapters 5-6 are concerned with 
computer hardware and software respectively. 

In a large plant, there may be hundreds, if not thousands, of control 
loops operating simultaneously and interacting. The associated 
computer power may be centralized in one location, may be in 
interconnected cells of activity, or may be in isolated locations with no 
direct automatic interaction. In all cases involving computers, 
however, sensors must send signals to the computers, and actuators 
must receive commands from the computers. If the computers 
interact, they must also have communications channels arranged, 
perhaps at several levels: sensor to computer, computer to computer, 
and computer to actuator. These can all be attacked in several ways, 
as we see in Chapter 7. 

Finally, the engineer must make all this work together. This may 
be done using experience, ad hoc techniques, and rules of thumb, or 
by theory-based methods involving studies of mathematical models. 
The former constitutes much of control engineering and relies upon 
theoryless controllers such as PLCs and rule of thumb tuning of 
available control parameters, as in Chapter 8. 



www.manaraa.com

14 Introduction and overview 

1.4.2 Process characteristics and modelling 

There is no substitute for an understanding of the process to be 
controlled - not even an elaborate mathematical model - because real 
processes are not equivalent to a set of integro-differential-difference 
equations (the most common types of models). The designer of an 
aircraft autopilot need not necessarily be an aerodynamics expert, but 
he must understand how airplanes fly and manoeuvre. A consultant 
advising on a controller for a process such as beer-making need not be 
an expert on the product, but he should understand what is essential in 
the process. The designer of a resuscitator unit need not be a medical 
doctor, but he should know some physiology. On the other hand, the 
experts on the application should also appreciate the essentials of 
control systems engineering if a useful collaboration is to result. 

Particular process characteristics which are likely to be important 
regardless of the application are numerous. These include time 
response characteristics of controlled quantities to inputs (e.g. delays 
in response, speed of response once it begins, stability characteristics, 
and steady-state errors), measures of accuracy of response (e.g. mean 
square error) and responses to particular classes of inputs 
(particularly sinusoidal inputs, yielding frequency response). 

In some cases, it may prove necessary to construct a model of the 
system; this could be an analog, scale, pilot plant, or mathematical 
model. The last is the most common in the literature. Here a set of 
equations, often differential, is constructed for which the dependent 
variables represent quantities within the actual system. A simple such 
model relates altitude and down-range distance of an exo-atmospheric 
rocket to the motor thrust and steering law: it is called simple because 
the construction is based upon well-known physical laws, not because a 
useful model is likely to involve only a couple of equations. 
Similarly, a process controller requiring mass balance and 
temperature control may be straightforward to derive. On the other 
hand, the attempt to construct models for some chemical processes 
may be difficult, and appropriate models in biology, such as a 
quantitative model of human intermediate metabolism suitable for use 
in designing an artificial pancreas control law, have proven elusive. 

Models and process understanding are application specific. 
Fortunately, most processes have existing models suitable for use in 
the field involved. Models and their representations are the subjects 
of Chapters 9-12. Performance characterization is in Chapter 13. 
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1.4.3 Control theory and algorithms 

Control theory as a discipline separate from applications in, for 
example aeronautical engineering, chemical engineering, electrical 
engineering and mechanical engineering, probably arose in the 1950s, 
partly out of the recognition that the separate branches were 
overlapping and complementary in their approaches, and partly 
because the knowledge base was becoming too large to handle in only 
a course or two. The needs of the aerospace industry for high 
performance pushed theoreticians into new applications. 

The result is debatable, but clearly, from scanning the offered 
textbooks in several fields and several countries, certain knowledge is 
considered fundamental in the area of theory. These fundamentals are 
concerned with techniques for linear time-invariant systems: root 
locus methods, frequency response methods, and state-space methods 
for the analysis and design of controllers for sets of equations which 
purportedly model real devices. In the elementary courses, the 
systems are of low order, are linear, and are known. 

Chapters 13-34 outline some of the basic notions of both classical 
and modern control theory at the undergraduate and early post­
graduate level before introducing intermediate post-graduate topics 
and finishing with a brief look at recent research level developments. 
In this, we use classical to refer to methods based upon Laplace, z- and 
Fourier transforms, and modern to refer to state-space methods; we 
remark that the classical methods date to before the turn of the 
century and the modern ones became popular over 30 years ago. The 
'theory' chapters (13-34) cover the following ground. 

1. Introduce performance criteria (in Chapter 13). 
2. Present various viewpoints, especially differential/difference 

equation coefficient tests, Nyquist methods, and Lyapunov's 
direct method, of stability analysis (Chapters 14-17). These are 
seen as the basis for much of linear system theory, with 
representation of classical transform domain pole checking and 
steady-state error prediction, the core notion of frequency 
domain analysis, and the alternative of generalized examination 
of differential/difference equation trajectories. 

3. Present root locus and Bode methods of analysis and design 
(Chapters 18-20). These are, when done for continuous time 
systems, the standard methods taught in first undergraduate 
courses. The former studies the system pole locations (choice of 
poles is given in Chapter 19 and a very special case is treated in 
Chapter 21); the latter studies frequency response. 
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4. Discuss controllability and observability and the associated 
notions of pole placement controllers and state observers 
(Chapters 22-25). These are standard modern undergraduate 
course topics. The technical terms of controllability and 
observability are explained and tests described. Applications 
include the pole placement design of control laws and the first 
meeting with state estimator filters, i.e. observers. 

5. Introduce optimal control, with emphasis on Lagrange multiplier 
and the related Pontryagin methods for discrete time systems and 
examples relating to the standard minimum time and linear 
quadratic (LQ) problems for linear systems (Chapters 26-27). 
The results are standard, but we also lead into numerical 
methods. 

6. Introduce the topic of noisy measurements state estimation. The 
Kalman filter, its engineering extensions to non-linear systems, 
and the observer for explicitly noisy systems are met (Chapter 
28). The issue of the interactions of filters and control laws is 
addressed (Chapter 29). 

7. System identification is looked at in several different ways, with 
algorithms shown to illustrate some of the concepts (Chapter 30). 

8. Adaptive control, particularly parameter adaptive control, is 
introduced in a couple of variations (Chapter 31). The important 
notions associated with self-tuning regulators, which are 
commercially available, are among those met. 

9. Some of the notions and goals of learning control systems and 
robust control systems are presented (Chapters 32-33). Both of 
these are advanced topics of intense research interest, and the 
development here is superficial, intended to present only the 
points of view applied in the research. 

to. Some theory associated with control system structuring, such as 
model approximation and control separation, is introduced 
(Chapter 34). Some of this is dated, but is still included, partly to 
show that not all systems use SISO ideas or direct extensions of 
those. 

It must be repeated that most of the material is presented only for 
linear systems which do not vary with time. Rarely are non-linear 
systems more than commented upon (because there are so few general 
results). This book attempts to indicate the current situation for each 
topic, to serve as a source book for those wishing to progress further 
in their own studies of a particular topic and as a review for those 
seeking a reminder of things once known. 
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I.S TOOLS OF THE TRADE 

Any engineer's principal tool is a brain and the knowledge and 
judgement stored in it; engineering remains partly a science and partly 
an art form. The engineer will know the process being controlled -
its physics and/or chemistry and/or biology - and have a library of 
appropriate techniques to handle the problem. These latter tools will 
at a minimum include the following. 

1. Knowledge of the standard hardware used in a particular range 
of applications. 

2. Classical design and analysis methods for linear systems. 
Stability testing using algebraic methods such as Routh or, for 
discrete time systems, Schur-Cohn or Jury testing. 
Compensation of the poles using root-locus methods. 
Compensation in the frequency methods, with lag, lead, and lead­
lag networks designed using ideas based upon Nyquist-Bode­
Nichols charts. 

3. Modern design and analysis methods, mainly for linear systems 
and operating principally with state-space models. Methods 
include optimization using Pontryagin's maximum principle and 
Bellman's principle of optimality, with particular emphasis on the 
linear-quadratic-gaussian problem (i.e. a problem with linear 
dynamics, quadratic optimization criterion, and gaussian noise), 
and the filtering ideas of Kalman and Luenberger. Structural 
ideas of observability and controllability and the stability ideas of 
Lyapunov are also important. 

Beyond this, a library of textbooks, monographs, and perhaps parts 
specifications and reports will be available; computational tools such 
as computer aided design (CAD, sometimes CACSD for computer 
aided control system design) and simulation programs will probably 
be available. 

To maintain knowledge, the engineer will take two types of 
magazines - technical journals and advertising-containing magazines. 
The technical journals most conunonly used are listed here. 

• IEEE Transactions on Automatic Control, published by the 
Control Systems Society of the Institute of Electrical and 
Electronics Engineers, US. Control Systems Magazine is a more 
survey- and application-oriented publication by the same group. 
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• IEEE Proceedings, from the Institute of Electrical and 
Electronics Engineers, occasionally has survey special issues 
summarizing theoretical advances in control systems. 

• lEE Proceedings-D on Control Theory and Applications, 
published by the Institution of Electrical Engineers, UK. 

• ASME Journal on Dynamic Systems, Measurement, and Control, 
published by the American Society of Mechanical Engineers, US. 

• Automatica, the journal of IFAC, the International Federation on 
Automatic Control, published by Pergamon Press. 

Others include: 

• International Journal on Control, published by Taylor and 
Francis Ltd., UK, and 

• SIAM Journal on Control and Optimization, published by the 
Society for Industrial and Applied Mathematics, US. 

The above tend to be theory and research oriented. A great many 
more specialized publications have articles which may be important to 
engineers working on particular applications, e.g. 

• Journal of Process Control, a relatively new journal published by 
Butterworth-Heinemann Ltd., London, UK; and 

• IEEE Transactions on Robotics and Automation and IEEE 
Transactions on Aerospace and Electronic Systems, both 
published by the Institute of Electrical and Electronics Engineers, 
US. 

For the process engineer attempting to keep up with developments 
in hardware and system design trends, there are several magazines 
containing system advertising and short, direct applications articles. 

• Control Engineering, published monthly by Cahners Publishing 
Company, a division of Reed Publishing, US. 

• Automation and Control, published monthly in New Zealand by 
Associated Group Media Ltd. 

• I &CS (Instrumentation and Control Systems), published by 
Chilton Co., US. 

• Control and Instrumentation, published by Morgan-Grampian, 
UK. 
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Beyond the above, the engineer will have study and evaluation tools. 
Laboratory instrumentation mayor may not be part of this, but, just 
as 30 years ago engineers used slide rules and 15 years ago they used 
calculators, they now use personal computers and workstations for 
many design and study calculations. The software for these, once 
available only on main-frame computers, allows detailed calculations 
and simulations. Provided mathematical models of systems are 
available, one may use readily available packages, such as: 

• MATLAB®, from The MathWorks, Inc., US, for various design 
calculations such as root locus plots, frequency response plots in 
various forms (Nyquist, Bode, Nichols), conversions between 
continuous-time and sampled-data models, and time response 
computations (essentially simulations). Additional packages are 
available for robust control, system identification, and digital 
signal processing studies. A student version is available. 

• CTRL-C®, from Systems Control Technology, Inc., Palo Alto, 
California, which is similar to MATLAB®. 

These are mainly suited for the computations used in design and 
analysis. Simulations are also very important, and computer packages 
which make simulations easy to design and operate include the 
following. 

• SIMNON®, from Lund Institute of Technology, Sweden, and 
available from ESC (Engineering Software Concepts, Inc.), US, 
and SSP A Systems, Sweden, is a system simulation program 
allowing continuous time, sampled-data, and mixed systems to be 
simulated. 

• PSI® is a simulation tool from Delft University of Technology 
which is particularly easy for undergraduates to use. 

• EASY5® is a powerful program available from Boeing, Seattle, 
Washington, US, which exploits workstation power to create, 
analyse, and operate elaborate simulations. 

• SIMULINK® is a product from The MathWorks, Inc., US 
integrated with their MATLAB® package. 

In larger companies, it is not unusual that they have created their 
own, more specialized programs. More and more textbooks are also 
including at least some programs for analysis or simulation of special 
methods. 
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Most engineers will find it useful to have at least some appreciation 
of standard computer languages. A knowledge of one language of a 
certain level is usually transferable to others at that level. Among the 
likely possibilities are the following. 

• Pascal is a common teaching language with many extensions to 
allow it to be useful. Its structuring is its obvious feature. 

• Fortran is the language of choice for many number crunching 
applications. A close and common relative is BASIC. 

• Modula-2 and ADA are the newest candidates for a number of 
reasons, including their structuring and (in the case of ADA) 
their sponsorship. 

• C, an intermediate level language intended at first for systems 
programmers, has a good capability for direct dealing with the 
hardware, and is in some respects like a cross between assembly 
language and an ordinary compiler language. 

• Assembly languages and associated programs exist for most 
common processors. 

The above are all for digital computation. An additional simulation 
tool, becoming less common because of the increasing power of main­
frame digital computers, is the analog computer. This is a set of 
electronic operational amplifiers, arranged so that they may be 
interconnected using simple patch cords to yield solutions of ordinary 
differential equations. Voltages within the computer are taken as 
analogs of physical quantities, and the time histories of these voltages 
are viewed on oscilloscopes or recorded on x-y plotters. Outputs are 
displayed on 'real' meters, etc., and hence the analog computers are 
often used in training operators (and pilots) under simulated 
conditions. 

In this book, many of the references are to IEEE Transactions on 
Automatic Control, IEEE Proceedings, Automatica, and Automation 
and Control. Books frequently referred to are Astrom and 
Wittenmark (1990) and standard first texts such as Phillips and Harbor 
(1991), Dorf (1989), and Franklin et al. (1990). Many of the 
calculations used PC-Matlab. 

1.6 THIS BOOK - SCOPE AND GOALS 

This book portrays two elements of the control systems engineer's 
work. First is the engineering aspect, including systems decisions, 
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hardware and software, communications, and elementary process 
controller tuning. After a transition incorporating a chapter on the 
sources of models and three chapters on model representations, we 
proceed to theory, working through performance indicators, stability 
and its testing, and pole location design methods and goals. We 
continue into essentials of modern theory with information extraction 
(filtering), optimal control, system identification, and adaptive 
control, and conclude with introductions to specialized and advanced 
topics. All of the theory is primarily about methods for systems 
which are modelled by linear constant coefficient differential or 
difference equations, except when extensions are easily done. 

In all cases, the book's goal is to introduce issues and basic 
approaches. Leads into more thorough or advanced treatments are 
given for each topic, and for each we attempt a brief summary of the 
essential ideas. 

1.7 FOR MORE INFORMATION 

History can be found in fragments in various texts, depending upon 
the detail sought. The article by MacFarlane (1979) is very 
instructive. Astrom and Wittenmark (1990) give an interesting 
perspective on the influence of digital computers. Jury's 
reminiscences (1987) are also helpful. Bennett (1979) has one of the 
few books devoted to a history of the field; he covers the period 
1800-1930. 

This book is not deep, intentionally, since full and detailed books 
can be found concerning almost any single topic mentioned, and the 
individual chapters here offer specific references. The reader might 
consider this book as a somewhat condensed version of the following 
textbooks. 

• Sensors and actuators 
Hunter (1987) 

• Computer control 
Bollinger and Duffie (1988) 
Bennett (1988) 

• Analog control theory 
Dorf (1989) 

• Digital control theory 
- Astrom and Wittenmark (1990) 

Kuo (1980) 
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Franklin, Powell and Workman (1990) 
• Advanced topics 

Bryson and Yu-Chi Ho (1969) 
Anderson and Moore (1989) 
Ljung and Soderstrom (1983) 
Maciejowski (1989) 
Astrom and Wittenmark (1989) 

This list is by no means a complete bibliography, nor is any 
mentioned book necessarily the best in the field for all topics 
considered. Instead, we mention them here to give the reader some 
notion of what books represent a class of books relevant to the topics 
listed. 
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Control systems are the subsystems of plants which generate and send 
the commands to the plants' 'working' components. Hence, they are 
the elements which turn motors on and off, regulate inputs, record (or 
log) data on the processes, send messages to operators, etc. The level 
of sophistication is decided at the systems engineering stage, with the 
goal of using control components and techniques appropriate to the 
task - neither using a supercomputer to turn a heater on and off nor a 
commercial personal microcomputer for a sophisticated satellite 
antenna pointing system. The various decisions involved are aspects 
of systems engineering, and require decisions at a number of levels. 
This chapter explores only two levels: system structuring and 
component selection. 

2.1 SYNOPSIS 

The objective of systems engineering is to provide orderly overall 
management of the development and operation of systems. It is this 
management aspect that the engineer must keep in mind, often at 
several levels simultaneously. Among the intermediate level problems 
are the selection of the layout, or structure, of the control system. 
Here it is decided whether control is centralized or distributed, and 
whether in multiple computer cases the computers interact at all, and 
if so, whether hierarchically. 

At the lowest level are the problems of component and algorithm 
selection. Objective evaluation is possible in several different formats: 
qualitative checklists, qualitative/quantitative ranking and weighting, 
and quantitative scoring. A knowledge of how project costing is 
evaluated is essential to contributing to business decisions. 
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2.2 MANAGEMENT-LEVEL CONSIDERATIONS 

The top level of systems engineering is the program planning level. It 
is likely to deal heavily in general rather than specific systems 
elements, with specifics derived as needed from lower level studies. 
The study may be of whether a new or refurbished plant or assembly 
line or a new ship control system should have an overall digital 
computer control system and even whether a flexible manufacturing 
system (FMS) is to be installed; the impetus may have come from 
one or more of several sources, such as salesmen talking to 
management extolling the virtues of specific systems or a researcher 
finding that further automation of the assembly line might be expected 
to produce better quality control. 

At this level are investment decisions and operations management, 
both of which are beyond the scope of this book. 

2.3 SYSTEMS CONFIGURATION ENGINEERING - THE 
INTERMEDIATE LEVEL 

The intermediate level in computer control systems is the 
configuration design. Choices must be made as to quantities to be 
measured and logged, quantities to be controlled, how automatic 
operations are to be structured, how communications are to be carried 
out, etc. All of these choices are specific to the task at hand, but do 
not necessarily involve particular component selection. Configuration 
design can be among the most difficult parts of design: the answers 
must allow for a great many, possibly only partly known, factors. 

2.3.1 Closing the loops 

For many control problems, the system to be controlled is a relatively 
uncomplicated one: a motor to be speed controlled or an amplifier to 
be frequency-response compensated. For these, the theoretical 
classical control methods, which are largely single-input-single-output 
(SISO) and which require well structured problems, are directly and 
obviously applicable. 

Larger problems will typically require many more decisions, with 
choices which mayor may not be obvious. Among the choices are the 
following: 
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1. measured variables; 
2. controlled variables; and 
3. control technique, both algorithms and structure. 

Tying these together are the system requirements, and the final 
choices are often arrived at through an iterative process. This 
iteration may proceed from the top down or the bottom up, i.e. from 
the specifications through increasingly lower level decisions as to 
detail or from step-by-step build-up from component control up to a 
major system. 

The choice of controlled variables is sometimes obvious, but even 
simple systems can show subtleties. Hence, fluid flow can be 
controlled by controlling a pump's speed, by using a constant speed 
pump plus a valve, or by maintaining a suitable head in the liquid 
supply tank. Another example is that a boat's course can be affected 
by rudder action or by the differential speed of dual propellers. 

Similarly the choice of measurements may be obvious, subtle, or 
simply expedient. For the fluid flow problem mentioned above, one 
might measure the actual flow or the supply tank depth, for example. 
Additionally, the need for instrumental or other compensation may 
dictate that temperature be measured. Furthermore, it may be 
necessary to measure disturbances and compensate for them. 

The control approach must be selected. One common method is to 
use pair-wise matching of measurements and control variables; this 
tends to yield thousands of control loops in large process controllers. 
In other applications such as aerospace navigation and control, the 
inputs and outputs are treated in groups using multiple-input-multiple­
output (MIMO) control algorithms. 

Associated with algorithm choice, but different from it, is the 
choice of control structures. MIMO controllers may use a 
modern state estimator cascaded with an optimal controller, for 
instance (see Chapter 29). In basically SISO approaches feedback 
control will almost certainly be used. Beyond feedback are other 
possibilities, including cascade (nested) and feedforward controllers 
(see Chapter 34). 

For a large plant, many such choices will be made. The result of all 
of these choices, when combined, is a system. Even a portion of the 
system wi1llook complicated, as can be seen in the following example. 
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Example 

A detailed and instructive example is given by Singh et al. (1980, pp. 
185+) based on a simplification of regulators used by Foxboro 
Company on ships. The ships are turbine powered and require 
superheated steam at constant pressure in the presence of a need for 
variable quantities of steam. The main control variable is the fuel 
flow rate to the burners of the boiler, and the approach is to act on the 
enthalpy of the saturated steam. As presented by the reference, the 
design progresses in a bottom up manner as follows. 

The basic situation is shown in Fig. 2.1, and the progression of loop 
installations is given in Fig. 2.2(a)-(d). 

Air 

Ventilator 

Ventilator 
vane controller 

STEAM 

BOILER 

Steam pressure sensor 

BURNER 

Fueillow control Steam How rate sensor 

-~ -0f-F;:-ue7.,,:-C-,ow-:-:Crat-:-:-e sensor 

Fuel supply 

Figure 2.1 A steam boiler tank, with its various sensors and actuators. 
The object is to supply a regulated amount of steam energy to an engine. 

The reasoning behind the development is straightforward. 

1. The first loop to install is the principal one: a regulator with a 
measurement of steam pressure as input and a command to the 
fuel flow rate valve as output (Fig. 2.2(a». 

2. Evaluation shows that, since the above command is to the valve, 
the flow rate can still vary because of pressure variations in the 
fuel supply. Although these pressure variations would eventually 
affect the steam pressure and cause valve commands to change, 
improved regulation is achieved by measuring the actual fuel 
pressure and using this to generate a secondary command to the 
valve (Fig. 2.2(b». 
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Figure 2.2 Stages in development of feedback control for the boiler using 
process control (PC) elements: (a) steam pressure feedback to fuel valve; 
(b) addition of fuel flow feedforward; (c) addition of steam pressure 
feedforward; and (d) control of air ventilator based upon air flow rate and 
fuel flow rate demands . 
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3. If the motor demands more steam suddenly, this may be seen as a 
disturbance to the steam pressure maintenance system. Because 
of the size of the boiler, however, there may be a time constant in 
sensing this disturbance using pressure. To achieve a rapid 
response to this situation, a flow rate sensor is installed to 
provide a further (feedforward) input to the fuel valve controller 
(Fig. 2.2(c». 

4. Combustion also requires air to burn with the fuel. Maintenance 
of the proper air/fuel ratio is therefore also necessary and 
requires control loops. The amount of air needed is provided by 
a constant speed fan directed at variable-opening vanes (a classic 
case of using constant supply plus valving rather than variable 
supply). Hence the primary control of the air supply is provided 
by a measurement of fuel flow rate input to a controller of the 
vane angles. In addition, air flow reaching the vanes may vary, 
e.g. due to variations in fan speed or to excess or deficit pressure 
due to the burner. To compensate for such effects, airflow is 
measured and used as an auxiliary adjustment to the vane angles. 
These two effects both influence the vane setting (Fig. 2.2(d» . 

In addition, engineering refinements are added, including a limiter 
to process both fuel flow rate and valve opening command and base 
the command on the more demanding value (to overcome time delays 
and avoid smothering the flame in transients due to lack of air) and an 
auto/manual option for vane control. The final situation is 
represented in Fig. 2.3. The figures are based upon Singh et al. 
(1980). 

-~ 3 

Fuels<JWIY 

Figure 2.3 Completed multiloop multi variable control system. 
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We remark that an alternative is to note that steam pressure, steam 
flow rate, fuel flow rate, and air flow are measured variables, while 
fuel flow valve opening and air flow vane opening are the command 
variables. In principle the variables can be taken as interacting and a 
MIMO controller can be designed. 

A MIMO controller analysis can show that SISO controllers are 
sufficient, depending upon the situation. For example, although in an 
aircraft autopilot the roll, yaw, and pitch axes are coupled in an 
important way, a space launch missile will ordinarily be flown in such 
a manner that yaw and roll manoeuvres are small after lift-off. When 
this is so, guidance may well be designed assuming the angles are 
uncoupled; this significantly reduces the navigation problem, for pitch 
commands and engine commands are then the only ones of major 
importance in the orbital injection accuracy. 

2.3.2 Computer control configurations - central, 
distributed, and hierarchical control 

The extremes of the possible computer configurations are shown in 
Fig. 2.4: one has a single central computer and control room with all 
instruments sending data to it and all control commands issuing from 
it; and the other has each loop having its own controller, probably 
based upon a microprocessor, and no communication between loops. 
The two extremes might be called completely centralized control and 
completely distributed control, respectively. 

The arguments for and against the two extremes help to define the 
rationales for the intermediate systems which are more common. 

• 

• 

Centralized computer This system may benefit from the 
economy of scale in having one large computer rather than many 
small ones. It might be expected to provide 'better control' 
because the commands for all the components of the system can, 
in principle, be co-ordinated ones. However, a back-up computer 
might be required to gain the necessary system reliability, the 
cabling to and from the central control room will be expensive, 
and the system may be expensive to trouble shoot and maintain if 
the software is complex. 
Completely distributed control Each control loop is easy to 
understand and tune because the loops are wired independently. 
Wiring costs are minimized. Trouble shooting is straightforward 
(at least as far as breakdowns are concerned), and changes to the 



www.manaraa.com

30 Elements of systems engineering of digital control 

(a) 

(f) 

(f) 

W 
() 

0 
a:: 
n. 

(f) 

(f) 

w 
() 

o 
a:: 
n. 

C 

C 

(e) 

(b) 

C 
Cell 

A~-------~ 

S 

0+--i g (f) 

(f) 

W S ~ 
0 ""0 

0 C 

a:: -i 

n. m 
J) 

c 
Master 

Figure 2.4 Possible computer control configurations: (a) distributed; 
(b) centralized; and (c) heirarchical. S are sensors, A are actuators, Care 
computers. 

plant are relatively easy to make because co-ordination with other 
parts of the plant is not done at the automatic control level. 
However, lack of co-ordination may lead to strange interactions 
of control loops and significant inefficiencies in machine use. 
Tuning of hundreds of scattered control loops is unlikely to be 
done frequently. At least some cabling to a central location will 
probably be needed so that the operation of the system can be 
monitored. 

• Hierarchical control In this scheme, the computers form a 
hierarchy, with some handling direct measurement-controller­
actuator loops, supervisory computers co-ordinating their 
actions, planning computers generating parameters for the 
supervisors, etc. It has characteristics between those of the two 
methods above and is of increasing interest because of the 
potential flexibility available. 
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The choice of structure will be influenced by the plant 
configuration and projections for future changes. The options are 
growing partly because of the rapid lowering of the price of computer 
hardware. 

Hierarchical control structures are worth more discussion at this 
point. A terminology, still only crudely defined, is developing which 
attempts to give a basis for discussing the systems and hence for giving 
a rough notion of the computer power necessary at each level; the 
notions are those of the work cell, the area, and the plant controllers. 

A work cell consists of a few machines or devices which are 
'obviously' best controlled in a co-ordinated manner. Thus the 
elevators, ailerons, and rudder of an aircraft should be moved in a co­
ordinated way during turning manoeuvres. In a plant in which a 
robot is feeding raw materials to a stamping press, the two should be 
synchronized so that the material is properly placed and the robot 
manipulator is out of the way when the stamping is performed. A cell 
might be expected to require a modest computer controller, and it 
might or might not be operated independently of other cells. Its 
computer might be programmed to communicate only modest amounts 
of data to a central control room. It would also co-ordinate lower 
level controllers such as the individual motor controllers of machines 
in its cell. 

The next level in control is the area control. It might be thought 
of as co-ordinating a number of cells, possibly only in a supervisory 
manner. The overall control of an assembly line, with several stages 
of welding robots, painting robots, assemblers, etc., might be vested in 
an area controller, with the painters in one cell, welders in others, etc. 
Office building air conditioning may have room controllers, floor cell 
controllers, and building area control levels. 

In principle, above this level is plant control, in which the 
operations of the entire factory are co-ordinated. 

Other factors can also affect the configuration choice. The decision 
to have a flexible manufacturing system (FMS), consisting as it does of 
several computer numerically controlled (CNC) machines plus 
connecting parts movers such as conveyors and robots, will require at 
least some central co-ordination and an ability to transmit instructions 
or instruction sets from the central computer to the machines; 
coupling such systems with the computer aided design (CAD) office 
will place even more burdens on the computer system, but will lead to 
a goal of computer integrated manufacturing (CIM). The system is 
necessarily hierarchical or centralized. Similarly, the addition of 
sensors and 'intelligence' to a robot cell may determine the computer 
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requirements. The point is that other factors may force certain parts 
of the configuration decision. 

Beyond the aspects of philosophy, convenience, and history which 
affect configurations are other considerations. 

1. In any configuration except completely distributed controllers, 
the control elements must communicate with other elements of 
the control system. Here both the distances and philosophy 
involved become important. The extreme choices here are to 
make each communication channel an ad hoc affair so that some 
signals are over instrumentation type cables (heavy cables 
carrying 4-20mA, say, with shielding), others are computer 
pairs in master/slave configurations, others are computers and 
smart instruments in a computer local area network (LAN). The 
other extreme is a complete LAN for everything. Such 
communication is discussed in Chapter 7. 

2. Almost certainly some decision making will be left to the human 
operators, whether plant technicians or pilots or other operators. 
A centralized controller may be able to handle most set-up and 
operation of the plant, with monitoring and emergency 
interventions done by the operators. This is the basic scheme of 
electric power plants, for instance. On the other hand, a 
distributed system will require operators for each subsystem for 
at least tuning, adjustment to be compatible with other 
subsystems, etc. The burdens, responsibilities, and duties of the 
operators in the configurations are different, obviously, and so 
are their information needs and training. 

2.3.3 The top-down alternative 

If the above approach seems reasonable, it also hints at being 
inefficient. In applications demanding high performance, it may be 
necessary to account for the coupling of loops explicitly. For 
example, in the flight control of high performance aircraft the air 
speed, vehicle attitude, and altitude may all be both controlled 
variables and sensed variables. They are certainly coupled and proper 
aircraft control requires consideration of this coupling. Furthermore, 
these are really only intermediate variables in a situation in which the 
ultimate task is to go from point A to point B or situation C to 
situation D. Simple uncoupled loops may well be inadequate for such 
applications, and the engineer will need all of modern control theory 
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to design the control system. 
The alternative approach is called top-down design, and it starts 

with overall problem definition. and breaks down the problem into 
sub-problems successively until the level of solved problems is 
reached. In principle, this would appear to lead directly to modern 
control theory, multiple-input-multiple-output (MIMO) systems, 
centralized controllers, etc. In fact, it pardy does so in the case of 
flight controllers and similar systems, where the models of the system 
dynamics are well known and performance criteria are easily 
established. In the case of process control, however, the breakdown 
may come to quite low levels for the simple reason that low-level 
problems have existing solutions but often do not have the structure 
needed for modern MIMO methods. 

The first choices at any level are an interlocking net of choices on 
what is to be controlled, what is to be measured, and what the control 
variable is to be. The designer will be aware of several possibilities 
for each choice. 

2.4 CHOOSING SYSTEM ELEMENTS 

The time finally comes to buy hardware or choose control algorithms 
and start closing the loops. When closing the loops, components must 
be selected, as must control algorithms, communications and its 
cabling, etc. Each step requires a conscious choice among real 
alternatives: no longer is the choice between central computer and co­
ordinated cell controllers, but between brand A and brand B of cell 
controllers, between two methods of temperature sensing and 
components which do them, etc. Making these choices can be made at 
least somewhat orderly by considering technical factors, price, vendor 
support, and even personal prejudices in a straightforward way. The 
factors can be combined qualitatively, quantitatively, and by 
combinations of the two. In this section, these approaches are 
demonstrated. 

2.4.1 Assumption: configuration known 

The assumptions made at this level of systems engineering are that a 
set of specifications exists and that a configuration has been chosen. 
Thus, an actual choice of methods or components is to be the result. 
The choice could be between two control laws, with criterion to be the 
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quality of control as measured by variance of the controlled variable, 
and with the control computer (and hence available computer power) 
'given'. It could be between five programmable logic controllers 
(PLCs), with several factors included in the choice, as in the 
minicomputer choice below. It could be between several temperature­
sensing methods, with criteria centering on reliability and 
maintainability. The point is that the trade-offs are now precise 
because the situation is well defined. 

For computer selection, for example, the configuration definition 
would include the computer size and speed, its VO elements, and the 
types of computations to be performed. These definitions help to 
define the class of candidates. Thus it would be known at evaluation 
time whether a microcomputer, minicomputer, mainframe, or 
supercomputer is required, and how much storage is required. 
Knowing the VO elements, particularly the number of digital and 
analog inputs and outputs in the control systems case, may narrow 
down the architectural choices. The type of computations, e.g. 
whether the utilization is predominantly number-crunching, logical 
operations, or input-output in nature, also defines the system 
requirements. This knowledge is typically derived from knowledge of 
similar systems, analysis of the task, and from simulation. 

2.4.2 Selection factors - technical, support, financial 

The factors influencing selection of a system fall into three categories: 
technical performance, vendor support, and financial aspects. 

Technical performance must be established for the device sought. 
For example, in the case of computer systems, there are several 
technical performance factors to be considered. These include both 
hardware and software elements of the system. 

Hardware considerations start with the raw architecture of the 
machine. The number of bits in words of various types (addresses, 
data, bus size) will influence many aspects of performance. The user 
will be interested in speed of operation and throughput, particularly 
for certain defined operations. The throughput and capability of VO 
devices and peripherals will also be a consideration. 

Software factors will include the number of assemblers, compilers, 
and special programs available. A critical point may be whether an 
appropriate operating system is available. Off-the-shelf systems may 
include a software package; this should be examined for general 
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capability, and for ease of programming. De-bugging aids should be 
available. 

Related to both of the above, but perhaps more of a hardware 
consideration, is the ability to expand the system under consideration 
by adding more memory, more interface elements, and 
communications, etc. Modularity is often prized for this reason, as 
well as for maintenance ease. Upward compatibility with more 
powerful systems may be a factor if increased demands are 
anticipated. 

Performance can be difficult to predict for actual installed systems, 
even though instruction speeds are well known. This is for a number 
of reasons, but mainly because applications have a mix of instructions 
and because compilers may vary in their usage of powerful 
instructions and code optimizations. For this reason it is not 
uncommon to demand benchmark tests of candidate computer systems. 
Such tests usually involve prediction of execution times, or actual 
running of benchmark cases, for particular problems. 

Support factors in the decision to select a piece of equipment are a 
variety of influences which are real but perhaps difficult to quantify 
precisely. One of the first among these is reliability, usually given in 
terms of the mean time between failures (MTBF). This can be very 
difficult to discover, and may require interviewing other users of the 
equipment in question. Somewhat related is the mean time to repair 
(MTTR), i.e. the time to repair a non-functioning device. Also 
associated with the issue of reliability and maintenance is the 
availability of parts and access to trained service personnel. 

Any purchaser should attempt to acquire proper documentation 
along with purchased equipment: user instructions, repair manuals, 
and, for electronic equipment, wiring diagrams. The latter two are 
particularly important for buyers who intend to perform their own 
maintenance. 

Related to hardware maintenance is software maintenance, in that 
similar problems arise. The buyer would certainly like to have good 
documentation. Even more, perhaps, (since software always seems to 
have bugs and improvements are frequent) the buyer would like 
assurance that software will be delivered on time and will be kept up 
to date by the manufacturer. 

Other factors will include warranties, if any, and the general co­
operation of the seller. Computer warranties are typically 60-90 
days, for example. Seller co-operation in installation, rectification of 
problems, etc. should be assured, but sometimes the sellers are sales 
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personnel working for a distributor rather than manufacturers. 
Judgments in this area are intangible, but can be crucial. 

The obvious financial factor is price, but this must be considered 
along with possible discounts, contract terms, and eventually life-cycle 
cost. Even overlooking the high-level factors in systems financing 
such as profitability and pay-back periods, the predicted costs 
associated with a particular piece of hardware may diminish 
substantially if the equipment is reliable (implying low repair costs 
and small loss of production due to down-time) and good contract 
terms are available. 

Another direct financial factor is the cost of installation, with it 
being important whether the buyer or the vendor does the installation, 
and in the latter case whether the cost is already included in the price. 
Similar comments apply to maintenance: who does it and what is it to 
cost? 

Intangibles among the financial factors are the ability of the vendor 
to fill orders on time and at quoted price, the marketing support 
which the vendor has (is there supplier back-up?), and the vendor's 
future competitive position (is there risk of going bankrupt?). The 
engineer is not necessarily expected to be a financier concerning these 
matters, but should certainly be aware that they should influence the 
decision-making process. 

2.4.3 Combining the factors - qualitative, rankings, 
quantitative 

The above section presents many factors to be considered in choosing 
a system. Since it is rare that a single candidate is clearly best on all 
counts, a rationale is needed for combining the considerations. This 
should be done as an aid to decision making, rather than a 
commitment to choosing the 'best' by some arbitrary weighting of 
factors. To this end, the factors may be jointly considered in several 
different ways. 

1. Qualitative evaluation In qualitative evaluation, each factor 
of interest is considered for each candidate and a subjective rating 
assigned. The subjective ratings may take on three, up to five. or 
seven different levels, depending upon the situation. A three­
category rating, for example, is 'good', 'adequate', and 
'deficient'. Two possible additional categories are 'excellent' and 
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'inadequate'. Table 2.1 shows such a ranking for four candidate 
systems using the factors discussed above. 

Table 2.1 Evaluation summary using qualitative ratings 

Criteria Device 

A B C D 

Technical 
General design + + ..J 
Ease of use + ..J ..J ..J 
Modularity/growth potential ..J + ..J ..J 

Support 
Expected reliability ..J + + ..J 
Documentation ..J + ..J 
Warranty ..J ..J ..J ..J 
Vendor operation + ..J 

Financial 
Ability to fill order ..J + ..J ..J 
Prices + + ..J 
Vendor stability ..J + ..J 

+ = Good/excellent 
..J = Adequate/satisfactory 
- = Poor/deficient 

With the guidance of this table (which might be a compilation of 
results from having several experts consider factors in their areas 
of expertise - a Delphi method) the decision maker hopes to be 
closer to a decision. In this particular case, device D is clearly a 
poor candidate. Although at first glance, device A appears 
superior to device C, one should note that device C is satisfactory 
for most factors. Is there an engineering advantage in having 
device A exceed the levels required? One is inclined to extend 
this question to device B, and finally choose device B not because 
of all the 'goods' but because it shows no deficiencies on the 
factors considered. 

2. Ranking and weighting If the above seems unsatisfactory 
because there is no final winner, and more so because it appears 
to make 'ease of use' equal in importance to 'prices', a more 
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quantitative approach may be taken. In this system, each factor is 
assigned a weighting to indicate its relative importance and, for 
each factor, each candidate is placed on a numerical scale. Thus 
relative weightings might be 0-10 for 'unimportant' to 'very 
important', and factors might be 0-4 for 'bad' to 'very good'. 
Table 2.2 shows example weightings and the bases for the scoring 
of factors in technical and vendor evaluations. 

Table 2.2 Criteria for ranking/weighting type 
evaluation 

Criteria 

Technical 
General design 
Ease of use 
Modularity/growth potential 

Support 
Expected reliability 
Documentation 
Warranty 
Vendor operation 

Financial 
Ability to fill order 
Prices 
Vendor stability 

Weighting 

10 
8 
4 

8 
5 
4 
3 

8 
7 
5 

An application of these criteria to the four devices is shown in 
Table 2.3. For each factor, scoring was on the basis of 0-4, with 
o for inadequate and 4 for superior. 

3. Quantitative evaluation Strict quantitative evaluation is a 
further continuation of the scheme of the previous section. Its 
paradigm is the price/performance ratio, e.g. dollars per digital 
I/O channel of a programmable logic controller (PLC), but it can 
have many forms . The point is that each system is judged 
according to some function of its characteristics. The problem is: 
what function is appropriate? 
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Table 2.3 PerfJrmance score 

Criteria Device 

A B C D 

Technical 
General design 40 30 20 10 
Ease of use 32 32 16 8 
Modularity/growth potential 8 16 8 8 

Support 
Expected reliability 16 24 32 16 
Documentation 0 10 20 10 
Warranty 4 4 4 4 
Vendor operation 12 6 3 3 

Financial 
Ability to fill order 16 24 16 16 
Prices 28 21 7 7 
Vendor stability 0 6 12 6 

156 173 138 88 

A possible function for price/performance of computer hardware 
IS 

P _ cost 
h- f 

where f is some function of internal storage, bits in address, 
number of registers, memory cycle time, arithmetic instruction 
set power, logic instruction set power, and I/O capacity. 

A similar function for software is 

P _ cost 
s- g 

where g is some function of availability of diagnostic routines, of 
debugging routines, of loader routines, number of assemblers, 
number of compilers, and operating system power. 

Such a function was used by Butler (1970) with 

39 
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. .. {I no. of address bits } 
f = 0.1 * (memory SIze In bIts) * 2" + 2*word length in bits 

+ ~ {fl (arithmetic, logic, I/O instruction types)} 

+ 100*(no. of extra features) 

+ 50*(no. of general purpose registers) 

where T = computer read/write cycle time, and fl = valuation from 
o to 300, depending on hardware instruction capabilities, and with 

g = 500*B(debuggers) +B(diagnostic routines) +B(1oaders) 

+ 1000*(no. of assemblers) + 2000*(no. of compilers) 

+ 50*gl (operating system properties) 

where B(x) = I if at least one x routine is present, and 0 otherwise and 
gl = valuation from 0 to 100. 

This particular example is arguably little more objective than those 
of the qualitative and the ranking and weighting methods; although 
many of the factors are demonstrably objective, others and the 
combining are not necessarily entirely objective. 

The point of the above is not to find the 'winners' in these studies, 
but to indicate how scoring, prices, etc., are guides to evaluation. 
Decisions are judgements made after considering the data sensibly and 
from several viewpoints. 

2.5 COSTING 

It is worthwhile for the engineer to have some knowledge of costing 
and financial evaluation of projects. We touch on those by indicating 
the cost of some components and systems, and by presenting one such 
method (internal rate of return). 
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2.5.1 Examples of costs 

It is necessary for the student to appreciate the amounts of money at 
stake in computer control and computer co-ordinated data logging (a 
less demanding task in that the outputs are allowed occasional errors 
because they are not real-time effective). To this end, Table 2.4 is 
presented. Other prices will appear later in the book. 

Table 2.4 Rough prices of alternatives in computer control 

System or component Cost ($) Comments/examples 

Microprocessor chip 10--100 Chip only 
Microcomputer PC 500--10000 Includes a few 110 channels. Not 

industrially hardened 
PLC 1000 up Cost around $100 per digital 110 

pair 
PID controller 600--2000 Single channel of input and ontput 
CAD workstation 20000 up Not an on-line device. Included to 

give perspective 
Controller system 15000 up Basic system with several digital 110 

channels and some analog capacity. 
Expandable at around $100 per 
digital 110 and $1000 per several 
PID channels 

Minicomputer 50000 up DEC V AX. system 
Main-frame computer 500000 up Moderate IBM system 
Supercomputer 30 million 
Common instrument! 500--1000 A temperature sensor 

sensor 
Special instrumenti 50000 

sensor 
Actuator/control 500--700 Small valve with motor 

element 

The reader will appreciate that these are 'order of magnitude' 
numbers only. Computer system peripherals, for example, can add a 
factor of two to the costs of the computer systems. Systems costs are 
very particular, and different systems may have different costs. 

Some system costs are $300000 for a control system refit of a small 
power station, $150000 for an industrial robot with a vision system, 
and millions of dollars for advanced aircraft electronics (of which the 
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control systems would be a fraction). A small simple university pilot 
plant may incorporate $25000 in control computers, sensors, and 
actuators. 

2.5.2 Internal rate of return 

Costing principles should be considered by engineers at all stages, 
even though their primary inputs may be technical. In making a 
capital decision, a common parameter is the internal rate of return, 
i.e. the rate of interest the expenditure would have to generate to 
provide equivalent after-tax profits. Equivalent to this is the 
pay-back period, the time by which the profit increase will repay 
the capital expenditure. Thus an initial (capital) investment of $C on 
an object with n-year lifetime, if it leads to an annual cash savings of 
$S, will show an internal rate of return I given by the solution of 

n I 
$C = $S I (1 + I)k 

k=l 

and a pay back period of 111. 

Example 

Examples of the calculations are given by Hall and Hall (1985) for a 
robot with vision in a materials handling application (Tables 2.5-6). 
The initial investment has two components: hardware (capital 
expenditure) and start-up costs. 

The system is assumed to have a five-year life with no residual 
value (actually, robots are being found to have working lives in the 
range of 8-10 years), with straight-line depreciation of the hardware 
costs, yielding ($124800/5 =) $24960 per year depreciation. 

The cash flow effects are due to taxation, assumed to be at a 50% 
rate, and to productivity increase of 10 parts per shift at $50 per part; 
manpower is unaffected because present workers are either retrained 
to operate the robot or transferred to other tasks due to the increased 
workload attributable to the robot. Two-shift operation is envisaged, 
and 200 working days are assumed. 

Cash flow in the first year then has the components shown in Table 
2.6. 



www.manaraa.com

Table 2.5 Costing for a robot installation* 

Capital investment 
Robot 
Manipulator 
Safety equipment 
Vision system 
Conveyors 
Other 

Costing 43 

$66800 
4000 
4000 

40000 
5000 
5000 

Total $124800 

Installation costs 
Feasibility study (400 hr @$20lhr) 
Engineering (200 hr @ $20lhr) 
Site preparation (80 hr @ $15lhr) 
Installation (80 hr @ $20/hr) 

$8000 
4000 
1200 
1600 

Total $14800 

Total initial costs $139600 

* Derived from Hall and Hall (1985). 

Table 2.6 Cash flow for robot evaluation* 

Productivity (20 parts/day x 200 days/yr x $50/part) 

Less: Energy (electricity) usage 
(30 kW x $O.04/kW-hr x 3200 hr/yr) 

Maintenance (3.75% of equipment cost) 
Insurance (5% of equipment cost) 

Plus: Depreciation 

Total before taxation 

Taxation effects: 
Tax savings due to start-up expenses (first year) 
Tax credit for investment (10% first year) 
Tax on cash flow 

Total tax paid 

NET CASH FLOW 

* Derived from Hall and Hall (1985). 

$200000 

-3840 
-4680 
-6240 
24960 

$210200 

$7400 
12480 

-105100 

$85220 

$124980 
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The numbers remain essentially the same for succeeding years, 
except that all but depreciation are increased by 5% due to (assumed) 
inflation. Hence, we have net cash flow for the second to fifth years as 
follows 

Second year 
Third year 
Fourth year 
Fifth year 

$109731 
114594 
119699 
125060 

From this, the internal rate of return is approximately I = 0.80, a 
very good figure. The pay-back period is about 1.25 years. (Less than 
a 2-year pay-back is often sought, although it is claimed that the 
investment-minded Japanese businessman may settle for five years.) 

2.6 SUMMARY 

These last few pages are included primarily to give an introduction to 
the nature of the problem faced by the systems engineer in the control 
systems field and to indicate that it is possible to be systematic in 
evaluating alternatives. It should be stressed that there is no algorithm 
for evaluation at any level of the systems engineering process, i.e. 
there is no checklist which, faithfully followed, will yield a best 
solution. Rather, there is a systematic way of thinking about the 
problems which may be helpful in design and procurement stages. 

2.7 FURTHER READING 

This chapter has considered only a minor subset of systems 
engineering - intermediate design exemplified by the closure of loops 
and structuring of the computer system, and alternatives in semi­
objective component selection. A minor addition, useful both for an 
example of costing and the handling of finance, was also presented. 
Further reading is in a variety of areas: 

1. Systems engineering approaches can be pursued in Sage (1977) 
and in IEEE Transactions on Systems, Man, and Cybernetics. 
There have been attempts to give a general perspective of systems 
engineering ; Sage is one starting point for this. Systems 
engineering has also had a more particular meaning for some 



www.manaraa.com

Further reading 45 

writers, and really means computer systems engineering to them. 
The computer science literature contains several texts of the 
specialized computer systems engineering variety. 

2. Control systems engineering for process control systems is 
covered at many different levels in magazines such as Control 
Engineering, Control and Instrumentation, and I&CS. 

3. Flexible manufacturing systems (FMS), work cells, and area 
control are popular topics of the above-mentioned magazines. 
The recent text by Groover (1987) is very helpful concerning 
manufacturing processes. Hierarchical control is the topic of at 
least one monograph: Singh (1980). 

4. Example trade-off studies are difficult to come by, but helpful 
information is usually to be found in magazines such as Control 
Engineering and in manufacturers' literature. The magazines 
periodically present data on topics such as PLCs. 

5. An important topic which we have not covered here, but which 
influences system layout, is human factors. System operation 
can be strongly affected by information displays to human 
operators, for example. A text in this area is McCormick and 
Sanders (1983). Operator reactions to new process controllers 
have been reported by the magazines. A brief mention is given 
later in Chapter 5. 

More general approaches into management are in the operations and 
production management texts such as Heizer and Render (1988). 
Management for engineers is given in Samson (1989). 
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Sensors and 
instrumentation 

In this book we choose to work from the process back to the 
controller on a system such as is indicated abstractly in Fig. 3.1 and 
more specifically in Fig. 3.2. The immediate connections to the 
process are the sensors which measure the state of the process and the 
actuators which influence the control elements to adjust the process. 

For this example, to know the temperature, the computer must be 
connected to a transducer such as a thermocouple through devices 
which convert the sensor's output to a binary number represented in 
bits of 0 or 5 volts, and this number must be made available to the 
computer in an orderly manner. The computer output is also one or 
more binary numbers; for these to be useful, they must at least be 
displayed and in control loops they must lead to an action. This action 
is done by actuators such as motors and solenoids which manipulate 
control elements such as valves to implement the computer's 
commands. 

The devices which gather the data and which interface them to the 
control computer are the subject of this chapter; the devices which 
implement the commands are the subject of Chapter 4. 

3.1 SYNOPSIS 

Of itself, a computer is incapable of dealing directly with other 
devices - it must be attached to them with interface equipment. The 
idea is shown in Figs 3.1-2. 

There are many types of transducers for many physical quantities, 
and these directly or indirectly give electrical outputs which can be 
sampled for use by the computer. When chosen they typically have a 
number of characteristics which are specified, including accuracy, 
size, typical application, and price. After looking at these, this chapter 
briefly outlines a few of the common sensor types with emphasis on 
transduction, that is, how they operate to give electrical outputs 
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Bus 

Sensor 1 

Sensor 2 

Sensor 3 

PROCESS 

Control9leiMOf 2-' 
~_-j ________ ...J 

Figure 3.1 Block diagram showing computer connected via a bus to its 
own peripherals and to the sensors and actuators associated with the 
controlled process. 

Desired 
temperature 

,-------, 

Water outlet 

Water inlet 

Discharge Thermocouple 

Figure 3.2 A more specific version of Fig. 3.1. The process is the supply 
of heated water, the controlled variable is water temperature, and the 
controller variable is the valve admitting steam to the heat exchanger. 

corresponding to the physical quantity being measured. We notice 
that a typical process control application may have a great many 
sensors accurate to better than 1 % at a cost of several hundred dollars 
each. 
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Since the computer requirements are ultimately for low voltage 
binary signals, signal conditioning and possibly conversions from 
analog to digital and back are often necessary. We briefly consider 
such conditioning and conversions. 

3.2 SENSORS AND INSTRUMENTATION 

The computer senses the external world, and in particular the plant to 
be controlled, by means of transducers which convert physical 
phenomena to electrical signals. These signals are then converted as 
necessary to a form which the computer can process, i.e. to binary 
words of some number of bits, each bit having voltage of 0 or 5 V and 
appropriate impedance matching. The data are carried to the 
computer using pairs of wires, coaxial cables, or increasingly by 
optical fibres, depending upon the environment. Sensors are readily 
available to measure light, temperature, position, velocity, chemical 
composition, force , acceleration, motion, etc. Clever use of raw 
transducers and electronics allows many other variables to be sensed. 

3.2.1 Transduction principles 

It is the ability of the control system to sense what is happening that 
gives it the knowledge to behave intelligently in its role. The basis of 
sensing is the use of a transducer to transform a physical phenomenon 
into an electrical signal, which may then be processed into a form 
suitable for the computer. The sequence is shown in Fig. 3.3, but it 
must be observed that many of the steps may be optional. For 
example, a micros witch may need only a buffer to contain its result 
for the computer. 

Sensors may be classified in many ways, but it is most 
straightforward to classify by the quantity sensed, as this is arguably 
one of the most useful approaches. Starting with this, we describe the 
transducers by the following: 

1. measurand; 
2. transduction principle; 
3. (optional) special features, special provisions, sensing element; 

and 
4. range and units. 
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(a) 

I SENSOR I 

11 
Signal condilioner 

Analog 10 Dig~aJ conversion 

Bllfering and addressing 

~ COMPUTER 
Cofr4>u\er buses (address, data, conlrol) 

(b) 

(Light, force, heat, etc.) 

(Semiconductor, thermocouple) 

(Amplification, filtering) 

(Counts to rpm, frequency) 

Conversion to digital signal (ADe) 

Transmission to computer 

Figure 3.3 Two points of view of sensing procedure: (a) the computer­
based view; and (b) the functional view. 

The measurand, of course, is the quantity such as flow rate, velocity, 
or pressure which is being measured. The transduction principle is 
the scheme by which the measurand or one of its physical effects is 
converted to an electrical signal by exploiting special properties of an 
object such as a wire or a semiconductor. 

Transduction principles in common use often measure the change in 
some electrical circuit property and from this infer the change in the 
measurand as follows. 
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1. Resistive The resistance of a metal changes with its 
temperature, cross-sectional area, and length. One or more of 
these is employed in developing a great many transducers: for 
temperature using the thermal response, for displacement using 
length as in potentiometry, for force or pressure using strain 
gauges in which the wires are stretched, etc. 

2. Capacitive Capacitance may be changed by moving a 
capacitor's plates relative to each other or by changing the 
dielectric. One application uses a liquid dielectric, so that 
changes in liquid level yield changes in capacitance. 

3. Electromagnetic Relative motion between a magnet and a 
sensing or pick-up coil will produce an output voltage. One use 
is in tachometry. 

4. Inductive Similar to capacitive in philosophy, the inductive 
transducer uses the displacement of a coil's core relative to a coil 
to change its measured inductance. 

5. Photosensors The measurand of photoconductors is converted 
to a change in the resistance of a semiconductor material by a 
change in the amount of light incident upon that material. The 
common CdS cell used in photography is an example. In 
photovoltaic transducers, the impinging light produces a voltage 
proportional to the light intensity. 

6. Piezoelectric Certain crystals will, when mechanically 
stressed, produce a change in electrostatic charge which can be 
measured. This is useful for force and pressure measurement. 

7. Thermoelectric A voltage is produced (Seebeck effect) when a 
joining of dissimilar metals is heated relative to another such 
joining (the reference node). This is the property exploited in 
thermocouples. 

3.2.2 General properties 

For any sensor, both the static and dynamic properties will be 
important. The static properties include accuracy and precision, 
reproducibility, and the functional relationship between measurand 
and input. The character of the time response, including how long it 
takes for the device to settle to its new output value after a change in 
the measurand, constitutes the dynamic properties. We examine the 
properties by considering what might be in typical device 
specifications, as in Table 3.1. 



www.manaraa.com

52 Sensors and instrumentation 

Table 3.1 Typical specification block 

Model No. 
Type 

Input signal 
Range of operation 
Output signal 
Accuracy 
Repeatability 
Speed of response 
Reliability 

Size 

Mounting 
Environment 
Power requirements 

Special properties 
Guarantee 
Design date 

Typical application 

TC-JO Temperature Sensor 
Thermocouple K 

Temperature 
- 200cC to 1200cC 
4-20mA or 0-10V 
±0.2% of span 
±0.1% 
Fast 
5 years w drift compensator 

Probe lengths: 10cm-1 m 
Body: 12cm dia. x 7 cm 
On tank wall 
-40cC to 100cC 
12-35VDC 

Low cost 
90 days 
1987 

Chemical vat temperature 

Shows typical (there are no standards) block as might be 
seen in manufacturer's brochure. 

Let us consider the information given. 
Model Number is the company's part identification for the figures 

quoted. Type is the nature of the sensor: thermocouple, strain gauge, 
accelerometer, etc. 

The device's basic characteristices are defined in terms of its input 
signal (e.g. temperature, force, flow rate), range of operation 
(e.g. 0-500 cC, 0-5 kg, 0-50 l/min), and output signal. Common, 
near standard, options for the latter include analog signals such as 
4-20 rnA, 0-5VDC, O-IOVDC, and digital signals with connections 
satisfying RS-232C or IEEE 488 (HPIB) (Chapter 8). 

Various operational accuracy and reliability characteristics are 
sometimes given. Often specified are accuracy, usually meaning 
percentage deviation from the true value and given as either 
percentage of measured value or of full range, with typical numbers 
the order of 0.1 %. Particularly when the output is non-linearly 
related to the actual value, its repeatability may also be specified in 
a similar manner; thereby the possibility of calibration is presented. 
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The precision, often called sensitivity, defined as the minimum 
input change needed to register a change in output, and indications of 
reliability or of lifetime may also be given. 

Physical characteristics of the sensor system such as size and 
mounting are of interest for most applications. Necessary power 
supplies should be indicated, including both character (e.g. 
pneumatic, electric) and amount (e.g. 20psi, lOwatts at 24 VDC). 
Environment characteristics of interest are at least allowable 
temperature range and often include humidity, shock, vibration, and 
other properties. 

The summary will usually make a brief claim about other 
characteristics of the device or its builder. Special properties may 
include the meeting of certain standards (e.g. MIL-SPEC in the US, 
other standards association rules), availability of support personnel, 
claims about cost effectiveness (actual costing is probably subject to 
quotation). Guarantees may be stated, and the design age may 
indicate something about the technology used. Finally, it is common 
to indicate typical applications, so that the purchaser may be able 
to gauge whether the sensor is suitable for the proposed use. 

We elaborate on certain aspects of the instrument's performance 
which may be only alluded to in specifications. First, and obviously, 
the sensor output will be some function of the measurand (Fig. 3.4). 
It is usually most convenient if the relationship is linear over the 
values of interest, and closeness to linearity may be included in the 
specifications. 

A non-linear relationship, or one which varies due to some 
disturbance (e.g. many devices are temperature sensitive), can usually 
be compensated by calculations in the computer, provided the 
relationships are reproducible, that is, that they are known, repeatable, 
and one-to-one to within some limits which may be specified, often as 
a percentage. Significant hysteresis or non-linearity of the device will 
lead to poor reproducibility. The above are static response properties. 
The other important part of the response characteristics is the 
dynamic, or time, response. The question here is: How rapidly does 
the sensor output take on a new value when the measurand changes? 
The typical model of the device response is that the output yet) to an 
input quantity x(t) satisfies a differential equation of the form 

dy(t) 
't dt = -yet) + bx(t) (3.1) 
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Figure 3.4 Input/output relationships possible with a sensor. Linear is 
preferred, but known non-linear relationships can be compensated in a 
computer. Multi-valued sensors are ambiguous unless special action is 
taken or input variable constraints are imposed. 

Eventually, if x(t) = X, a constant, then yet) ~ Y = bX and the 
output is proportional to the input. However, if the time constant 't is 
large, it may take a long time for this to happen, as the solution of the 
above is 

yet) = (y(0) - Y) e-(t/t) + Y (3.2) 

and hence yet) will show an error of 37% of (y(0) - Y) after a time 'to 

More complex dynamic response is possible, but will not be pursued 
here. We mention, however, that accelerometers are often mass­
spring-damper mechanical systems and exhibit a response associated 
with a second order differential equation. 

The importance of time lags such as that above depends, as does 
almost everything in systems, on the actual system under study. Five 
seconds can be a long delay in some systems, whereas 20 minutes is 
short in others. An inferred value, computed from a relationship of 
two measurements containing lags, can be seriously wrong even if 
both measurements are 'almost' correct, as can be seen from Fig. 3.5. 



www.manaraa.com

Commercial sensor packages 55 

2 

(/) x 
...... 
::J 
0-...... 
::J 
0 
.... 
0 
(/) y 
C 
Q) 
(f) 

. ..... -....... ::'1. ................................ . 
" '"''''''------_ ._---

0 

Time 

Figure 3.5 It is not infrequent that a ratio of sensed values is used in 
controL If the sensors have differing time responses, the ratio can be 
temporarily misleading. 

3.3 COMMERCIAL SENSOR PACKAGES 

Commercial sensors usually come packaged, including some signal 
conditioning, robust packaging and mounting, and perhaps with digital 
output. It is becoming more common for the sensor package to 
contain a microprocessor, and some manufacturers have programmed 
this to give an intelligent (or smart) sensor by incorporating unit 
conversion, linearization, communication capability, and sometimes 
even simple control laws. 

3.3.1 Sensor examples 

We present here a few examples of sensors, grouped essentially by 
measurand or application. The list is nowhere near exhaustive, and 
the information concerning the types is not uniform. 

Example sensors 

• On-off 
• Temperature 
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Thermocouples 
Resistance thermometers 
Quartz thermometers 
Radiation pyrometers 

• Displacement 
Contacting sensors 
Non-contacting sensors 
Direct digital readout sensors 
Synchro transformers 

• Ranging devices (radar, etc.) 
• Time 
• Pressure and force 
• Liquid level sensing 

Float valves 
Immersed sensors 
Ultrasonic sensors 
Differential pressure sensors 

• Flow measurement devices 
Orifice type devices 
Turbine meters 
Electromagnetic flowmeters 
Positive displacement meters 

• Tachometers - velocity and speed 
DC tachogenerators 
Counters - digital tachometry 

• Accelerometers 
• Attitude sensors - gyros 
• Light sensors - basic methods and devices 
• Others 

Of these, the most common sensors in process control are probably 
those that measure temperature and flow. In aerospace applications, 
the most important are those that measure acceleration and attitude. 

3.3.2 Temperature sensors 

Temperature is the most commonly measured quantity in process 
control, and arguably is the most commonly measured of all variables, 
although it would seem that size or distance might be a candidate for 
the latter prize. The most common temperature sensors are 
thermocouples, resistance thermometers, quartz thermometers, and 
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(a) 

(b) 

Figure 3.6 Temperature sensing: (a) thermocouple tips are only bonded 
wires; and (b) when mounted in probes and inserted in pipes, they look like 
many other sensors. 
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radiation pyrometers. Of these, the first three are contact-type 
sensors, in which the sensor is in contact with the substance whose 
temperature is being measured, and the fourth is non-contact. 

Thermocouples are quite stable. They operate over wide 
temperature ranges, having electrical signals as output. Their 
advantages include their small size, ease and flexibility of mounting, 
and low cost for materials. Disadvantages include the need for a 
reference junction or simulation thereof, low DC output requiring 
amplification, and drift in calibration as the alloys gradually change 
composition. Typical packaging places the sensor in a long slender 
rod to be inserted into the substance measured and includes a protected 
head containing amplifiers and other signal conditioning electronics. 
Range and other characteristics vary with the choice of metals, as in 
Table 3.2. 

Table 3.2 Thennocouples 

Type Materials Range Sensitivity Accuracy· 
eC) ~VloC (OC) 

K Chromel/ Alumel -200 -1200 38.8 ±0.7 
J Iron/constantan o -760 52.6 " 
T Copper!constantan -200 - 370 40.5 ±0.5 
R PlatinumlPt o -1450 12.0 

1 Using polynomial over part of range 

Figure 3.6 shows thermocouple connections, which are simply 
bondings of two different wires (actually two such are needed, the 
second as a reference called the cold junction), and a transducer 
mounted on a probe containing the sensor. 

Other methods are also used. 

1. Resistance thermometers depend upon the fact that the electrical 
resistance of materials varies (usually increases with metals) in a 
specific and reproducible way as temperature increases. 

2. For the quartz thermometer, the conversion principle is that the 
device will change (slightly) in size with temperature changes; 
this is sensed indirectly, as a change in resonant frequency . 

3. The radiation pyrometer is basically a simple optical system with 
a means, such as a thermocouple, for measuring the heat focused 
by its lenses. Since the temperature of the surfaces is inferred 
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from the heat radiation they emit, the measurement is contactless 
and the device is not subject to wear through heat, corrosive 
action of the substance being measured, or frictional heat and 
damage from measuring moving surfaces (such as hot steel in a 
rolling mill). It is required, however, that the surface have an 
emissivity high enough to give reasonably accurate measurement. 

Other possibilities include mercury and other thermometers and bi­
metallic strips. 

Depending upon the technology chosen, temperature can be 
measured with accuracy/reproducibility in the order of ±0.05°e to 
± I °e, and environmental ranges as subsets of - 200 °e to 1500 oe. 
Time lag for an infra-red sensor may be of the order of 50 ms, while 
thermocouples may be of the order of seconds or, with cladding, 
minutes. Prices are of the order of $500 for thermocouples and 
resistance thennometers. 

3.3.3 Displacement measurement 

Displacement is measured either for its own sake or as part of the 
sequence of inferring other quantities such as pressure and 
acceleration. There are many variations on displacement sensing, 
although one typically measures either linear displacement or angular 
displacement. Even this split is not clear-cut, for it is quite possible to 
convert linear displacement to angular or vice-versa (e.g. using 
crankshafts and rods); a common instance of the former is the 
measurement of distance in an automobile by, in effect, counting 
wheel revolutions. 

Most displacement transducers have a sensing shaft which is 
mechanically connected to the point or object whose position is to be 
sensed. This mechanical connection is then also attached to a fixed 
sensor mounting, and the position of the shaft relative to the mount is 
transduced. Simple transducers may have the shaft physically move 
capacitor plates or dielectrics, wiper arms on either potentiometers or 
rheostats, a core in a coil (inductor), etc. Slightly more elaborate are 
schemes in which the shaft moves a shutter between a light source and 
a photoconductive or photovoltaic cell or cells. 

The basic principle of contacting displacement sensors - that a 
change in position will lead to a change in resistance (or capacitance 
or inductance or transformer characteristic) and that the resulting 
electrical characteristic cm. be measured and from it the displacement 
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inferred - is straightforward. The variations of materials, sizes, and 
gearing (to change operating range) for different requirements of 
accuracy and environmental conditions seem endless. Resistance 
potentiometers, for example, can exhibit ranges in angular 
measurement from a fraction of a turn to 10 turns, and similar sized 
versions (say 5 cm in diameter and 3 cm long plus shaft) may have 
accuracies of I % or 0.01 %, with corresponding costs ranging from a 
few dollars to many tens of dollars. Linear variable differential 
transformers (LVDTs) may be miniatures accurate to ±O.OOlllm or 
large versions with a range of 15 cm. 

Although it is common to have analog readouts followed by analog 
to digital converters (ADCs) for displacement measurement, the above 
methods can usually be adapted to give a direct digital readout of the 
displacement, either incrementally or absolutely. A common example 
is the absolute shaft-angle encoder, in which light sensors record the 
presence or absence of light through a slotted shaft-mounted disc, and 
the array of the on-off signals, converted either photovoltaically or 
photoconductively, together with knowledge of the position of the 
holes in the disc gives the shaft angle to within 36012n deg, where n is 
the number of photoreceptors. 

A linear contact displacement transducer using L VDT technology 
might be of the order of lOmm diameter by 50mm long, with 
accuracy around ±0.4 mm. Environmental constraints would limit 
frequency to less than 200 Hz and temperatures to 0-50 dc. 

3.3.4 Ranging devices 

These are devices such as radar and sonar. The principle here is to 
radiate pulses at ultrasonic, radio, or other frequency and measure the 
time delay until a reflection of that pulse returns. An ultrasonic 
ranger can be accurate to better than 0.01 % full range, work in -5 DC 
to 65 DC, and cost the order of $2000. 

3.3.5 Time measurement 

Time is critical in many control applications. It is often not so much 
absolute time (day of the week, time of day) which is of importance, 
but relative time (from one valve opening to another, from one output 
command to the next input sample). Time can either be sensed from 
the external world or counted internally. 
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External sensing is usually based upon using a synchronous AC 
motor running from the electricity supply as provided by the local 
electrical power utility (at 120 V or 240 V and 50 Hz or 60 Hz) plus 
appropriate gearing. 

Internal clocks are based upon the counting of oscillations of a 
resonating electronic circuit. A common oscillator is a simple quartz 
crystal plus amplifiers and voltage supplies. Simple circuitry can be 
used to count the oscillations and output pulses periodically for a 
variety of uses. Digital watches illustrate how small and inexpensive 
such devices can be. 

3.3.6 Pressure and force sensors 

Pressure sensing is done in two stages: conversion of pressure to 
displacement or force, and conversion of the displacement or force to 
an electrical signal. In a typical system, as installed in an industrial 
environment with temperature extremes, shock, vibration, occasional 
overload, corrosive agents, etc., accuracy may be expected to be of the 
order of 1 %, although higher accuracies such as 0.1 % are obtainable 
and 0.01 % might be possible in principle. 

A typical pressure or force sensor is a device accurate to ±O.25% of 
full range, 2 ms response time, based upon strain gauge technology, 
and costing several hundred dollars; part of the cost, as in much 
industrial equipment, is for ruggedness sufficient to cope with 
expected temperature extremes, shock, vibration, occasional overload, 
corrosive agents, etc. 

A commercial differential pressure transducer is shown in Fig. 3.7. 
A pair of strain gauges, mounted so that the difference of their outputs 
represents the twist of a shaft, can be used for torque measurement 
and are shown in Fig. 3.8. Both operate by conversion to an electrical 
signal of the displacement of sensors mounted on a surface of known 
displacement vs. force characteristics. 

3.3.7 Level sensors 

Level sensing, for applications such as measuring the depth of liquid 
in a tank, is generally done by the mechanical conversion of level to a 
displacement, using for example a float in a liquid, followed by the 
measurement of the displacement by a displacement transducer 
mechanically connected to the float. When this is not possible, there 
are a variety of other methods available, including the following. 
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Figure 3.7 Differential pressure sensors measure the difference of two 
input pressures and have many applications. In this case, one of the inputs 
is at atmospheric pressure and the other is liquid at the bottom of a tank. 
This allows the inference of liquid depth in the tank. 

10 
CIfI. 

Figure 3.8 These strain gauges are mounted on a shaft to allow the 
measurement of shaft twist and the inference of torque. 
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• Electrode methods The principle is that the liquid is allowed 
to rise and fall between two electrodes. Depending upon the 
liquid involved, the accuracy needed, and range of measurement, 
the resistance, conductance, or inductance between the electrodes 
is measured and used to infer the level of the liquid (see Fig. 
3.9). 

Figure 3.9 The outside of a capacitive liquid depth sensor shows nothing 
of its action. A probe is inserted into the liquid, which is the capacitor's 
dielectric, and the capacitance is measured by simple circuits in the head 
shown. The resulting inferred depth is, in this case, transmitted to a PLC. 

• Ultrasonic sensor This in essence measures the distance from 
a fixed mounting to the surface of the contents of a container of 
known depth. 

• Hydrostatic head methods The pressure of the liquid at some 
point (say, the bottom) of the containing tank is measured using 
pressure measuring instruments. The depth of liquid above the 
mounting point is inferred from this pressure. 

• Thermal methods The fact that heat transfer from a wire to a 
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liquid is different from the transfer to the vapour above the 
liquid is exploited. 

3.3.8 Flow measurement devices 

Flow measurement devices are widely used and appear in a variety of 
applications. Measurands include gases, liquids, and slurries. Flow 
measurement is sometimes claimed to be the most important 
parameter in a variety of industries dependent upon the transference 
of bulk liquids. 

Flow may be measured either as a rate or a quantity (the latter 
being equal to the integral of the former). The various devices used 
are ultimately either inferential (i.e. the output implies but does not 
measure the flow directly) or direct (i.e. the quantity is the flow, as in 
piston-type meters below). 

• Orifice type devices Here Bernoulli's principle is exploited 
to obtain a pressure drop through an orifice. This drop is 
measured using pressure sensors and the flow rate is inferred. 

• Turbine meters These are based upon the principle that an 
impeller placed in a fluid flow will rotate at a rate proportional 
to the flow velocity of the fluid. Flow rate is then inferred from 
a measurement associated with the impeller rotation rate. 

• Electromagnetic flowmeters These are particularly suitable 
for measuring flow of sludges, slurries, and electrically 
conducting liquids. In such flowmeters, a magnetic field is 
created perpendicular to the flow of the liquid. Since the liquid 
is then a conductor moving in a magnetic field, an elementary 
generator is created whose output voltage is proportional to the 
speed of motion of the fluid. 

• Doppler f10wmeters These provide a non-invasive flow 
measuring technique. They use an ultrasonic transmitter, an 
ultrasonic receiver, and a Doppler frequency conditioning unit, 
all mounted outside the pipe. The transmitter emits a continuous 
tone which is reflected back to the receiver by particles and 
discontinuities in the liquid stream. 

• Positive displacement meters These actually measure all of 
the liquid flowing, instead of inferring it as in the above 
methods. The input fluid is trapped briefly in a container of 
fixed size which is then emptied into an output pipe or channel; 
all the fluid must pass through the container, so the system simply 
records the number of containers-full to find the flow. 
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Two small flow transducers are shown in Fig. 3.10. 

(a) 

(b) 

Figure 3.10 Two industrial flowmeters: (a) an electromagnetic type; and 
(b) a rotating impeller type. Both are on 2.5 cm pipes. 
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One Coriolis effect mass flowmeter is accurate to around ±O.2% full 
range, with that range being selected from 0-1 to 0-9000 kg/min. For 
liquids, a volumetric flowmeter with range chosen from 0-100 to 
0-17000 IImin at an accuracy of ±l % full scale is available. 

3.3.9 Tachometry - speed measurement 

Speed control, to wit, the Watts governor, constituted one of the 
earliest problems in machine control. Mechanical devices for 
governing or indicating speed are still common, but they are 
ultimately of limited accuracy - a few per cent at best. The 
measurement of speed of rotation of a revolving shaft is common 
today both for direct speed indication, e.g. of automobiles, and for 
sensing of quantities such as flow in turbine flowmeters. Two types of 
transducers are common: generators whose output voltage is 
proportional to speed of rotation of the shaft, and counters which 
respond as a point on the shaft passes a sensor. 

• DC tachogenerators use the fact that the output voltage of a 
DC generator varies linearly with the rotation rate of the shaft. 

• Digital tachometers use one of several possible methods to 
generate pulses as the shaft rotates and then count the pulses. The 
number of pulses per time interval divided by the number of 
pulses per revolution yields the rotation rate in revolutions per 
time interval. 

3.3.10 Accelerometers 

The basic sensing element of acceleration transducers is the 'seismic 
mass', a mass restrained by a spring and having a damper on its 
motion. When the transducer is accelerated along the allowed axis, 
the mass moves relative to the case. The displacement of the mass is 
measured by anyone of several methods and from this the 
acceleration is inferred. 

A somewhat different conversion approach is evidenced by strain­
gauge and piezo-electric accelerometers, with the measurement being 
more directly of force rather than of displacement. The basic idea of 
the piezo-electric design is that the seismic mass compresses a piezo­
electric crystal, while in strain-gauge transduction, the seismic mass is 
essentially suspended from the strain gauge. 
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A commercial accelerometer utilizing the piezo-electric effect can 
show accuracy of ±O.l % full scale for a scale chosen from ranges 0-
2G to 0-200G. Such a device may be small (1 x 2 x 0.3cm) and 
work in a temperature range -40°C to 85°C at a cost of a couple of 
hundred dollars. A more elaborate and sensitive device for seismic 
event sensing might trigger on as little as 1 mG, be around 300 x 300 
x 100mm, and cost around $1000; it would need special mounting to 
avoid triggering on, e.g. passing truck traffic. 

3.3.11 Attitude sensing - gyros 

The sensing of the angle an object makes with some reference falls in 
the realm of attitude sensing. For example, we use a compass to 
determine the direction of magnetic north and thus which direction we 
are facing. In fact, there are a number of references possible and 
hence a number of possible instrument types. Few of these are 
important in process control, but one is crucial in aerospace 
applications and this last, the gyro, is briefly reviewed here. 

Inertial reference sensing is based upon the fact that a rotating body 
will continue turning about a fixed axis without change in rotation 
speed unless it is acted upon by an external torque. Thus a gimbaled 
rotating wheel will maintain its axis of rotation; by reading the gimbal 
angles, we may find the attitude of the gimbal frame relative to the 
axis of the wheel. This is the principle of the gyroscope, perfected by 
Sperry in about 1912-14. 

The free (or two-degree-of-freedom) gyro is commonly used in 
attitude sensing. It supplies two angles whose interpretation depends 
upon knowledge of the gyro spin axis orientation. For example, if the 
spin axis is vertical, then the two axes supply pitch and roll attitude 
information; if the spin axis is horizontal, the angles supply yaw 
information and either roll or pitch or a combination, depending upon 
initial orientation. 

3.3.12 Light measurement 

Very useful non-contacting measurement devices are often based upon 
sensing of light radiation (including infra-red). There are a large 
variety of devices based upon each of several potential methods: 
photoemissive methods, photoconductive, photovoltaic, and 
phototransistor. Each of these has its advantages and disadvantages. 
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3.3.13 Others 

Many other quantities can be sensed, but have not been described 
above. Material compositions can be determined or inferred; one 
common example is the measurement of pH in liquids using membrane 
and electrochemistry methods. Magnetic field strength measurement 
is essential in nuclear magnetic resonance (NMR) devices and has 
many uses. Mechanical properties such as hardness and density are 
often instrumented. Humidity is measured using several types of 
hygrometers. New in the industrial context, if not in medical 
laboratories, are sensors for biological variables. Some very 
interesting sensor studies are associated with robotics, where vision 
and tactile systems are receiving intense research (Fig. 3.11). 

Figure 3.11 Advanced sensing: a CCD camera mounted on a robot arm 
and aimed at the manipulator. 

3.4 COMPUTER TO SYSTEM INTERFACES - ADCs 
AND SIGNAL CONDITIONERS 

The digital computer is restricted to use numbers represented in 
binary with two voltage levels, typically 0 and 5 V, to represent 0 and 
1 (off and on) for each binary digit (bit) of the number. Very few 
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sensors and actuators work directly in this binary system with these 
levels. Such sensors include shaft encoders; a common actuator is the 
stepper motor. For most sensors, the transduced output to the 
computer is a voltage or current (proportional to the variable sensed) 
lying in a continuous range over the instrument's full scale; similarly, 
actuators such as servomotors expect a voltage or current input, 
possibly a fairly powerful one. Under these circumstances, before 
computers can process the data, sensor outputs must be converted to 
binary using analog to digital converters (ADCs) while computer 
outputs must be converted back to continuous levels using digital to 
analog converters (DACs) before the data can be transferred to 
another device. Furthermore, it may be necessary to 'condition' the 
signals by changing their levels, converting from current signals to 
voltage signals (or vice-versa for the outputs) and possibly by filtering 
to remove noises or interferences from AC power lines and devices. 
In the following subsections we consider ADCs and some of the 
associated circuitry. 

3.4.1 Analog to digital converters (ADes) 

There are several types of converters which take a single signal in the 
range 0-5 V (usually) and output several pulses in parallel, each either 
o or 5 V and each representing one bit in a numerical binary 
representation of the input level. Depending upon the approach used 
and details of its implementation, the representation usually has 8-16 
bits, with 10 or 12 bits commonly found, and the conversion takes a 
few tens of nanoseconds up to tens of milliseconds. 

The popular types of converters include successive approximation 
converters, flash converters, ramp and dual slope converters, and 
voltage-to-time and voltage-to-frequency converters. For our 
purposes, the last two are intermediate stages for the conversion to a 
binary word, although they may be directly used in some 
instrumentation applications. 

3.4.2 Associated components 

Although the actual converters are the dominant elements in ADC and 
DAC operations, practical systems usually have several other elements 
associated with them. We briefly review them here. 
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Sample and hold 

Although some ADCs are sufficiently faster than the signals they must 
convert, so that the signal is essentially constant during the interval 
during which conversion occurs, often it is better to freeze the signal 
during conversion. This freeze not only prevents strange errors (such 
as could occur if the signal moved from vrecl2 + E to vrecl2 - E during 
successive approximation conversion), but allows precise definition of 
the time instant at which the sample applies. The operation of 
freezing the value, called 'sample-and-hold' and often implemented as 
'track-and-hold', is implemented by straightforward electronic 
circuitry with the generic characteristics of tracking error, settling 
time, and holding time. 

In operation, the units are typically integrated circuits (ICs) with 
solid state switching. The control signals come from the computer or 
from some other source, typically a clock. 

Along with their virtue of freezing the signal for conversion, 
sample-and-hold units are also useful for ensuring simultaneity of 
sampling of several signals. 

Multiplexers 

An ADC may only be needed for conversion of a particular signal for 
a few milliseconds every 1-20 s. A way to share the converter and the 
addressing, buffering, etc., circuitry between it and the computer, is 
to use a multiplexer. This device is essentially a multi-input-single­
output switch - the output line is time-shared by the incoming signals 
in a manner called time division multiplexing in communications 
systems. The multiplexer is usually controlled by the computer, 
which decides which input is fed through to the output at any given 
time; another possibility is a simple periodic time sequencing of the 
allocation. 

It is quite possible to multiplex at other levels; it is not uncommon 
to multiplex raw thermocouple outputs prior to conditioning, 
amplification, and conversion. 

Signal conditioners 

Signal conditioners are used to provide amplification, filtering, 
linearity adjustment, and perhaps type conversion for the arriving 
signals. Thermocouples, for example, must be amplified from their 
level of millivolts to the 0-5 V range typically required by the ADC. 
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Current signals (usually 4-20mA) must be converted to voltage 
signals (basically by passing them through a resistor). Linearity 
adjustment may be done either by the conditioner or the computer. 
Offsets such as the 4 rnA in current signals are usually removed. 

One important element of the signal conditioning is frequently the 
low-pass analog filter. Often called a guard filter, its role is to 
make certain the signal to the ADCs contains no frequencies higher 
than (1I2T) Hz, where T secs is sampling period. An effect called 
aliasing could arise because it is impossible from the samples to 
distinguish a signal such as sin(wt) from sin(wt + 21tkt/T), where 
k = integer> 1. This problem may be avoided only by insuring that 
the signal received by the ADC contains no components at the higher 
frequencies. 

3.4.3 Commercial signal conditioning systems 

A user can always build up a signal conditioner/sample-and­
hold/multiplexer/ADC and buffer/DAC systems, with the required 
addressing from the computer, use of control lines, etc. Cost for 
elements other than ADCs are typically in the $2-20 range per IC 
package. ADCs cost $5 up to $100s depending upon speed and 
number of bits; 8 bits at 40 J..ls conversion are among the low priced 
units. 

The alternative is usually attractive: purchase a commercial data 
acquisition unit. These are modules, often immediately compatible 
with popular computers and 'hardened' besides, which perform all of 
the above tasks. They vary in size, capabilities, and cost, but with 8 
analog I/O and 4 digital I/O a cost in the range $500-1500 for an IBM 
PC compatible unit could be expected. Related to these are the 
modules readily available for programmable logic controllers (PLCs), 
discussed in Chapters 5 and 8; a cost of $1000 for 8 channels of input 
or output, analog or digital, could be expected. 

3.5 INTELLIGENT INSTRUMENTS 

Sensors/transducers convert a physical change into an electrical signal; 
except for some modest conditioning, interpretation is left to the 
computer systems, and calibration may be left to manual means. 
Smart sensors do this, plus convert the signal into a directly useful 
form or even a decision. Such sensors are quite new and are 
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undergoing rapid development. The key notion is that such devices 
combine a sensor/transducer with signal conditioners and a 
microprocessor in a single package. 

The capabilities added by the microprocessor include the following: 

1. linearization and conversion to engineering units; 
2. compensation for environmental factors (usually temperature 

and sometimes pressure) through the use of auxiliary built-in 
sensors; 

3. communication with other control or data logging system 
elements in a standard format; 

4. sensor self-checking and diagnosis with appropriate indicating 
outputs; 

5. decision making and (perhaps) control actuation; and 
6. remote reprogrammability or parameter adjustment. 

One typical application is in temperature sensing using a non­
contact infra-red (IR) sensor. The reprogrammability can be used to 
change the parameters when the product is changed, thus allowing for 
the differing emissivity of the new components. 

Correction for sensor non-linearity is obviously needed before 
display of the inferred variable, in this case temperature, and 
correction for ambient temperature of the sensor and electronics may 
be necessary. Conversion to standard communication format removes 
a burden from the supervisory computer, as does self-checking. 
Decision making, such as determining and sending commands (for 
heating or cooling, say), may not only remove a burden on the 
supervisor but lead to tighter control loops, to improved stand-alone 
capability for part of the system, and to a decrease in factory wiring 
requirements. 

Smart sensors are available which determine presence or absence of 
objects through shape or colour recognition, object positioning 
through switches and proximity sensors, measurements such as 
thickness, and several other quantities. Important applications include 
inspection. 

3.6 FURTHER READING 

Discussion of instrumentation, actuators, and their interfaces appears 
in many textbooks; much of the above general overview is based upon 
Mansfield (1973). Extensive treatment of measurement, including 
devices and signal processing, is presented by Doebelin (1990). 
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A recent textbook with much practical engineering information is 
Derenzo (1990), and a more general process control text is Hunter, 
(1987). One book devoted to intelligent instruments is Barney (1988). 

Recent texts which are helpful include Borer (1985). Those 
wishing to explore the electronics aspects might consider Jacob (1988) 
or Webb and Greshock (1990). 

Definitive information on particular devices must come from the 
manufacturers and to a lesser extent from the trade magazines such as 
Instrumentation and Control, Control Engineering and Automation 
and Control. The latter are particularly helpful in keeping up with the 
rapidly changing aspects of applications, such as intelligent 
instrumentation. 
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Control elements, 
actuators, and displays 

The reverse operation of computer data gathering is information 
output, particularly data display and control commands. We now look 
at the interface aspects of these - the transduction of the computer 
words to signals appropriate for operating valves, moving dials, 
running motors, etc. In this context, a control element is a device 
such as a valve, an actuator is a motor or solenoid which opens and 
closes the valve, and a display is an indicator on the operator's 
console. 

4.1 SYNOPSIS 

Because a computer works with binary words consisting of 0 V and 
5 V bits, its outputs are rarely of direct use. A plant needs motors 
turned on and off, valves opened and closed, heaters adjusted, 
operator information displayed, etc. Hence the computer outputs must 
be processed. 

The computer words must be transduced to other forms and are 
usually first conditioned. Thus the computer words are first 
amplified, perhaps converted to another electrical signal using 
modulation, and then used to control electromagnetic fields, heating of 
wires, lighting, and small motions, using various physical effects. 
These effects are either the final process control elements themselves, 
or are used to operate actuators which affect elements such as valves 
which adjust the plant variables. 

The key ideas then are those associated with transduction of 
electrical signals to other physical signals and with the specification of 
control elements; the latter is the primary feature of this chapter. 

An alternative to control output is the provision of information to 
operators using dials, flashing lights, and audio signals. The 
transduction here and the human factors characteristic of the displays 
are both of interest. 
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4.2 ACTUATORS AND TRANSDUCTION 

There are few direct control actuators, i.e. devices which take the low 
voltage electrical signal and convert it to fluid flow rate, temperature, 
acceleration, etc. Rather, the signals often command valve openings, 
switch openings and closings, amplifier outputs, etc. The valves, 
switches, airplane flaps, etc., are the actual control elements, the 
devices which affect the process; many of them have local feedback to 
maintain a commanded opening, and thus the elements are themselves 
servomechanisms. When packaged as such, they are smart controllers 
and are analogous to smart sensors. 

Among the few direct transductions of electricity to other physical 
quantities are: 

1. force or torque via EMF 
2. heat 
3. light 
4. displacement 

These appear to be the principal quantities to which electricity may 
be transduced, but usually the low-power output of the digital 
computer is inadequate for them. Amplifiers and signal conversions, 
such as to frequency or analog values via digital to analog converters 
(DACs), are therefore required, and such signal conditioning becomes 
part of the computer output process. 

The transduction principles from electric signals to motion, heat, 
etc., are applied either directly to control a process or themselves are 
used in controlled subsystems to command the control elements (as in 
use of a motor to open/close a valve). Five simple principles of 
transduction are given below. 

4.2.1 Linear-acting devices 

A very common device which converts an electric current to linear 
motion (and hence to sound) is the audio loudspeaker. The relay is 
similar in operation, but it is used for switching of electrical signals 
and is in effect a sort of binary amplifier or signal conditioner. An 
electromagnetic device, used for translation of an electrical command 
into a mechanical straight-line motion, ordinarily has a moving core 
which is connected to the moved system, but fixed core moving 
electromagnet devices are not uncommon. 
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4.2.2 Rotating devices 

When the magnets and fields are arranged so that the force is applied 
about an axis so that a torque is obtained, we enter the class of devices 
leading to motors, where great variety is obtainable and the 
applications seem endless. Motors may be applied in such a way that 
the important output is the torque, speed, or angular displacement. 
With eccentric cams they can be used as counters, and with crankshafts 
a conversion to linear force or motion is possible. 

4.2.3 Transduction via piezo-electricity 

When the surface of a piezo-electric material is displaced, a small 
EMF is generated; alternatively, when a small voltage is applied to 
such a material, the material will expand. This property is difficult to 
use effectively, but it does have applications as a displacement 
transducer for precision alignment. 

4.2.4 Heating 

Electrical heating is the result of passing currents through conductors. 
Often an unwanted side-effect of the use of electrical components such 
as amplifiers (where the high temperatures can affect accuracy of 
operation and reliability), the effect is sometimes sought for heating of 
small amounts of liquids and gases. In such cases the conductor is 
chosen for its electricity to heat conversion properties. The heating is 
proportional to the applied electrical energy, so variable control is 
possible, but it often seems that on-off control such as in domestic 
water heaters is the most common form. 

4.2.5 Light 

As with heaters, special conductors will, when electricity is applied, 
yield an output energy of a different form, in this case visible light. 
An alternative to using incandescence is to use the gases, such as 
fluoron and neon, which will emit visible light when electricity is 
passed through them. Also, special materials struck by an electron 
beam will either emit light (as in cathode-ray oscilloscope devices) or 
change their light reflecting properties. In all of these, the light tends 
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to be used in signalling and communications rather than as a direct 
control quantity. 

4.3 CONTROL ELEMENTS AND ACTUATORS 

High power requirements in many applications make direct use of 
electrically-driven actuators uneconomic if not nearly impossible. 
Large amounts of heat are best produced by combustion of 
biochemical fuels such as gases, petroleum, coal, or wood products 
(which are typically the source of the electricity in any case). Moving 
large valves, for many reasons, is often done hydraulically or 
pneumatically. In such cases the computer control system commands 
small electrical transducers which then become the inputs to large 
hydraulic, pneumatic, mechanical, etc., controllers. For example, a 
small stepper motor may position the valve of a hydraulic actuator for 
a very large door on a gravel bin feeding a crusher. With a balance 
of some kind in the valve, it itself becomes a control system. 

In this section we look briefly at some common actuators or 
controller devices. The first of these are necessarily the amplification 
devices, since few devices other than display outputs are driven 
directly by the computer power supply. 

4.3.1 Amplifiers 

One of the simplest devices supplying a sort of binary amplification 
effect is the mechanical relay: a small voltage input may move the 
contacts engaging a high power signal. The relay is a binary amplifier 
- on or off - but is very common and inexpensive. Solenoids may be 
latched or in pairs, used basically for on-off applications such as valve 
opening-closing, or may be opposed by a spring so that the 
displacement is proportional to the applied electrical signal. In the 
latter instance, typical applications are again valve opening or closing, 
with the relaxed position of the electromagnet being typically 'valve 
closed' (for safety reasons). A small solenoid activated valve is shown 
in Fig. 4.1. 

Ordinarily the signal to a solenoid, loudspeaker, relay, etc., must at 
least be in analog form and often it is amplified. Frequently it is even 
an AC (alternating current) signal. 

Solenoids can be simple and inexpensive, being a few cubic 
centimetres in size and costing tens of dollars, but costs can vary 
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Figure 4.1 A simple solenoid on/off valve. 

upwards with higher prices charged for environmental sealing (often 
hennetic), heavier contacts, and more robust devices. Many small on­
off valves for liquids are solenoid actuated and, including the valve 
mechanism, cost the order of a hundred dollars. Actuation signals can 
be mains AC or various levels of DC: common input voltages are 24 
or 40 VDC, but 12 VDC is becoming more common as computer 
control becomes more common, because 12 V is often readily 
available within the computer power supply. 

Solid-state relays, essentially semiconductor switches, are also 
possible and are frequently used. 

Amplifiers which take the DC analog outputs of digital to analog 
converters (DACs; see below) and give higher power DC outputs are 
also straightforward at lower power levels. Single chips are sufficient 
for the amplification necessary to drive loudspeakers, for example. 
The problem is that in all amplifiers, the input is essentially 'opening a 
gate' to let through an externally supplied higher power capability. If 
this must be DC, the supply of such a power source can itself be 
expensive. This is because the supply will ordinarily be from an AC 
source, which must be rectified and controlled to give the necessary 
direct current. For this reason, other means are used at higher power 
levels. 
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4.3.2 Motors 

Motors are either AC or DC, with advantages to each; AC machines 
dominate when larger power requirements are needed, whereas DC 
motors are often used for positioning when lower power is demanded. 
A special case of the DC motors is the class of stepper motors, which 
have many poles and can be accurately moved one pole position at a 
time, in steps. 

Motors have a great many applications and hence there are a great 
many sizes and styles of motors. We distinguish two types of tasks 
here: power suppliers and position controllers. This is rather 
arbitrary and is done mostly to give the flavour of the tasks involved. 

In the class of power suppliers are motors applied for powering 
pumps, conveyor belts, etc. Also included are the large and important 
traction motors, used for example in railway locomotives. In 
applications, many of the former class are simply on-off devices for 
which it is only necessary to supply a steady power source when 
operation is desired. Although they may need special start-up 
procedures, these can often be applied locally with manufacturer 
supplied hardware. The control task is one of sequencing the start-up 
events. 

Table 4.1 Actuator motor specification - typical 

Type 

Torque 
Travel 
Speed 
Operating period 
Size 
Power requirement 
Environment 
Typical application 
Extras available 
Special features 
Price 
Warranty 

Electric, part-turn actuator motor 

300nrn 
120· 
30s full arc 
Intermittent, 5% time, to 1200c/h 
50 x 80 x 70 cm; 50 kg 
220V 50 HzAC 
- 20DC to 60 DC 

Valve operation 
Shaft position feedback transducers 

$2000 
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The second class typically requires speed control in addition to start­
up and similar sequencing. The precise application of power to the 
traction motors of a locomotive is critical to smooth and efficient 
operation of railways. The use of variable speed pumps, as opposed 
to constant speed pumps with throttled outputs, is an energy saver in 
the process control industry. Electric pumps of small size are shown 
in Fig. 4.2. 

The position control motors are used in a number of applications 
in which rotary motion, or a geared derivation of it, is to be precisely 
controlled. These include small applications such as pens on x-y 
plotters, larger ones such as joints on robots, and still larger ones for 
valve opening and closing. The motors in these applications are 
somewhat specialized and fall into two general classes: servomotors 
and stepper motors. Each is a design problem to create, and a control 
problem to drive properly. A servomotor with most of its control 
electronics is shown in Fig. 4.3. 

At its heart, a stepper motor is a many-pole DC motor, often with 
a permanent magnet in the small sizes. Careful selection of the 
windings to be energized means that a more or less precise alignment 
of the shaft may be obtained; switching to another set then leads to 
motion to a new configuration. With appropriate interfacing, the 
device can be used in a motion control system. They have several 
advantages: 

1. they give the appearance of being digital in nature and are 
therefore easily interfaced with digital controllers; 

2. since positioning is accurately controllable, sequences of positions 
can be carefully timed to lead to precise control of velocity and 
acceleration profiles without the need of encoders, tachometers, 
etc.; and 

3. they are fundamentally simple and rugged, so reliability and long 
life come naturally to them. 

Stepper motors are common in computer disc drives and are often 
used in small robot applications; larger robots use electric 
servomechanisms for joint movements, while the largest may have 
pneumatic or hydraulic elements. 

Problems with the devices lie with their basically underdamped 
stepping characteristic, but manifest themselves at the possibility of 
getting out of step with the commands and hence no longer having the 
shaft angle the controller assumes they have. 
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(a) 

(b) 

Figure 4.2 Electric powered pumps: (a) a small centrifugal pump; and 
(b) a modest motor driving a positive displacement pump. The latter is 
needed because the pumped quantity is a slurry. which is too thick for a 
simpler pump. 
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Figure 4.3 A servomotor. Mounted on the motor is an electric 
tachogenerator for speed sensing, while the belt drive is attached to a 
potentiometer for shaft angle sensing. The necessary electronics for the 
control of the servo are mounted next to the motor. 

Servomotors are intrinsically AC or DC electric motors specially 
designed and controlled for applications in which shaft position or 
velocity and the attainment of specified values of such are of 
importance. Thus it is really the system, rather than the isolated 
motor, which is important to the control system designer (unless the 
task is to design a servomotor system). 

The advantages of the servomotor systems over stepper motors are 
typically those of degree. Servomotor systems are available, using 
either AC or DC motors (and hence requiring DC or AC power 
supplies), capable of the order of up to 8kW of power and 50Nm of 
torque in the range of a few thousand rpm rotation speed. Some can 
accelerate quite rapidly if necessary, e.g. at up to 3000rad/s2. Special 
circuitry can even make them appear as stepper motors with tens of 
thousands of counts per revolution. For small precisely controlled 
positioning applications, manufacturers are making these a viable 
alternative to stepper motors , 

Electric motors vary widely in price, depending upon power and 
type; large ones require auxiliary circuitry for starting, which adds to 
the price. The servomotor in the figure was configured for 
educational use at a cost of a few thousand dollars complete, whereas 
quite small servos may cost a few tens of dollars. 
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4.3.3 Heater systems 

Heating can be controlled in two ways, depending upon the heat 
source. Electric heaters are directly controlled, whereas heat 
exchangers are controlled using valves, motors, etc. 

The simplest heaters are probably the small resistive coils operating 
directly from the AC power supply and controlled by an on-off 
switch. These are useful for small applications (such as home hot­
water heaters) in powers up to several kW. 

Large scale heating in industry seems to use steam or hot water, 
piped around the plant as necessary. The heat supply to a particular 
location is then controlled by a valve. We remark that the production 
of the steam is itself a control system problem, with a boiler to be 
regulated and water and fuel to be supplied to it. In fact, boiler 
control is one of the major control system problems in electric power 
stations. 

4.3.4 Coupled transducers and control elements 

Some final control elements are electrically controlled in a way that 
closely couples the electrical transduction to the element. This is 
particularly true in force-balance arrangements, in which typically a 
small solenoid is leveraged to balance and, through mechanical 
linkages, control a power source. We elaborate somewhat upon this. 

Many actuators, particularly in process control industries for valve 
control applications, are pneumatic or hydraulic ones. This is partly 
'traditional' now, in that electric actuation was once more expensive, 
less safe (because of sparking, for example), or less capable than now 
is the case, and partly because such devices can still be quicker and 
more powerful in certain applications because of the storage of energy 
involved in having high pressure air or liquid on-line. 

The use of an electrical signal to control a pneumatic (or hydraulic) 
signal can be done from a low-power electrical actuator using either a 
force-balance or motion-balance technique, in a manner which 
essentially reverses the transduction problem of pressure sensing. 
Thus an external (i.e. computer commanded) force can be generated 
as the external set point using a motor or a solenoid. This force must 
be balanced by the measured force, which is related to the actuation 
force as a constricted value or leveraged value of the on-line force. 
Such a scheme is utilized in the pneumatically powered, electrically 
controlled valve in Fig. 4.4(b), and might be compared to the directly 
motor controlled valve of Fig. 4.4(a). 
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(a) 

(b) 

Figure 4.4 Electrically operated valves: (a) a small electric motor is 
geared directly to a valve shaft; and (b) an electric motor is leveraged 
against the motion of a pneumatically powered valve in a force-balance 
configuration. 

In such cases, the control actuator is itself a servomechanism. Its 
design is mechanical in nature and is beyond the scope of this book, 
even though the goals (such as rapid and accurate response) are the 
same as those for any control system. 
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4.4 DISPLAYS 

Some of the computer gathered data will be recorded for archival 
purposes, and some will have an important indirect control role in 
informing operators of system status. This latter in particular means 
that the computer outputs will be displayed on dials (using perhaps a 
electromagnet to deflect a needle), with command display lights and 
alarms, etc. These, while in principle straightforward, are always 
worth some thought because of the human factors involved: the ability 
of operators to use the information conveniently and properly. 

Underlying all thinking about the problem are the following 'rules': 

1. the goal is to present essential information clearly and 
unambiguously, and in emergencies to prompt clear-cut sequences 
of actions; and 

2. process operators are likely to be neither engineers nor computer 
programmers, and they should not be expected to respond as 
such. 

Visual displays of information may be presented with numbers, 
dials, coloured shapes, flashing lights, etc. This may be done either 
with discrete elements (such as individual lights or dials) or on 
computer terminals with special displays created using graphics 
techniques. We comment on some of the factors. 

First, there is the matter of quantitative vs. qualitative displays. 
Here the choice is basically between displaying numerical values and 
displaying attention getters such as flashing lights which indicate that, 
e.g. a preset value has been exceeded. In fact, a single display unit 
may have both, and in addition use an analog presentation of the 
quantitative data in which the scale is vertical and an indicating pointer 
is toward the top of the scale for 'high' values, etc. (Fig. 4.5). 

For quantitative displays, there is also the choice of scale shapes, 
pointer styles, moving scale vs. moving pointer, full scale vs. 
windowed scale, and others. There is now also the choice of a purely 
digital readout: the choice between an analog clock with hands and a 
digital clock with numbers is one paradigm; analog moving needle 
speedometers vs digital readouts is another. Here a number of studies 
have been performed, and some general rules of thumb are 
summarized by McCormick and Sanders (1983): 

1. for qualitative readings, use fixed scale/moving pointer displays, 
as operators use the pointer to derive both trend and rate 
information; and 
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Figure 4.5 For output display, meters directly on the hardware, in this 
case a PID controller, are common. 

2. warning is best done with flashing lights, shutters, or other 
clearly visible signals. 

Audible signals seem like a good idea, but one must remember that 
they are not always reliable in stress situations: many airplanes have 
landed gear up with warning horns blaring. In spite of this caveat, it 
is known that audible signals can be useful. Two things to remember 
are: 

1. use only a few different sounds - this means <5 frequency levels, 
<4 intensity levels, and <3 durations of beeps, buzzes, etc., and 

2. choose the sound direction, with sound corning from a source 
near instruments to be read or equipment to be operated. 
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It may be remarked that the computer can use VDUs to present 
very elaborate displays, with colour block diagrams of the processes, 
flashing lights, and large blocks of text; one of the simpler examples is 
shown in Fig. 4.6. It is not clear that this approach is always helpful 
in a difficult situation, as operator information overload has been 
blamed for poor system response in failure situations. 

Figure 4.6 Very elaborate displays, of which a bank of the fonn of Fig. 
4.5 are only a simple special case, are possible using computer VDU 
screens. 

4.5 DIGITAL TO ANALOG CONVERTERS AND 
SIGNAL CONDITIONERS 

The basic concept of the semiconductor digital to analog converter 
(DAC) is that switches are used in parallel to gate a reference voltage 
through precision resistors with values R, 2R, .. . , 2n- 1 R to yield 
currents 1,112, ... ,Il2n-1 which are summed. The summation is done at 
the virtual ground point of a feedback amplifier to provide an analog 
voltage output proportional to the binary word represented by the 
gated currents. 

The switches are actually transistor switches in an integrated circuit 
(IC) and they are controlled (opened and closed) by parallel inputs 
from the computer or a computer buffer (see below). The range of 
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resistances needed may be reduced using special methods, such as 
binary ladder networks. Voltage output DACs with 8-12 bit inputs 
have settling times to reach constant voltage output of 1-20 
microseconds. Current output DACs can be faster. 

4.5.1 Output buffers 

The nature of the DAC is to convert the signal represented by the 
switch settings at a given instant. Many of the converters do not latch 
these settings, and hence without special interfacing - i.e. a latch on 
the computer output - the DAC output may drift or be undefined 
except at the instant of transmitting the value from the CPU. The 
usual way around this is to latch that value until a new one arrives; 
since the latch buffer is then piecewise constant in contents, so is the 
output of the DAC to which it is connected. In mathematical models 
of the computer and its outputs, the transmission signal or strobe may 
be interpreted as an impulse and the buffer/DAC as a sample-and­
hold, or zero order hold (ZOH). (See Chapter 12 for use of these 
models.) 

4.5.2 Signal conditioning 

Output signal conditioning may also prove necessary. Typical 
requirements are to convert the low-power 0-5 V DAC output to a 
more powerful signal, perhaps even an AC command signal to a 
servomotor, or to a current 4-20mA signal. Some of this has already 
been considered. 

4.6 EXAMPLES OF COSTS 

We give only a few examples here of small equipment. A small water 
pump and motor costs a few hundred dollars and is around 20cm 
diameter x 30 cm long. 

A small valve with electrical motor for servo control might cost 
several hundred dollars for a unit with 25 mm pipe and 2 min response 
time (full open to full closed). A modest servomotor with associated 
electronics and sensors can cost a few thousand dollars. 

We saw digital-analog interface subsystems in section 3.4.3. A 
DAC itself (8 bits, slow) may cost only a few dollars, and associated 
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amplifiers a few dollars more for the IC circuits. 
Gauges for displays depend partly upon the ruggedness desired, but 

needles on dials can be had for tens of dollars. This may not be an 
issue itself - many sensors and some process controllers will have 
their own displays - but the human factor aspects may well influence 
choice of the latter. 

The modern alternative of computer VDU displays in place of 
individual dials and gauges will cost a few thousand dollars for the 
hardware, but the software can be expensive. One is likely to puchase 
these in a system rather than as individual elements, except for large 
or highly specialized operations. 

4.7 FURTHER READING 

Discussion of instrumentation, actuators, and their interfaces appears 
in many textbooks. Definitive information on particular devices must 
come from the manufacturers and to a lesser extent from the trade 
magazines such as Instrumentation and Control and Control 
Engineering. The process control texts are often helpful within their 
own field of expertise. One such is Hunter (1987). 

Electro-hydraulic, electro-pneumatic, and electro-mechanical 
devices are, except for the simplest types, not commonly described in 
elementary textbooks, although such devices are often themselves 
servo-mechanisms needing some control-theoretic study. Of interest 
sometimes are all-pneumatic or -hydraulic systems such as those 
described by McCloy and Martin (1980). 

Human factors are interesting and important. One text is 
McCormick and Sanders (1983). 

We have not touched on the final control element here, but should 
observe that one of the very important classes of such elements is that 
of valves for liquid and gas flow control. Valves and their sizing may 
be found in books such as Borer (1985). 
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The cOIUlecting hardware element between sensors and actuators is the 
computer system, with connections being performed using various 
communications strategies (Chapter 7). In this chapter some of the 
essential aspects of computers in a real-time environment are 
introduced. 

5.1 SYNOPSIS 

A very broad overview has the control computer communicating with 
the plant, with its peripheral devices such as memory and operators, 
and possibly with other computers as in Fig. 5.1. 

PROCESS/PLANT 

Figure 5.1 Conceptual block diagram of the connection of a computer to 
the process, its operator displays and keyboard, its other peripherals, and to 
other computers. 

The computer system consists of hardware such as 

• central processing unit (CPU) 
• input devices: keyboards, mouse 
• output devices: printers, visual display unit (VDU) 
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• memory: read-write memory, read-only memory (ROM) 
• mass storage: magnetic discs, magnetic tape 
• interfaces: communications devices (to local area networks 

(LANs), modems to use telephone lines, special data carriers) 

plus software (Chapter 6). 
A closer look at the computer system shows the 'brains' of the 

system, the central processing unit (CPU), using sets of wires called 
buses to deal with all other aspects of the system and with devices 
external to the system. These buses are grouped into a data bus, an 
address bus, and control lines as shown in Fig. 5.2. 

DATA 

CPU ADOAESS 

I 
CONTROl 

I 0...,. I I I 0.. .. 2 II D.v .. , I 

Figure 5.2 The computer is bus orientated, with the CPU connected to 
other computer devices using (typically) 8-16 parallel address lines, 8-16 
data lines, and several control (signalling) lines. 

The CPU is the central device and in the case of microprocessors is a 
single semiconductor chip. It typically has a functional breakup of its 
circuits as in Fig. 5.3. 

The suitability of a computer for control tends to depend upon its 
ability to handle I/O to various devices such as ADCs, DACs, and 
operator displays, to react quickly to external unscheduled events, and 
to meet speed and arithmetic word length requirements. These 
typically require an adequate structure for addressing external devices 
and exchanging data with them, a special hardware interrupt 
capability, and at least 8-bit words and instruction cycles of the order 
of no more than several microseconds. 

Commercial computer-based systems for control range from 
programmable logic controllers (PLCs) and process controllers (PID 
controllers) costing several hundred to a couple of thousand dollars to 
systems with base prices of several thousand dollars. Major 
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installations may use mini-computers valued at many tens of thousands 
of dollars each. 
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Figure 5.3 The functional composition of the CPU shows several blocks 
of registers and logical units. 

S.2 THE GENERIC PROCESSOR ELEMENT 

Discussion of the computer system starts with a single central 
processing unit (CPU) and appropriate additional elements. Figure 
5.3 shows the essential elements of a generic CPU. 

The CPU is the core element of the computer, characterized by its 
speed, its technology (e.g. CMOS), the extent and power of its 
instruction set, the amount of memory it can easily address (the 
number of bits in the address bus) and the number of bits in data 
words (width of data bus). For control systems applications, features 
such as number of I/O ports and number and hardware processing of 
interrupts may also be important. 

Some CPU s come in single chip configurations, whereas others may 
require auxiliary hardware. A common example of the latter is the 
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arithmetic co-processor to perform multiplication and other 
arithmetic operations in hardware; the same functions can usually be 
performed in software by the CPU chip alone, but at a considerably 
slower rate. 

The CPU hardware operation is basically a simple repetitive cycle, 
comprising seven steps as follows. 

1. Using the contents of the program counter (PC) as an address, 
fetch an instruction from memory, i.e. 'place the address on the 
address lines and, using the control lines for synchronization, 
obtain on the data lines the contents of the memory at the 
addressed location'. 

2. Route the fetched data into the CPU instruction register (IR), 
i.e. 'use logic settings within the CPU to allow the IR to become 

the same as the data lines in step I'. 
3. Increment the PC by I location (so that the next instruction is 

fetched from the next location after the current instruction). 
4. Interpret (or decode) the contents of the IR in the instruction 

decoder, i.e. 'set logic gates to accept various portions of the IR 
contents and hence enable other logical elements (e.g. adders)'. 

5. Execute the decoded instruction (which may involve addition, 
fetching data, modifying one of the registers, etc., depending 
upon the instruction) i.e. 'execute the logic paths set up in the 
interpretation of the IR'. 

6. If a special control line (interrupt) is set, change the PC to an 
address preset in the hardware, i.e. 'automatically and in the 
hardware, override the usual sequencing to start a special 
sequence if a particular control input line has a signal on it'. 

7. Go to step 1. 

The CPU cycle time (the time for one such sequence of seven 
steps) is perhaps a fraction of a microsecond or so, with each separate 
step taking some number of nanoseconds. Step 5 (executing the 
decoded instruction) is typically the longest and most variable 
(depending upon the exact instruction) portion of the cycle. Note that 
instruction execution is sequential; although instructions may be 
partially overlapped, mUltiple instructions are not executed 
simultaneously (in parallel) in most control applications. 

It is worth emphasizing the communication of an external device 
with the CPU. When an external device requires attention, it signals 
using a control line. If checking this control line is an ordinary CPU 
instruction, and hence done only when the CPU is ready, then the line 
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is called a sense line. If the line is automatically checked by the CPU 
hardware every cycle, and leads to a special reaction by the CPU, then 
the line is an interrupt line to which the interrupt response is in 
essence a forced subroutine call to a location fixed by the hardware. 
Because the interrupt response may utilize various registers of the 
CPU (the PC must at least be used to call the interrupt routine), the 
relevant registers must be saved upon entering the routine and 
restored to their pre-interrupt values before returning to the main 
program. The sense line approach allows deferment of recognition of 
the signal and hence allows delays in reacting to it, while use of 
interrupt requires at least minimal action immediately. Hence 
interrupts are preferable for rapid response, but because of their 
unpredictability in time they must be carefully used. 

5.3 COMPUTER SYSTEM 

The CPU is placed with other components to form a system. A rather 
minimal computer (the CPU alone is just a processor) will have 
memory and some input and output (110) capability as indicated in 
Fig. 5.4. 

(j) 
UJ 
(/) 
~ m 

Address 

Data 

Control 

Figure 5.4 A CPU as in Fig. 5.3 is connected to buses and thereby to the 
interfacing units, as well as to the computer's memory, which are attached 
to the buses. 
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Some common elements of a computer for control applications include: 

1. random access read/write memory (RAM) for data storage; 
2. read only memory (ROM) for the program, including control 

algorithms; 
3. digital I/O interface for reading or commanding on/off type 

settings; 
4. analog I/O interface for reading sensors or commanding, e.g. 

valve settings or motor speeds; 
5. interrupt controller for handling the receipt of interrupts for 

emergencies, plant errors, system real-time clock, etc.; 
6. serial communication interface for communications with printers 

for data logging, some types of instruments and actuators (those 
using RS-232C, see Chapter 7); and 

7. clock generator, for the computer's internal timing of 
instructions (but not the same as the real-time clock). 

General purpose microprocessor chips include the 8-bit Intel 8080, 
the 16-bit Intel 80x86 series, and the 32-bit Motorola 16000 series. 
For special applications, the RAM or ROM or other elements are 
sometimes placed on the same integrated circuit (IC) chip as the CPU, 
creating a microcomputer. This can be particularly useful in control 
applications because it lowers parts counts and can be hoped to 
improve reliability. One such microcomputer is the Intel 8096 (a 
special relative of the ubiquitous 8088/8086 family used in many 
personal computers). 

5.3.1 Components of the system - specialized for control 

The computer control system components are in one sense little 
different from standard ones: RAM, ROM, bulk memory (discs and 
tapes), operator interfaces (keyboards and VDUs), printers. However, 
it becomes immediately apparent that there are differences. 

1. Hardening The system may be mounted in metal rather than 
plastic cases and have special cooling fans. Power supplies may 
also be able to stand occasional fluctuations. If the computer 
environment is to be dirty, vibrate, or have other problems, the 
system mounting must protect it. 

2. Standard sizing The equipment will fit standard industrial 
equipment racks, typically 19" (0.5 m) wide. 

3. Special input/output Special I/O cards deal with instruments 
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and actuators of standard levels. Thus input of 4-20mA, 
thennocouples of various types, and outputs of 0-24 VDC will be 
readily available, with power supplies, rack mounting, etc. 

4. Test hardware, such as LCD terminals for readouts of 
programs, will be available. 

5. Instrument buses of standard types will be catered for. This 
will probably include IEEE 488 (GPIB or HPIB; see Chapter 7). 

Special CPU characteristics which may be important include the 
following. 

1. Interrupts Number and handling of interrupts may be 
important for higher level controllers, but nearly irrelevant for 
smart instruments. 

2. Special instructions or 1/0 capabilities This is becoming 
less important as CPU s become more powerful in general. I/O 
ports (essentially special control lines for I/O) can be important 
for efficient memory use, but control applications will seldom 
have extensive memory requirements; the effects and convenience 
of ports are sometimes provided in other ways using memory­
mapped interfaces. 

3. Number and nature of special registers Having a large 
number of registers for intennediate data handling can be both a 
speed and convenience advantage. 

5.3.2 How the CPU maintains supervisory control 

As shown in Figs 5.2 and 5.4, there are three sets of wires to which all 
of the devices - CPU, memory, clock, etc. - are attached. To avoid a 
Tower of Babel, the CPU (or occasionally a designated other device) 
supervises the traffic on these lines. 

1. Control bus This is used for signalling. One of these lines 
may, for example, carry a short pulse (called a strobe signal) to 
indicate that the device addressed by the address lines should 
accept the data on the data lines 'now'. 

2. Address bus Each device has a unique address, expressed as a 
binary number. Signals on the address lines are set to a device 
address to show that the infonnation on the data lines is intended 
for that device. 

3. Data bus This carries the actual messages between devices. 
The simplest configuration has all messages routed to and from 
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the CPU. The information carried may be numbers from 
memory (such as algorithm parameters) or from a sensor (such 
as a flow meter) or to an actuator (such as a valve). They may 
also be characters to the console display, commands to devices 
(such as a reset command to the clock), and many others. 

The control lines are the primary means of signalling from other 
devices to the CPU, and may operate in those situations in one of two 
different modes: as interrupts and as sense lines. The distinction is in 
the CPU's response mechanism, as in both cases the external signaller 
places a signal on an appropriate control wire. Sense lines are 
checked by the CPU when there is a software instruction to do so; 
hence, in writing the code for the algorithm one could include a wait 
loop to check for the clock signal. If there is no such check, the 
clock's information will be unknown to the CPU in this mode. 

The alternative is to use the CPU's hardware interrupt capability. 
This is somewhat like the sense lines but with a crucial distinction: the 
line is checked automatically by the hardware after each instruction 
executed. If the interrupt line has been set - in our case if the clock 
device has set the line - the hardware will automatically cause 
program execution to transfer to a designated location in the program. 
This location, or a pointer to it, is built into the hardware; from that 
location, further aspects of the interrupt response are specified by 
user-written software. Other aspects of the response, such as saving 
of registers, may be done either automatically by the hardware or 
optionally by user-specified software, depending upon the CPU 
architecture. 

Although interrupt handling is built into the hardware, it has very 
important ramifications for the system and the software used, and we 
return to some of those in Chapter 6. The underlying problem is that 
a interrupt can cause a program transfer at any time (provided 
interrupt inhibit commands have not been given), and hence it can lead 
to the possibility of performing a particular instruction sequence 
which has not been tested (since not all such sequences will have been 
tested). Interrupts are used when fast response to an external event is 
required or when very rare events must be handled. 

Interrupts come in many varieties: priority interrupts, software 
interrupts, and internally generated interrupts are among the 
possibilities. Responses also vary in detail: for example, sometimes 
the hardware will automatically save all registers and inhibit further 
interrupts prior to actually performing the interrupt-demanded 
program transfer. 
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5.3.3 Device interfaces - the core ideas 

There are two possibilities for message lIO: direct ports and memory­
mapped I/O. In the former, data placed on the data lines are 
addressed using the address lines and have special control line signals 
(such as IN and OUT) with their own special CPU instructions. 
Advantages include speed and precision of addressing. It is possible, 
if enough IN and OUT commands are available, to avoid address 
decoding and so simplify the interface. Ports may have special CPU 
instructions associated with them. 

The alternative situation is called memory-mapped 1/0 and has 
the I/O device addressed just as memory is. This can be wasteful of 
allowable locations. Also, there is a burden on the interfacing so that 
the I/O connection indeed looks like memory to the CPU. On the 
other hand, the number of I/O devices is virtually unrestricted (up to 
the limit of the number of memory cells addressable by the CPU). 
Sometimes memory-mapped I/O can be used for special interfaces to 
give the latter the appearance of ports; the cost is the usage of memory 
addresses for things other than data and program memory, but the 
gain is that the CPU and its instruction set are simpler. 

A typical output connection configuration is shown in Fig. 5.5. 

CPU 

I OUTPUT DEVICE I 

DATA 

ADDRESS 
CONTROL 

Figure 5.5 The CPU outputs a data word to a device by placing the 
device's address on the address lines, the data on the data lines, and a WRITE 

command on the control lines. The device gates the data to its buffer (Le. 
enables the buffer to accept the data) if the address is correct and the proper 
control line settings are present. 
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If the address desired equals the device address and if the control line 
carries the proper signal (such as WRITE DATA LINES command), then 
the AND gate will admit the data line information to the data buffer, 
where it will be available for conditioning, conversion to analog 
levels, etc., as required. 

Data input is similar. Here the input device must request attention 
using control lines (interrupts or sense lines) or by replying 
affirmatively when polled, must make its identity known (using its 
address), and on command gate its data from the buffer onto the data 
lines. 

In both cases, the CPU must have all of the lines in a proper state 
for the transfer: addresses on the address lines, proper control signals 
(such as timing strobes), and data lines carrying data or ready to 
receive data. 

Typical electronic devices needed for these and other interfaces are 
given below. 

1. Address decoder This chip 'knows' its own address and puts 
out an indication to attached devices whenever the address lines 
from the CPU contain this address. 

2. Buffer This will, on command from its associated address 
decoder and the CPU control lines, interact with the data lines to 
the CPU. It will read the data lines or hold data for reading as 
appropriate to the commands and to the function of its attached 
peripheral device. 

3. Serial/parallel converters Data on the computer system bus 
is bit-parallel (all of the bits of a byte, or word, are carried 
simultaneously on separate wires). Electronic devices consisting 
of a register plus a clock do the conversion from one to the 
other. 

4. Controllable interfaces These ICs are of a general type for 
signalling but have many varieties called variously PIAs 
(peripheral interface adapters), UARTs (universal asynchronous 
receiver-transmitters) and ACIAs (asynchronous communication 
interface adapters), etc. The latter two incorporate serial/parallel 
conversion. 

5.4 COMMERCIAL SYSTEMS 

It is possible to buy digital-computer-based controllers 'off-the-shelf', 
with only tuning or other job specific parameter setting to be done by 
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the user. It is instructive to look at some of these, particularly the two 
most common types of elementary systems: the PID (proportional­
integral-derivative) process controller and the PLC. Following this 
we consider systems which are more obviously computer systems; the 
above are digital implementations of analog and relay systems, 
respectively. 

5.4.1 Microcontroller 

The microcontroller is a special computer system for special 
applications. It is special because virtually all of its requirements for 
CPU, RAM, and ROM are on one or two ICs. Power must be 
supplied, and interfacing to the system is necessary but may be 
simplified. Basically a specialized microprocessor, and costing about 
the same (a few dollars to a few tens of dollars) but requiring special 
manufacturing to program the ROM, the microcontroller is 
particularly attractive when large quantities of goods with identical 
small computing loads are to be constructed. This occurs with toys, 
with consumer goods such as washing machines and microwave ovens, 
and with motor controllers which are supplied with the motors . 
Large systems will need more computer power and flexibility than the 
microcontroller is able to supply. 

5.4.2 Programmable logic controllers (PLCs) 

PLCs originated at General Motors Corporation, Detroit, in the late 
1960s as a replacement for relay banks which co-ordinated the 
movements of their assembly lines. They were, and are, chosen 
because they are smaller than the relay banks, are relatively easily 
programmed, are fairly easy to troubleshoot, and are rugged, 
surviving 0-60°C temperatures and 95% humidity. Early versions 
used special purpose discrete logic components, but now they tend to 
be built around microprocessors. Many have a simple programming 
language based upon ladder logic diagrams (see Chapter 6) so that 
programs can be written by technicians rather than specialist 
programmers. Early versions were entirely on-off logic type devices, 
but modem versions have capabilities for analog input and output, 
data logging and manipulation, communication with computers and 
other PLCs, and even PID control laws. 
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A typical example of PLC use is batch operation weighing and 
mixing. The following steps would be involved. 

1. Weigh bin of material. Strain gauge instrument sends signal to 
PLC. On satisfying weight requirement, PLC sends OFF signal 
to valve or screw feeder (or stops sending ON signal). 

2. Do step 1 for several bins in parallel. When all have required 
amount, empty into mixing bin sequentially. 

3. Start blending operation. 
4. Keep track of feeder conveyors (which often should not be left 

loaded when not running) 

One advantage of the PLC is that when, for different products, the 
mixture of components must be changed, a new program can be 
downloaded from the central computer (if there is one) or manually 
by a technician (for less elaborate setups); no change in hard wiring is 
needed in either case. 

A typical PLC, such as the one pictured in Fig. 5.6(a), is modular 
and has three module types: the processor module, the I/O modules, 
and the programming equipment module. 

The processor module usually consists of a CPU, memory, and 
various interface and miscellaneous functions. In one older PLC, the 
CPU is an 8-bit Intel 8085, while memory is in a 2kbyte ROM for 
system monitor and programs and 0.5-2kRAM or EPROM for the 
user program and intermediate storage. Miscellaneous functions 
include various timers and counters, and the interfaces are of two 
types: to programming equipment and (buffered) to an external bus 
and I/O modules. 

In one typical approach, the I/O modules each handle either 32 
input or 32 output signals and work with 5 V logic; a fully configured 
system may have 200-1000 inputs and outputs. Either input or output 
may be isolated using an optic coupler and the standard signal level is 
24 VDC. Interfaces are used to provide 220V or 20mA signal levels. 

Programming equipment may be expected to consist of at least a 
plug-in, hand-held calculator type unit capable of simple one­
instruction at a time readout and entry. A hand-held ladder logic 
programmer is shown with the unit in Fig. 5.6(b). VDU terminals are 
often easier to use for the programming, while downloading from a 
computer is sometimes possible and usually easier for initial entry; the 
unit in Fig. 5.6(a) is programmed in that manner using a choice of 
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(a) 

(b) 

Figure 5.6 PLCs are commercial special purpose computer systems. We 
show here (a) a common rack-mounting type of modularized system and 
(b) a small system with its hand-held programmer. 
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three languages which are converted to code which is sent to the PLC. 
A hard copy of the program (i.e. a copy stored in a relatively 
indestructable medium), usually a printout but occasionally punched 
tape or cards with older or specialized systems, is often necessary and 
always desirable. 

The basic need in programming of PLCs is to be able to input 
logical statements of the type 'IF switch 33 open AND switch 91 closed, 
THEN wait 2.3s AND after that close switch 14'. It is common for 
vendors to make one or more special programming languages 
available for their devices. In particular, a 'language' which allows 
the programmer to construct logic ladder diagrams (Chapter 8) of the 
desired logical operations is often supplied, and more conventional­
looking computer languages of an assembled or compiled type (e.g. 
Siemens' STL or various BASIC-like languages, Chapter 6) plus other 
graph-like languages may be available. 

PLCs cost from a few hundred dollars upward. A system 
configuration including support computers for program generation 
and down-loading may cost $10000 up. 

5.4.3 Three-term (PID) process controllers 

Process controllers of the three-term type implement a control law 
dating back over a century and which applies to mechanical 
components, hydraulics, and electronic analog circuits. At its 
simplest, this very common controller implements the input-output 
relationship in which the output command u(t) is related to the input 
signal e(t), so denoted here because it is usually an error signal, by 

Here the user sets the proportional gain K, the integral or reset time 
Tj, and the derivative time Td. Rules of thumb exist for choosing 
these parameters (see Chapter 8), but the idea is that the first term 
gives a command proportional to the error from the desired value, the 
second gives a command proportional to the integral of the error and 
thereby works to reduce any tendency for the system to develop a 
steady state offset error, and the third gives a command proportional 
to the derivative of the error and because of the sign conventions used 
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tends to give more rapid damping of the response oscillations. 
The purchased units will usually have a number of features in 

addition to simply computing the above input-output relationship. In 
fact, in many respects it is very interesting to consider these as an 
example of real engineering considerations. 

First, the unit will typically display the desired system output (or set 
point), the actual system output, and the control command being put 
out by the unit. A vertical display with two needles may well show 
the first; a second gauge the third. The first gauge may also display, 
via pointers, the high and low allowable system output values. 

It is usual to have manual override of the computed control 
command. Using a push button the operator can choose to go into a 
manual control mode and use a button or dial to generate the control 
command. (This ability to choose leads to terms such as 'hand­
auto(matic) units' for these devices.) The computer unit may also 
check the system output against the preset limits and, if a violation 
occurs, flash lights or give other warning signals. Figure 4.S shows 
the face of an older but typical unit; it is seen again in Fig. 8.S(b), 
where the unit is opened to show the potentiometers for adjusting the 
PID gains. 

The unit must of course have the capability for the set point and the 
control parameters to be adjusted. Commonly the former can be done 
from the instrument face but the latter requires opening the unit. 

Communication with a central computer, at least for data logging 
purposes, may be necessary. The unit may for such purposes have a 
standard data bus such as IEEE-488 built in. 

Finally, there are two operational aspects of the units that are 
usually allowed for in the real object, but not in the theoretical 
considerations. These are called bumpless transfer and anti-reset 
windup. 

Bumpless transfer is desirable to avoid a jump in the command 
signal when the operator switches from manual mode to automatic 
mode. The second problem is integrator saturation, called 'reset 
windup', which occurs when the controller output is limited. Both 
have engineering solutions (A strom and Wittenmark, 1990). 

With all of these built-in functions, the process controller for a 
single loop (one input and one output) will cost the order of 
$1000-2000; many are available from manufacturers. The PID 
function is also available in more general systems. 
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5.4.4 More general computer control systems 

The above functions and more have been implemented in commercial 
products for which PLC and PID functions may be just a subset. 
These are pre-assembled systems, and several suppliers assemble and 
support such systems. The modularity and capability can vary, as can 
the customizability. It is not unusual to have a basic system consisting 
of central control console and unit, software, and a few I/O channels 
starting for around $10000 and having added capabilities of both 
logical control and proportional (PID) control varieties. The added 
units constitute some distribution of the control and cost a few 
thousand dollars for each unit; these might provide a few tens or a 
hundred logical (on-off) controls and a few proportional (analog) 
controls. Examples in use include the Hewlett-Packard 3000 series 
and the Leeds and Northrup Electromax series systems. 

Further capability is obtained with minicomputer-based systems 
costing from $50 000. 

5.4.5 Alternative - in-house design, construction, and 
programming 

In principle, the designer could nearly specify a set of components 
from different sources to make up a computer system for controL 
This is particularly so if the basic computer is to be the ubiquitous 
IBM PC-compatible. A number of manufacturers are prepared to 
offer 'hardened' versions for industrial application, along with special 
keyboards and their interfaces and standard level I/O cards to deal 
with the process. A certain amount of software is also available. 

Total cost can be as low as a few thousand dollars; systems 
engineering studies should show whether this is a good value. 

5.5 COMPUTER SYSTEM REQUIREMENTS 

A digital computer is by its nature a discrete-event finite state device. 
This translates into two characteristics of computers as control 
elements. 

1. Finite word length Any number will be represented by a 
finite number of bits, typically 8 to 32 bits. No value will be 
more accurately represented than ±! of the least significant bit, or 
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2-9 to 2-33 of full range. 
2. Finite time between inputs, between outputs, and to compute 

responses. The computer has an internal clock running at about 
1 MHz to upward of 50 MHz; an instruction takes several clock 
cycles; an algorithm needs many instructions. For this reason, 
there will be a sample interval T between inputs and a sample 
interval T} (often the same) between outputs. Neither input nor 
output can be a continuous function of time. 

We survey these two effects in the following sections. 

5.5.1 Finite word length 

Finite word length affects implementation through four routes: 
quantization of data on input and output; round-off and truncation 
errors in arithmetic operations; inexact representations of control law 
coefficients; and possible non-linear effects such as limit cycles or 
steady-state errors. 

Data quantization 

The ADC which converts an incoming analog signal to a digital word 
is an inherently non-linear device as in Fig. 5.7. 

If the data has an n-bit representation, then the least significant bit 
(Isb) represents 2-n of full scale; an ll-bit-plus-sign ADC has a 
quantization level for ± 10 V input range of 10*2-11 V or 4.9 m V. The 
representation of a signal can be no more accurate than about 
±2.5mV. 

Similarly, the output is fed to a DAC. With a digital word of m bits 
as input, the output will be in steps of 2-m of full scale. Analog 
devices can be used to smooth this input from one step to the next, but 
the intermediate values are interpolations rather than commands. 

One usually will choose the ADC with enough bits in the 
representation that the ~ Isb error is less than noise or other 
inaccuracies corning from the measuring device: there is little point in 
having a signal with ±O.2 V random error represented to an accuracy 
of ±O.02 V. The output DAC is usually cheaper than the input ADC, 
but would rarely need to have more precision than the ADC. 
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Figure 5.7 Underlying several problems with digital computation is that 
the representation of a quantity is necessarily non-linear and non-uniquely 
invertible. This happens right at the conversion stage, when analog to 
digital conversion is applied, and continues throughout the computation. 

Arithmetic errors 

Arithmetic errors arise from the fact that multiplication of two 
numbers with n-bit representations in principle requires 2n bits for 
the product. The product is usually scaled and rounded or truncated 
back to n bits. The error is (for rounding) up to ! the least significant 
bit, or 2-(n+1). This error is usually taken as a random number with 
uniform distribution, and hence will have mean zero and standard 
deviation 2-nIW. These errors have been found to be approximately 
uncorrelated. Thus a useful model is that multiplication is given by an 
ideal multirnlication operation with additive noise of mean 0 and 
variance 2- n1l2. 

a*bactual = a*bideal + noise 

The effect of each noise generator may in principle be propagated 
to the output, and in linear systems all such effects may be superposed. 
This is done by Franklin et al. (1990) and in the digital signal 
processing literature, e.g. Roberts and Mullis (1987). 
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Coefficient representation 

Algorithms are usually designed with the expectation that their 
parameters may be implemented exactly. However, just as in 
electronic circuits the choice of resistor, capacitor, etc., values is 
restricted, so in digital computers numbers can only be represented 
using a finite number of bits. For example, the number! = 0.3333 ... 
can be represented in binary as 0.1 with one bit, 0.01 with two bits, 
0.011 with three bits, 0.0101 with four bits, etc., but all of these are 
erroneous. 

This effect might not be a problem if only one parameter is 
involved, but multiple parameters rounded independently to a near 
binary representation can cause changes to the characteristics of the 
algorithm. Consider the simple algorithm 

1 2 
x(k+l) = 3 x(k) + 3 u(k) 

The two coefficients can be approximated by one bit, two bits, and 
so on as 

1 1 
x(k+ 1) = 2" x(k) + 2" u(k) 

1 3 
x(k+ 1) = 4 x(k) + 4 u(k) 

3 5 
x(k+l) = 8 x(k) + 8 u(k) 

5 11 
x(k+l) = 16x(k) + 16u(k) 

These have quite different responses. 
There is the obvious solution of using more bits, by using double­

length arithmetic or a more capable processor, and the not-so-obvious 
solution of structuring the computation to reduce sensitivity to such 
problems. 

Limit cycles and steady-state errors 

Because of quantization, non-linear behaviour is possible from the 
nominally linear system. For example, a set point reference signal 
may be slightly different from the measurement to which it is 
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compared. If this difference is small enough, it may be quantized to 
0, leading to no corrective command, i.e. to a steady-state offset of up 
to! Isb. Alternatively, the controlled system may 'hunt', oscillating 
between slight positive error and slight negative error with the control 
unable to fmd the exact zero error due to quantization. 

5.5.2 Sampling 

The digital computer takes a finite time to complete an algorithm 
computation concerning a data value. Hence it can only consider data 
every T seconds, for some number T. If we can choose T, or if Tis 
forced by the physics of the problem, the appropriate value must be 
decided. 

Sampling theory 

The core idea of sample rate selection is Shannon's Sampling 
Theorem, which may be stated in many forms and variations, but for 
our purposes is as follows: 

A signal set) may be exactly reconstructed from its equally spaced 
samples {senT), n=0,±1,±2, ... } if and only if the sampling 
period T satisfies 

where roB is the signal bandwidth, for which the signal Fourier 
transform satisfies 

S(ro) = 0 I ro I> roB > 0 

When T = X/roB, sampling is said to be at the Nyquist rate; a short 
characterization is that the sampling frequency is twice the highest 
frequency in the signal. 

We make four observations concerning this. The first is the 
pedantic one that the above applies to a low-pass signal in which 
S(ro) ~ 0 for almost all ro < roB; the theory is slightly modified for 
band-pass signals. The second is that in principle an infmite amount 
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of data are needed for the reconstruction. The third is that there are 
no truly band-limited signals of finite duration. 

A more important observation is that the above is concerned with 
signal reconstruction, which may be irrelevant for applications such as 
supervisory control of stable systems. 

For control systems applications, an alternative viewpoint is that the 
system is required to respond 'well' to an input with highest 
significant frequency ffic. Hence a sampling frequency of at least twice 
this frequency is necessary. 

It should be noted that it is possible to sample too rapidly. This 
counter-intuitive situation arises primarily because rapid sampling 
increases the difficulties with numericaVword-length problems. Thus, 
increasing the frequency of multiplications increases the propagation 
of round-off errors per second, while coefficients arising in PID 
controllers may be required to go to 0 or to 1 as T -7 0 (see Chapter 
12). 

5.5.3 Rules of thumb 

There are a number of rules of thumb concerning sampling period or 
frequency. Among those are (Perdicaris, in Tzafestas (1985)): 

1. sample at 10-20 times ffic; 
2. sample period should be at most 0.1 of desired rise time; and 
3. choose T small relative to desired closed-loop time constant. 

Specific time periods are mentioned by Astrom and Wittenmark 
(1990): 

Variable type 
Flow 
Level 
Pressure 
Temperature 

Sampling period 
1- 3s 
5 -lOs 
1- 5s 

10 - 20s 

One rule of thumb (Perdicaris in Tzafestas (1985)) for 
computational word length is to use a word length 4 bits longer than 
the ADC size chosen, where the latter is presumably chosen consistent 
with data reliability and noise. 
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5.6 EXAMPLES 

It is difficult to develop an intUItIOn as to the size and speed 
requirements of programs. Certainly we are becoming accustomed to 
having hundreds of kilobytes (kbytes) of random access read-write 
memory (RAM) and read-only memory (ROM) available in 
microcomputers for personal use (PCs), along with megabytes 
(Mbytes) of read-write bulk storage on magnetic discs and a promise 
of gigabytes of read-only or write-once read-many (WORM) bulk 
storage on optical discs. Common microprocessor CPU units can 
perfonn simple instructions such as READ from or WRITE to memory, 
ADD two integers, or CLEAR a register in tenths to a few microseconds, 
and special purpose arithmetic units (ALUs) can do multiplication in a 
similar amount of time. Let us look briefly at a couple of reported 
examples of relevance to us. 

Refai (1986) describes a control law coded for a simple 8-bit 
microprocessor implementation. The control law was a PID law 
given by the simple expressions 

X(n+l) = rod*T - (ro(n) + ro(n-l»*T/2 + X(n) 

e(n) = rod - ro(n) 

u(n+l) = Kp*e(n) + Ki*X(n+l) + Kd*(e(n) - e(n-l))/T 

(5.1) 

where T, K p, Ki, and Kd are parameters, ro(n) is the 'present' 
measurement of the controlled variable, rod is the desired value, and 
u(n+ 1) is the output command. Although the computation requires 
several multiplications, the microprocessor used (Motorola M68BOO) 
did not have a multiply instruction and hence a software multiplication 
was required, i.e. multiplication was perfonned by shift-and-add 
instructions, as was (in essence) the division by T. 

The task was the sole one perfonned by the computer; there were 
no outputs to instruments, no safety monitoring, and no extras (such as 
anti-reset windup, manual mode, bumpless transfer) as found in 
commercial units. This bare-bones algorithm then was reported to 
require 255 bytes of storage and to run one complete cycle (from data 
read to command output) in about I ms. 

As a second brief example, we mention the comment by Gressang 
(1977) concerning adaptive control of an F-8 aircraft. It was found 
that the Kalman filtering/linear quadratic controller (Chapters 26, 28, 
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29) for 7-9 states on each of three axes of the aircraft was estimated at 
that time (1977) to be possible at a rate of about 20 times per second, 
with filter gain updates at a slower l/s or 0.2/s rate. 

As further examples, we remark that a number of power generation 
stations use DEC® minicomputers or their equivalents for their basic 
supervisory computers and have dozens of PLCs in addition. Also, 
some process industries (such as petrochemical plants) are converting 
to minicomputer-based systems such as the Honeywell 3000 series. 

The message of the above is that direct digital control software is by 
current standards small, and that the speeds required, by 
communications standards, are slow. The message not given is that 
supervisory and monitoring software, as used in control rooms, may 
be large, complicated, and customized. 

5.7 SUMMARY AND FURTHER READING 

In this chapter the hardware of computer systems control has been 
outlined. Included have been descriptions of how the CPU 
communicates with the outside world, and some prepackaged systems. 

We have only touched briefly on any of these, with the intent of 
giving the systems engineer the flavour of the needs of computer 
control. Specialists must necessarily study much further into these 
topics. 

Details on the electronics aspects of basic computers can be found in 
texts such as that of Gibson (1987). A more elaborate discussion 
oriented toward control systems is in Bennett (1988). 

Discussion of word length effects has already been attributed to the 
digital signal processing literature, such as the classic Rabiner and 
Gold (1975). A control systems oriented presentation is Williamson 
(1991). 

Control-oriented discussions are presented in journals by 
Kowalczuk (1989), and Williamson and Kadiman (1989). 
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Computer software 

The computer software encodes the control algorithms and the logical 
commands for the interfacing of the I/O and for the emergency and 
other routines which the system is expected to perform. 

We have already briefly considered how the CPU works. Software 
(sometimes placed in special unchangeable memory and called 
firmware) is simply the set of bits, loaded into the proper cells in 
memory, which are operated upon by the hardware. We review 
languages for that software and emphasize the particular aspects of 
control systems - namely those associated with real-time operation -
which the engineer should keep in mind even when the actual 
programming details will be done by a specialist programmer. 

6.1 SYNOPSIS 

Software is the term used for computer programs. When used to 
implement control algorithms, these have several interlocking aspects: 

1. the language used for the encoding; 
2. the program which co-ordinates the various tasks, that is, the 

operating system; and 
3. the verification and validation of the system. 

The overriding issues in software are that 

1. all but the simplest implementations will have multiple tasks to 
perform, such as algorithm computation, instrument input and 
command output, and communication with operators and other 
computers, and 

2. the above must be performed in real time, in sometimes 
unpredictable sequences, with no risk of serious errors. When an 
error occurs, the computer must not 'crash'. 
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The user implementing a computer control system will be faced 
with a number of software choices: algorithms, coding languages, 
operating systems. The software must be engineered, and in 
particular validated and verified, to perform the control tasks well and 
without itself contributing to disasters. 

6.2 BASIC PROBLEMS - THE MULTITASKING 
ENVIRONMENT 

A few control system programs are very simple: read data, compute a 
desired command using some algorithm, output the command, repeat. 
The program is executed as frequently as possible, so is program­
timed - the frequency depends upon the computer's speed. The 
program starts when the computer is turned on and stops when it is 
turned off. Many early applications were of this type, and even now 
the controller for a washing machine or valve need not be complex. It 
is even possible for such applications to be software timed, i.e. to have 
the timing controlled by cycling through the software rather than by 
an external clock circuit. For example, the sequence 

1. READ instrument 
2. READ set point 
3. COMPUTE command 
4. OUTPUT command to valve 
5. COMPUTE output to display 
6. OUTPUT display information 
7. CHECK sense lines for supervisor commands 
8. EITHER LOAD new supervisory data OR PAUSE an equivalent time 
9. UPDATE supervisor data 
10. LOAD EITHER standard OR new supervisor response into output 
11. END cycle 

can be instigated by a real-time clock (RTC) or, if all logic branches 
are of the same time duration, can be cycled regularly. In either case 
the computations, etc., might take 50ms and the desired 
implementation might be every 75 ms. A cycle could then be 
instigated by the RTC or, with 'END cycle' expanded using NoOps (No 
operation - the 'NULL' instruction, taking up time but doing nothing) 
to 25 ms, the software could simply be in an endless loop. 

Such activities as in the above list are called tasks, and from the 
point of view of the computer program they are modules which can be 
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executed independently; although one might request that another be 
activated, it does not directly call it, as a subroutine would. When 
there are multiple tasks, then in a real-time system they are related 
and hence interdependent. The result is that they must communicate 
with each other and must always run in a certain order and at certain 
times. 

The particular example above is simple and hence straightforward 
to program because the various tasks are always in the same order and 
take the same amount of time. If more tasks are required, some are 
optional, or some (such as causing a printer output) take so long that 
simply waiting for the task to be completed is inefficient, then amore 
complicated program is needed. 

Even modifying the above so that data are sampled every 0.1 s, the 
control algorithm is run and an output command given every 0.5 s, the 
displays are updated every 1.0 s, and the data log is printed every 
1.0min requires a major change in approach. This more complicated 
program must do the required tasks, interleave tasks to use CPU time 
effectively, keep tasks in order of importance if there are conflicts for 
the CPU, etc. Such a program has a structure which occurs frequently 
in applications of computers - a structure in which there is an overall 
supervisor plus a number of subroutines specialized for the several 
tasks. The supervisory program, which ultimately is just another 
computer program, is called the operating system. 

When multitasking is done, the various possible tasks must be able 
to signal when they are ready (e.g. a RTC signals that it is time to take 
another sample). The signalling is done using the control lines, 
particularly the sense lines and interrupt lines, and co-ordination is 
achieved in the CPU by running a supervisory program, called the 
scheduler (usually part of the operating system). 

6.2.1 Dealing with the outside world: 1/0 

It is because of multitasking that control computer problems arise, and 
it is the input-output properties of these real-time systems which are 
the main trouble source. This is particularly because the sequencing 
of tasks, and hence of program instruction execution, may not be 
fixed. 

Control system CPUs must deal with other components and 
ultimately interact with their outside world. For the system, there are 
three main I/O sections. 
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1. Process 110 Reading process instruments and outputting 
actuator commands. 

2. Operator 110 Reading keyboard and switch inputs from 
operators and writing data to printers, VDUs, meters, etc. 

3. Computer 1/0 Reading and writing data between memory, 
registers, and ALU, for example. 

To handle all of this, the CPU has two options: it may poll the 
devices frequently to see if they are ready to transmit (or receive) data 
or it may wait for a signal initiated by a device ready for service, i.e. 
an interrupt. In either case, it is the external event which triggers 
the action. 

There are trade-offs between interrupts and sense lines and some 
off-the-shelf systems use one and some use the other. The essential 
trade-off is that polling is straightforward but can result in delays in 
response (some polling systems can take over 500ms to respond), 
while interrupts lead to rapid response but possible unforeseen 
instruction execution sequences. One must decide what it is worth in 
unpredictability to have rapid responses to inputs such as: 

1. alarm inputs; 
2. failure indicators, for hardware, power, and transmission failures 

or errors; 
3. override indicators, to allow control panel or other manual inputs 

to override computer control; and 
4. real-time clock, to provide a regularly spaced (in time) signal to 

the CPU. 

6.2.2 Some special software considerations with interrupts 

There are several tasks that must be performed when an interrupt 
occurs. 

1. Saving of registers, flags, CPU status, etc., is usually done at least 
partly by the hardware, so that the program can return to 
business as usual after the interrupt has been processed. 

2. Identification of the source of the interrupt can be by hardware 
(using effectively a different interrupt signal for each 
interrupting device - e.g. interrupt vectoring) or by software 
(which typically must poll devices to see which has sent the 
interrupt). 
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3. Establishing pnonty involves deciding which interrupt gets 
serviced if several occur simultaneously, which are allowed to 
interrupt other interrupts, what happens to ignored interrupts 
(are they eventually forgotten?), etc. Interrupt priority is an 
important and not necessarily obvious issue. 

The above steps may be performed by either software or hardware, 
depending upon the CPU design. If in software, these tasks are a 
programming burden, whereas if they are in hardware, the 
programmer must still be aware of how they affect operation of the 
algorithms. 

We indicate just one of the many problems which must be 
considered when using interrupts: if the subroutine is re-entered 
before it is completed, and with completely different data, there is a 
chance that the results will be muddled or the program will get lost. 
Suppose, for example, that two registers, Rl and R2, are saved by the 
interrupt routine when it is entered and restored when it is exited. 
Then if the main program is interrupted, these cells will contain 
values A and B, say. Part way into the subroutine, the same registers 
may contain values a and b when another interrupt of the same type 
occurs. The subroutine is then entered in the course of this second 
interrupt response and a is put into Rl and b into R2, overwriting A 
and B. Even if the interrupt returns are unravelled successfully, A 
and B will be lost and a and b will be processed by the main program. 
Solutions to this problem include having multiple copies of the 
subroutine, blocking further interrupts while it is operating, and 
making it a re-entrant routine (in which all data are saved in stacks). 

6.3 SOFTWARE PROGRAMMING 

Programming of the computational element may be done in several 
different ways, or more precisely, at several different levels. It 
should be remembered that ultimately the CPU executes a sequence of 
relatively simple instructions (made up of even simpler micro­
instructions). The programming language used may consist of more 
readable commands, but the CPU sees only strings of binary bits, 
which are voltage settings of, typically, 0 V for binary 0 and 5 V for 
binary 1. We first indicate one of the principal structural forms for 
which we must program, the procedure structure with interrupts, and 
then discuss programming languages. 
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6.3.1 Program structure - procedures 

A simple program will have a simple structure, perhaps such as in 
Fig. 6.1. Such a program will simply keep running, doing one cycle 
in whatever time the computer speed allows, and is called software 
timed. 

PROGRAM~ DATA 

I 

Figure 6.1 A computer program and its data are represented as sequential 
blocks of storage. A software timed program simply sequences through its 
list of instructions. The time for one cycle depends upon the computer's 
speed and the number of instructions. 

If a cycle starts when an external real-time clock initiates it, then the 
structure is more as in Fig. 6.2. 

This is of course more natural even for a simple program. A next 
stage has subroutines, which are used to supply readable structure, to 
break up the code into manageable segments, and to allow sharing of 
code segments. This leads to structures such as Fig. 6.3. 

The most important variation from our point of view is the 
possibilities for interrupts posed by the need for multi-tasking. Here, 
a special subroutine called an interrupt routine may be called at any 
time (due to an emergency, for example). The impact hardly shows if 
we impose such a possibility on Fig. 6.3 to create Fig. 6.4. 

The attempt in Fig. 6.4 is to indicate that the interrupt may occur at 
any time and between any two instructions. The software must be so 
arranged that there will be no problems upon return from the 
interrupt subroutine, whether it is there to fetch data, to trigger 
alarms, or simply to update a display or respond to an operator input. 
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N 

DATA 

Figure 6.2 An improvement. especially when the sequence is not of fixed 
duration because of internal branching. is to start the sequence periodically 
at times determined by a timer. 

I----:L-j..-E-~-l SUBROUTINE A 

MAIN 

PROGRAM t--E~oo-oL_-___ -.--J 

DATA 

Figure 6.3 A program with subroutines is structurally easier for 
programmers. and may save memory. 
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MAIN 

PROGRAM~~~----~----~ 

I. _._._._._._._._._._._. . _._._._.1 

I DATA I 

SUBROUTINE D 

(INTERRUPT ROUTINE) 

Figure 6.4 An intenupt is a hardware signal causing automatic branching 
to a special subroutine. In principle, an intenupt might occur anywhere 
within the standard sequence. 

6.3.2 Languages: levels of programming 

Machine language consists of the binary sequences referred to above, 
on which the computer operates directly. The programmer must 
write his code directly in such sequences of Os and Is. Thus the 
program to add the variable A to variable B and set C to the result 
requires that the quanti ties A, B, and C all have memory storage 
locations known to the programmer, e.g. at locations 10000010, 
10000011, and 10000100 (binary) respectively. If the program 
should then transfer to location 01110101 (i.e. set PC to 01110101), 
then the program might look like: 

MEMORYLOC 
01000111 
01001000 
01001001 
01001010 

CONTENTS 
001010000010 
010010000011 
010110000100 
110101110101 
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This is an oversimplification in that there are only 4 bits used for 
the instruction code and the total instruction word has length 12 bits, 
but the programmer's burden should be clear: the work is tedious and 
highly error prone. Furthermore, if one of the variables must be 
reassigned to a different memory location, then finding all of the 
resulting programming changes will be difficult. 

A first step in improving on the above scheme is to use 
mnemonics for the instructions, such as CLA (clear and add) for 
0010, ADD for 0100, STO (store) for 0101, and JMP (jump) for 1101. 
Allowing spaces on the input also helps readability, so that the above 
might be represented by: 

CLA 10000010 
ADD 10000011 
STO 10000100 
JMP 01110101 

This code will require another program to translate it into binary as 
above, but if the translator is reliable and can be told where in 
memory to put the instructions, the result should be the same as 
before. 

If a translator program is necessary, it can be used for a few more 
things. One in particular is symbolic addressing, i.e. to tell the 
translator that A as an address means location 10000010, B means 
10000011, c means 10000100, and NEXT means 01110101. Then the 
above becomes 

CLA A 
ADD B 
STO C 
JMP NEXT 

A further improvement in the translator allows it to make some of 
the memory management decisions. If the translator is told to set 
aside memory cells for variables A, B, and c, and that NEXT is a 
destination location for a transfer, it can keep an appropriate symbol 
table of these labels and their addresses instead of requiring the 
programmer to do so. 

A translator of the type outlined above is a computer program 
itself, of course. Its inputs are sequences of characters (CLA, A, NEXT, 

etc.), and its outputs are binary strings as in the first part of this 
section. Such a translator is an elementary member of the class of 
programs called assemblers; the input to it is called assembly 
language code, and the output is called object code. 
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The advantages of assembly language programming (over machine 
code programming) are the relatively easy readability of the input 
program (compared with a string of binary digits) and the fact that the 
assembler copes with the memory allocation. Most assemblers also 
will have some 'macro-instructions', or 'macros', which the 
translator recognizes and expands (each time they appear) into 
machine code on a many-to-one basis. (A simple macro might allow 
the instruction MADD A, B to represent the two instructions CLA A, ADD 

B in the above example.) This allows even more programmer 
convenience. 

The disadvantage of writing in assembler code rather than machine 
code is that the programmer ends up with a computer program, the 
assembler, between the input alphanumeric source code and the 
machine instructions. The programmer is usually responsible for the 
final machine code and hence must either believe the assembler has 
been properly implemented and used or check the machine code using 
memory dumps and other methods. On the other hand, programmer 
errors in coding binary words are avoided, considerable flexibility is 
gained, and the programmer retains tight control over the final 
program because most instructions are one-to-one related to the 
assembly language mnemonic instructions. 

The tight control over the program and the cleverness with which 
programmers can sometimes code algorithms, along with the fact that 
various parts and ports of the computer are directly accessible to the 
programmer, means that assembled programs are (in principle) 
efficient in their usage of both memory and time. For this reason they 
have in the past been frequently used for real-time computer 
applications, and are still common for small programs. 

A further step along the trail of programmer convenience is to have 
a more elaborate translator, one to which an instruction such as 

e := A + B; 

is meaningful. This instruction, representing the information 'find the 
sum of the variables A and B (A + B) and place the result (:=) in e, end 
of instruction (;)' is elementary for programs capable of breaking 
elaborate character strings such as 

IF (IN < MAX) THEN e := IN ELSE e := A + B; GOTO NEXT; 

and 

FOR I:= 1 TO IN DO e[I] := A[I] + B[I+5-3*K]; 
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into appropriate machine code. Such programs are called compilers, 
and the input instructions are in a compiler language. There are 
many such languages, including FORTRAN (FORmula TRANslator) 
for scientific number-crunching, COBOL (COmmon Business 
Oriented Language) for business data-keeping and updating of wages 
and such, Pascal (named for scientist Blaise Pascal) for educating 
programmers, C (the language which followed A and B) for operating 
systems programming, and ADA (named for Lord Byron's daughter, 
Ada, Countess of Lovelace, the 'world's first programmer') for 
United States of America Department of Defense real-time 
programming. 

Compilers were intended to use the computer to remove some of 
the tedium of programming, leaving the programmer to be creative 
and efficient. In just a few characters, a programmer can write a 
single instruction which when compiled results in several machine 
instructions being created. Also, the compiler can identify certain 
types of programming errors, reducing the testing time needed. 
There are disadvantages, though. 

1. The language often keeps that programmer far removed from the 
actual machine code instructions and their ordering, which can be 
critical in a real time environment. 

2. For small routines at least, a programmer can produce more 
efficient code (in terms of memory used and/or execution time) 
than a compiler will generate; this is somewhat debatable for 
large programs, but is probably true even if not always cost 
efficient. (It may be better to have slightly inefficient code than 
to have expensive programmers trying to optimize it.) 

3. The more important criticism of compilers is a growth from the 
one with assemblers: because there is a sophisticated program, 
namely the compiler, between the source code and the object 
code, the programmer may make errors in using it. Thus the 
programmer must be highly skilled with the particular compiler 
used to avoid, e.g. subtle variable interactions which may 
produce unexpected results. 

Assemblers and compilers take as input a set of character strings 
called source code; their output is usually an entire program of 
machine code, called object code. This object code may be 
interfaced, or linked, with other object codes, typically for 
subroutines and for standard (library) routines to form the machine 
code that is finally executable. 
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A significant variation on this procedure from an operational point 
of view is the interpreter, which decodes and executes the source 
code on a line-by-line basis but does not save the object code after 
execution. Hence it translates a given line of instructions each time it 
is met. There are problems with such an approach, the main ones 
being 

1. slow execution because of the need for translation at execution 
time, and 

2. the possibility that the language will be less flexible or efficient 
because of the line-by-line approach to translation. 

The advantage is that the interpreter may be small in storage 
requirements and that the source code almost surely needs less 
memory than the equivalent executable code. The most common 
interpreted language is BASIC, although it is sometimes compiled and 
linked; some special purpose languages for PLCs and PCs are also 
interpreted. 

Actual coding of the control computers depends upon the computer 
system used and its tasks . Special purpose applications on small 
microprocessors are often coded in an assembly language for reasons 
involving need for efficient code, lack of a suitable compiler, and 
relatively small and uncomplicated programs. The code is then 
assembled for this target machine using a larger (or host) machine, a 
method called cross-assembly, and the resulting machine code is 
then down-loaded to the target machine. (A variation of this uses a 
compiled language and a cross-compiler.) Larger machines doing 
complicated sets of tasks are more likely to be coded using compilers, 
for the reasons that good compilers are available and their advantages 
in terms of programmer time needed for coding large programs are 
more important than potential coding efficiencies from using 
assembler code. 

6.3.3 Special purpose languages 

Many commercial devices come with special programming already 
done, so that the input need only be of special parameters and settings 
for the particular process. For these devices the input may be 
considered to be by means of a special purpose programming 
language. We look briefly at a couple of examples. 
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Robot programming is often done either with a 'teach' mode in 
which the arm is controlled manually using a hand-held control 
terminal and told to remember certain positions, and/or with a 
proprietary language. Such a language is the VAL language used by 
Unimation for the PUMA series of robots. Its elements are 
instructions such as in Table 6.1, and a typical small program string is 
in Table 6.2. 

Table 6.1 Elements of VAL 

Command 

OPENI 
CLOSE I 
DRAW x,y,z 
HERE name 
MOVE name 

Effect 

open tool 
close tool 
move arm to coordinates x, y, z 
define present location as 'name' 
move arm to location' name' 

Table 6.2 Sample V AL Program 

Instruction 

READY 
CLOSE I 
4 
MOVE ioe 1 
DRAW 0, 0, -50 
OPENI 
DRAW 0, 0, 250 
DRAW 200, 0, 0 
DRAW 0, 0, -200 
HERE ioe 2 
DRAW 0, 0, 50 
CLOSEI 
MOVE ioe 2 
MOVE ioe 3 
MOVE 0, 0, -50 
OPENI 
SETI n=n+l 
IF n<10 THEN 4 
HALT 

Comment 

Go to initial position 
Close tool 
Define this as '4' for loop 
Move to predefined ioe 1 
Move -50 in z direction 
Open tool 
Move 250 in z direction 
Move 200 in x direction 
Move -200 in z direction 
Define this as ioe 2 
Move 50 in z direction 
Close tool (to grasp) 
Carry object to ioe 2 
Carry object to predefined ioe 3 
Lower object 
Release object 
Increment counter 
Go to 4 if less than 10 times through cycle 
Stop program 
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Another approach, called ladder logic programming, is taken by 
some makers of PLCs. Here the computer in essence simulates a relay 
bank plus timers and counters, so the basic elements of the language 
specify 

• input contacts ('relay contacts passing signals into the computer 
when the relays are actuated by external events') 

• output coils (,commands to relays to open or close and thus pass 
signals to external devices') 

• internal coils ('relays for internal logic') 
• timers (to count time delays, etc.) 
• counters (to count events either internal or external) 

and sometimes a few others. Symbols are defined for these, and 
programming consists of manipulating such symbols on some sort of 
visual display unit to obtain a desired wiring logic diagram. (An 
illustration of such symbols and programming is in section 8.2.) 

Another class of examples contains the special languages often used 
for numerically controlled (NC) machines; a typical such language is 
APT (Automatically Programmed Tool). 

6.3.4 Software considerations 

Any computer may be coded in machine language, and usually at least 
primitive assemblers are available; for the smallest systems, the 
program may sometimes be developed on a larger computer and 
cross-assembled or cross-compiled for the target system. Commercial 
systems sometimes provide a suitable real-time operating system 
combined with an appropriate variation of a compiler. For example, 
the rapidly developing capabilities of programmable logic controllers 
(PLCs) mean these can handle both logic and analog controls and 
hence can be programmed in relay logic language (RLL) and higher 
level languages such as BASIC and Fortran, developments which are 
tracked by the trade magazines, e.g. Lodzinsky (1990) and Flynn 
(1990). For a second example, the IBM 9000 system operates under 
CCOS, with languages Pascal, BASIC, and Fortran readily available, 
and, because the CPU is a Motorola 68000, other languages and 
systems also obtainable. 

Software is expensive to write: a good programmer generates the 
order of 3-10 lines per day of programmed, checked, validated, 
documented code. This number is somewhat independent of the 
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language level, so it is clear that a language which has many machine 
instructions generated per line of programmer code has cost 
advantages over machine languages. Thus, particularly for large 
systems, programming may out of cost necessity be in a compiled 
language. The extra hardware - memory and CPU capability -
needed may be far cheaper to buy than efficient coding. For this 
reason we look briefly at some of the newer candidates. 

A modern language for control applications should preferably have 
or support the following attributes. 

1. The use of blocks, procedures, functions, etc., to provide 
structure to the program should feature in the language. 
Structure will prevent inadvertent sharing of memory cells and 
will prevent spaghetti-like (and hence possibly wrong) paths 
through the program. It also helps by ensuring readability of the 
program. 

2. Concurrency of a number of simultaneous asynchronous tasks 
should be supported. Proper ordering of the tasks (to prevent 
data output tasks executing before the proper data gathering task, 
for instance) should be supported. 

3. Run-time security is of paramount importance, so the language 
should have intrinsic features which improve security. Included 
in these are strong variable typing and exception handling 
capabili ty. 

4. The language should allow reaction to events in real-time. 
5. The object code generated should be memory- and time-efficient. 

Both of these are partly a function of the language and partly of 
the compiler. 

6. It is preferable if the code is portable, so that it may be 
transferred to other machines. True portability is difficult to 
obtain, however, because of machine differences and lack of 
standards. 

Preferred features in addition to the above can also be defined. 

7. Low-level code facilities , to allow added flexibility for the 
programmer. 

8. Separate compilation of procedures, to help in modularization of 
the code and in the efficiency of code development. 

If the above are taken as requirements, then there are virtually no 
existing languages with proper compiler supports which meet them. 
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The closest are the new languages ADA and MODULA-2. ADA is a 
very large and complex language, and possibly it is unsuited for that 
reason for implementation at this time; it does in principle meet all of 
the requirements, however. MODULA-2 is a Pascal derivative (or 
improvement) in which the independent modules are the most 
important feature; it does not support exception-handling. 

For small programs (a few tens or hundreds of lines of code) a 
number of possibilities exist; most fail to meet several of the above 
desired conditions, but all have some use. They tend to be special 
versions of older or very special languages. Thus, the engineer is 
likely to meet Concurrent Pascal, BASIC, and FORTH. Process 
BASIC and Process FORTRAN are other available languages; each is 
a special version of the obvious regular language. The process 
versions are not standardized, but of necessity will have language 
extensions for: 

1. interfacing to the operating system, such as communicating the 
need for periodic task execution, enabling and inhibiting 
interrupts; 

2. process input and output, such as reading an ADC or switch, or 
commanding a DAC output; and 

3. task management, such as activating a task when an interrupt 
occurs. 

For example, since the languages such as BASIC are not normally 
used in real-time operations, they must be augmented with instructions 
such as 

ON EVENT "signal on IEEE-488 bus" 
GOSUB "process instrument data" 

EVENT ON 
EVENT OFF 

, sets up linkage of receipt 
of interrupt to processing 
'to allow event to be recognized 
'to block event processing 

and the compiler and operating system must generate appropriate 
machine code. 

Finally, there is always assembly language and its high-level 
version, the systems programming language C. 
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6.4 OPERATING SYSTEMS 

In systems of reasonable size, there are a number of tasks which are 
nearly independent of the application; for example, process plants and 
aircraft both need operator displays. To avoid reprogramming such 
software for each application, a supervisor program with appropriate 
special routines is often used. This operating system is the 
computer program, which is not application specific, but which is the 
essential interface between the outside world and the computer 
hardware and also the interface between the applications programs 
(such as the number crunching routines which give the control output 
as a function of the instrument inputs). It is found in all but the 
simplest applications, in which the few functions needed may be coded 
as part of the applications program. 

A typical operating system has components which manage elements 
such as the system interfaces to the operator, task scheduling, timing, 
memory allocation, and files. The UO subsystem takes care of such 
roles as peripheral device drivers (i.e. special codes for dealing with 
I/O devices) and queue handling, if outputs (e.g. characters to 
printers) queue, in such a way that applications programs can seem 
device independent. The operating system may also support special 
handling of floating point arithmetic operations, loading of 
applications and other program segments , and so on. Some of the 
handling of interrupts may reside with the operating system rather 
than the applications programs. 

6.4.1 Overview 

The way to view the operating system is to note first that the computer 
is required to perform a number of different tasks in the system, e.g. 

1. read instruments for data 
2. output commands to actuators 
3. interface with other computers 
4. accept inputs from operators 
5. output information to operators 
6. log data for future analysis and record keeping 
7. compute algorithms for commands as functions of inputs 
8. do unit conversions for data logging 
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Associated with these tasks, an operating system must perfonn at 
least the following functions. 

1. Error handling 
2. I/O handling 
3. Interrupt handling 
4. Scheduling of tasks 
5. Suspend, kill, restart tasks 
6. Maintain queue of tasks needing execution 
7. Resource control 
8. Protection 
9. Provision of good operator interface 
10. Assign/accept user input of task priorities 

From a process control point of view, in which events may occur in 
a non-detenninistic order and at variable times, one of the most 
important roles of the operating system is keeping the tasks in order 
of importance and not forgetting any of them. Consider the following 
scenario. 

1. The computer is in the process of printing a log of the shift's 
activities. 

2. The real-time clock sends an interrupt. The CPU immediately 
goes to the interrupt routine. It must remember that it was 
printing, but call up the program appropriate to the clock 
interrupt. 

3. During step 2 the operator presses a command button. If an 
important command, this will generate another interrupt which 
must be processed. Now steps 1 and 2 must both be remembered 
while a response to the operator is made. 

4. After step 3 is completed, the system must work backwards up 
through step 2 and then continue from step 1. 

The above is an ordinary sequence of what might be required, but 
gives some notion of what the operating system must do in a process 
control application. The critical thing is timeliness of response, as 
otherwise a very ordinary batch operating system would suffice. 

Although the operating system is a computer program providing 
services to the applications programs, these services cannot be allowed 
to be beyond the control of the applications programmer as they are in 
traditional batch processing systems using their operating systems. 
Such is the danger of subtle ambiguities and such is the need for rapid 
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response in emergencies and timely response in all circumstances that 
the programmer must have ultimate control of the 1/0 devices, 
physical memory, task priorities, exception processing (such as 
overflows, which cannot be allowed to simply crash the program), and 
data integrity. 

6.4.2 Buying a RTOS 

There are many operating systems around, such as Unix and its clones, 
MS-DOS and CP/M for microprocessors, etc. Few of these are real­
time operating systems. The computer manufacturers, such as Digital 
Equipment Corporation, Data General, IBM, and Hewlett-Packard 
have real-time systems for their systems: Intel created IRMX for its 
microprocessors; IBM produced CSOS for its 9000 microprocessor 
series; DEC has RT -11 and RSX, etc. Some other systems have been 
developed as real-time versions of non-real-time operating systems, 
such as real-time Unix versions, and standards are being developed by 
IEEE under the name Posix in its Standard 1003 groups. 

It is arguable that if the computer is fast enough and the number of 
possible tasks small enough, an interrupt-handling operating system 
may be unnecessary. Some small commercial systems simply time­
slice the available resources and allocate them to the tasks in turn. 
This simplifies the possible number of logic paths and reduces the 
potential for software errors; it relies essentially on sense lines for 
control line signalling. 

6.5 VERIFICATION AND VALIDATION 

In an attempt to approach software design and implementation in the 
same systematic way as other branches of engineering treat hardware, 
the field known as software engi neering is being developed. The 
approach is to be systematic at each step, from specification through 
design and coding to testing, maintenance, and updating. The goal is 
that the software should meet the needs of the purchaser, and an 
important stage of this is verification and validation (V & V). This in 
principle, and sometimes in fact, applies to each version of the 
software, before deli very and after repairs, both in place and pre­
delivery. We paraphrase ANSI/IEEE terminology (Thayer, 1990) as 
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Verification is the process of determining whether or not the 
products of a given phase of the development cycle fulfil the 
requirements established during the previous phase. It also is 
used to refer to the act of such determination, including 
reviewing, inspecting, testing, checking, etc., the items, 
processes, documents, and services. 
Validation is the process of evaluating the system at the end of 
the development process to ensure compliance with the system 
requirements. 

These definitions are subtly different, with verification considered 
to apply to particular activities within the overall development and 
validation connoting a determination that the entire system is suitable. 
Sometimes the two are considered together as a single topic 'V & V'. 
The topic is an important part of software engineering (Francis, 1990) 
and standards have been developed (Horch, 1987); one book devoted 
to the question is Quirk (1985). 

The overreaching problem is that real-time systems have special 
requirements . They must be very reliable, because in the real-time 
environment (such as process control) the consequences of failures can 
be catastrophic (e.g. in nuclear power plants or aircraft flight control 
systems) or at least very expensive (as in assembly line control). The 
environment can make unexpected and conflicting demands on the 
software (as when alarms go off in an unexpected combination), and 
the demands may be simultaneous rather than sequential. The system 
must meet deadlines, in which output commands (for example) must 
be transmitted every few seconds or milliseconds. 

The implications of this can be almost overwhelming if the system 
is using interrupts, for interrupt response is a branching operation in 
the software. Hence the path through the execution could in principle 
be almost any sequence of interrupted procedure calls, i.e. the order 
of computation is not fixed. Yet the software is expected to be at least 
fail-safe, and preferably it should be fully recovering or fail­
operational. Under these circumstances, the design of the software is 
very difficult and the verification and validation can seem nearly 
impossible. Certainly there have been some notable failures in 
software. 

The first thing about V & V is to give the user a chance of designing 
the software in a sensible and co-ordinated manner. Currently this is 
seen to be specifications at several different levels, and testing and 
documentation at each level as it develops. This is simply not a closed 
book yet; design, as in so many fields, is partly an art form practised 



www.manaraa.com

Verification and validation 135 

by highly talented individuals. 
The next thing to do is to code the design well. This will for 

practical purposes mean coding in a language which can be read by 
other programmers and into a program which can be changed without 
using obscure 'patches'. This means ultimately a carefully chosen 
higher order language for most of the programming, structured 
programming, and detailed programming standards. Few 
programming standards specific to real-time systems have evolved; it 
is felt, however, that programs should be re-initializable, and it should 
be possible to synchronize routines, to designate portions un­
interruptable, and to restrict communications between certain 
branches. 

The verification portions of V & V are performed for each stage in 
the development process. This may be seen as a common sense 
management approach in which procedures are applied to ensure that 
the system specifications reflect the job's functional requirements, the 
software specifications satisfy the system specifications, the design 
meets the software specifications, and the code meets the software 
specifications. Each of these verification stages will have several 
steps. For example, steps ensuring that the code meets specifications 
may include analysis of the program, step-by-step walkthrough of the 
code, formal program-proving methods, and execution. 

The validation portion of V & V may overlap heavily with the 
verification. In fact , sometimes, particularly for small programs 
created by small groups, little distinction is made between them and 
V & V is considered a single process. The goal of validation is to 
demonstrate by operation that the final system meets the user's 
functional requirements (as opposed to verifying that a step in the 
development has been properly performed). This will require 
exercise of the entire actual system if this is feasible. Frequently, the 
software package will be first shown to execute on a large computer, 
then on the target computer, then on the target computer in a real­
time mode, and finally on the target computer in the actual system and 
interfaced to the actual devices used. A goal of the testing is to 
execute each logic branch, each I/O statement, each algorithm, etc., 
and it should be possible to determine how many times each unit of the 
program and each logic branch has been tested so that 100% testing 
can be verified. 

Demonstration of functional suitability requires extensive testing, 
and there should be an a priori test plan. The test cases and their 
nature are an important issue in themselves and fall into two 
categories: systematic and statistical. The former can be designed to 
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test specific properties of the system, and an expected reaction 
predicted and compared to the actual reaction. The latter uses 
randomly generated data (such as interrupt times) and the results must 
be evaluated. 

With systematic testing, a further breakdown of test types is 
possible: white box, in which the program is known to the tester 
(who may then purposely aim to exercise all paths) and black box, in 
which the tester aims to ensure that all reasonable cases are attempted. 
In either case, the generation of the test data will require, among other 
things, a familiarity with the system requirements and environment. 
In principle a set of expected outputs for each input set should also be 
prescribed. This all becomes a difficult job, requiring considerable 
skill and knowledge from the responsible engineers. Finally the tests 
must be evaluated and documented. 

Statistical testing uses randomly generated data and hopes to be 
content with random answers . Thus measurement data are simulated 
with a random number generator and the computer output is checked 
for mean and standard deviation of commands, probability of software 
failure, or expected number of remaining software errors. The 
biggest cause of concern is perhaps the timing and interaction of 
interrupts. 

Statistical testing has two possible approaches: pure statistical testing 
(no failures in N tests ~ ? about probability of failure) or indicator 
cases (with random data, manually verify correct operation and 
estimate vulnerability). In either case, the hope is that the randomness 
introduced may find difficulties that systematic testing might miss. 
For this reason, and because of the sheer number of tests which can be 
required, statistical testing is often a complement to systematic testing. 

For all of the above, the results must be examined to determine 
whether the program operated as per specifications. This can be the 
difficult and expensive part of testing. Here systematic testing at least 
has an expected result, while statistical testing may need some 
qualitative evaluation. Analysis is clearly necessary, regardless of the 
formalism used. 

6.6 SUMMARY AND FURTHER READING 

Software engineering is a problem for all computer software vendors, 
programmers, and users. Thus it is still being studied by computer 
scientists. In this chapter we have only touched on some of the issues 
- language choice, verification and validation, special languages, 
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operating systems - that affect the control systems engineers. The key 
issue for such an engineer is that the system must operate in real time, 
probably uses interrupts, and must not contribute further to any 
abnormalities that occur in operation of the system. This last aspect is 
the overriding one for any component of the control system. 

There are many places where it is possible to learn more than one 
wants to know about the software issues. A book extending this 
chapter is Holland's (1983). Languages are just one of the topics 
covered by Sinha (1986), which includes the work of Ahson (1986). 
A control system oriented textbook is Bennett (1988). 

Mainstream languages such as FORTRAN, ADA, C, etc., usually 
have a number of textbooks plus specification books associated with 
them. For example, C is to be found specified in Kernighan and 
Ritchie (1978) and discussed in such as Schildt (1988). 

Special languages, or special versions of general languages, are to 
be found in manufacturers' documentation. Hence the robot language 
V AL is in Unimation's documents (1979), although popular 
descriptions such as Shimano's (1979) also can be found. PLC 
programming is also in manufacturers' documentation, although the 
book of Kissell (1986) is very helpful. Manufacturers' documentation 
is typified by such as IBM's (1983, 1983-4, 1984). An earlier book 
on NC machine programming is Pressman and Williams (1977). 

Software engineering is actively pursued in journals and magazines 
such as IEEE Computer and IEEE Transactions on Software 
Engineering. Extensive coverage in books is just starting to become 
evident, in texts such as Sommerville (1989). Books on special aspects 
of software engineering are more common, although the treatment of 
validation and verification by Quirk (1985) is one of the few of its 
type. 

Operating systems are in a number of texts, including Lister and 
Eager (1988). A more specialized concentration on real time aspects 
is given by Allworth (1981) and a critique is presented by Stankovic 
(1988). A recent textbook is Joseph (1989). 

Applications are usually described in journals, such as IEEE Micro, 
Automatica, and IEEE Control Systems Magazine. Useful 
information for the non-specialist is frequently to be found in the 
popular magazine Byte. Books such as Sinha (1986) and Sinha (1987) 
also have examples. 
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Communications 
In this chapter we consider the connection of computer control system 
components at three levels: simple wiring, instruments to computers 
using digital signalling, and computer networking. 

7.1 SYNOPSIS 

The control computer must communicate with its sensors and 
actuators, its operators, and other computers. The CPU, as we saw in 
Chapter 5, communicates within the computer system by signalling at 
low voltages along data, address, and control buses. These 
communications are partly with interface devices for contact with 
other parts of the control system. These communications devices are 
of several types and levels of sophistication. 

Some aspects of the communication system are simply those of 
wiring and grounding, with the constraint being that the magnetic 
fields of the various plant components should not cause excess noise in 
the communications signal. 

Another issue is that instruments and actuators, in their 
communications with the computer, should send and receive signals 
easily recognizable by the computer. If the signals have been 
converted from analog at the source and are digital (as they may be to 
avoid certain noise problems or to allow time sharing of the wiring) 
then an agreed protocol must be used for the messages, e.g. RS-232C 
or IEEE 488. 

If computers are to communicate, then they may be networked. 
Local area networks (LANs) are used for many communications tasks, 
among them factory communications. Standards are emerging and 
developing from among several possibilities of physical configurations 
and protocols. One potential standard is the manufacturing 
application protocol (MAP) and associated technical office 
protocol (TOP). A likely solution is that present systems will evolve 
to such a standard but will have several different communications 
LANs with gateways connecting them. 

These all may be used in a single factory, as in Fig. 7.1 
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Management Information 
System 

Figure 7.1 A Computer Integrated Manufacturing (CIM) system usually 
requires communications between operations at various levels, from the 
lowest Direct Digital Control (DDC) to the Management Infonnation 
System (MIS). The communications may be done in various ways. 

7.2 SENSOR WIRING 

The computer system necessarily communicates with the instruments 
and actuators over wires (or more recently fibre optic cables and 
occasionally radio links); for a multi-computer configuration, it must 
also communicate with other computers. In the following sections we 
look at the problems and principles of wiring and its protection, 
particularly with regard to sensors. 

Interference with signals is always a potential problem, and the 
engineer's resort is to attempt to plan for it by following established 
standards. Although cost of materials can be an issue, installation 
labour costs and their possible trade-off against maintenance and 
troubleshooting costs are a prime systems engineering consideration. 

7.2.1 Wiring, grounding, and shielding 

It should go without saying that wiring should be of adequate size for 
the load carried and should be physically protected from abrasion, 
accidental cutting, and similar events. Colour coding is necessary, and 
cabling should be used where possible so that maintenance may be 
carried out. 
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Cabling needs are defined by standards issued by agencies such as 
the SAA in Australia and NFP A in the US. Defining characteristics 
include size, material, and number of conductors, and requirements 
are in terms of current capacities, voltage drops allowable, costs, etc. 
Power cables (such as nominal 1 mm2 copper, approx. AWG #14, 
suitable for a 1 k W motor drawing 10 A at 115 V) will exhibit 
resistance of perhaps 0.03Q/m and capacitance of 100pF/m, so that 
100m of two-conductor cable will have about 60. resistance and 
0.020 JlF capacitance; instrument cabling for 4-20mA may be smaller 
from a current carrying point of view, but will then exhibit (in 
nominal 0.5mm2 size) an order of magnitude more resistance and 
perhaps an unacceptable voltage drop. Also, long cables in particular 
may be involved in transmission line effects (reflection, etc.) and 
although 2km cables have been demonstrated with low level (±lOmV) 
signals, even 10m cables can cause problems. The standards also 
define things such as insulation types and armoured cladding 
restrictions on number of conductors. 

Digital signalling over wires is another possibility, and one that is 
increasingly feasible with smart instruments and actuators, but here 
the capacitance and inductance effects may adversely affect transient 
response. 

Part of system wiring is the supply of power to the system devices, 
including computers, sensors, and actuators. Aspects of wiring to be 
considered include straightforward properties such as wire size (for 
which tables of ampacities are available), cabling, protection in the 
form of fuses and circuit breakers, and grounding. Indirect effects 
include the electromagnetic interference which power lines may have 
on sensors, computers, etc. Although power supply is well beyond the 
scope of this book, an elementary introduction may be found in Webb 
and Greshock (1990). 

Voltage is not an absolute quantity, but a potential difference 
between two points. For voltages to be meaningful signals (and also 
for safety in circuits - a matter of lesser importance for us but very 
important in medical instrumentation) they must all be measured 
against a stable reference point, called the circuit common. When a 
circuit is linked to other circuits in a measurement system, the 
commons are usually connected together to provide the same common 
for the complete system; the latter may in fact be the universal 
common - earth ground - and the connections may be to a ground 
rod, water pipe or power line common. The problem due to not 
having a common ground is that an extraneous current may flow in 
the circuit between the two different 'grounds' of the instrument and 
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the computer, yielding an erroneous signal. 
The need for all instruments to be connected to a common ground, 

such as an earthed heavy copper strip (so that there is low resistance to 
the ground reference point and hence a large current carrying 
capacity) may impose impractical burdens on the system because of 
the size of the installation; it is one thing to have a common ground 
for a single laboratory or room and quite another to have one for a 
large plant. So, it may be necessary to tolerate some ground loops, 
with stable grounds being provided for groups of instruments. 

An alternative to having voltages ground-referenced is to use 
differential voltages to carry the signal. The signals are differentially 
amplified, and since any ground loop voltages now are present in both 
paths, they will cancel out because they are common mode (common 
to both inputs). As the inputs to the differential amplification are not 
identically loaded, the differential amplifiers must have large input 
impedances, much larger than the source impedances. This helps 
ensure a high common mode rejection (CMR), as does having the 
source impedances balanced. 

Even with the above, it is quite possible to have extraneous signals 
at the output of long wires to the instruments or actuators, due 
primarily to capacitive coupling of the instrument cabling to nearby 
lines. The differences in the amount of pick-up can be reduced 
substantially by twisting the wire pair carrying the differential signal. 
This makes the capacitive coupling substantially the same for the two 
wires of the pair so that high CMR is maintained. Twisted wire pairs 
are a common and cost-effective way of carrying signals, and are used 
in many applications, including telephone connections to local 
exchanges. 

A further improvement can be obtained by shielding the signal pair, 
i.e., surrounding the signal-bearing lines with a conductor and thus 
inhibiting the capacitive interference. A typical high-quality cable has 
a foil shield around the signal pair and a copper drain wire. The 
shield should be connected to the signal ground rather than the 
amplifier ground, but not both (which would form a ground loop 
whose currents might induce coupling in the shielded pair). If the 
instrumentation amplifiers are also shielded by their metal enclosures 
and chassis, then these enclosures are attached to the cable shield and 
hence to the signal ground. No commons other than the signal 
common should be connected to the shield, however, as this would 
lead to ground loops and defeat the purpose of having differential 
amplification. 
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High frequency interference, usually called RF (radio frequency) 
interference, is also found in many environments. It can be due to 
such sources as sparks, flash lamps, and laser discharges, and the 
'spikes' which can render digital equipment inoperable. Usually the 
circuit must be enclosed in a metal shield and shielded cable used. RF 
shielding should be grounded at both ends (to prevent RF reflections), 
however, in conflict with the conditions for common mode shielding. 
Thus the best shielding will have two separate shields: an inner shield 
for low frequency interference and an outer shield, terminated at both 
ends, for RF interference. 

7.2.2 Isolation 

Sometimes two circuits must be isolated from each other. A striking 
example occurs when medical instruments are electrically isolated to 
prevent any possibility of power supply voltages reaching the patient. 
Isolation transformers are effective up to about 5 MHz, above which 
they are ineffective due to stray capacitances. 

Excellent isolation can be obtained using opto-isolators, which 
comprise a light source-detector pair in which the incoming signal 
flashes the light and the detector senses the flashes and outputs an 
appropriate signal. No electrical signals need cross the interface. 
Light sources include neon bulbs and LEDs, while detectors such as 
photoconductors and photodiodes are frequently used. The method is 
particularly appropriate for digital signals, as the systems handle high 
frequencies and discrete signal levels well. 

7.2.3 The fibre optic alternative 

Many of the above problems can be avoided by using fibre optic 
technology to carry the signals around the plant. These systems are 

• insensitive to electrical noise, 
• automatically carrying differential signals (i.e., presumably the 

sensor and the receiver are electrically at different common 
levels), 

• high speed devices, and 
• used for digital signals. 

The basic cost can be higher than twisted wire pairs, but the many 



www.manaraa.com

144 Communications 

problems avoided, plus the potential for networking (section 7.4.2) 
are making this an increasingly attractive alternative. 

7.3 COMMUNICATIONS NETWORKS 

One of the reasons for using a computer element is that 
communications of various types in principle becomes rather easy: 
simply use the address and data lines cleverly. For a number of 
reasons, including desire for standardization of the interfaces and 
because the range over which the simple 0-5 V low power signals on 
the computer's buses can be transmitted is limited, there are several 
ways of organizing the communications, depending upon the task. 

1. Modems (Modulators/Demodulators) for communication 
between computers - usually one pair at a time - over telephone 
lines. 

2. Local area networks (LANs) for communication among a 
number of computer equipped elements. 

3. Commonly found connections and protocols for interfacing 
computers with their peripheral devices. These are particularly 
evident with microprocessors and include RS-232C serial 
connections, IEEE 488 instrument bus, and Centronics printer 
ports. 

We look at those in the next few sections. 

7.3.1 Standard I/O arrangements 

The number of ways of connecting devices to the computer would 
appear to be almost endless. Some instruments are smart, as more and 
more are becoming, and hence provide some data smoothing, 
linearization, and AID conversion, but there is still a demand from 
users to have straightforward connections with the computer. From 
this demand have evolved several conventions for instrumentation, of 
which we look at two. The first is the RS-232C connection, originally 
defined by the EIA in the US and also called, particularly in Europe, 
the ISO V24. The alternative is the general purpose interface bus, or 
GPIB, with the IEEE-488 bus being the defining standard, and 
occasionally known as the Hewlett-Packard interface bus (HP-IB) in 
honour of the manufacturer who defined the first version and helped 
make it a de Jacto standard. 
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RS·232C, called V24 in Europe, is only semi-standardized in that 
many implementations extend the definition or make presumptions 
about the hardware applications. Among the common factors are that 
the data is sent serially (i.e. one bit at a time) over the connection, 
only one wire is used for the data, and there is a 25-pin connector at 
each end of the cable. Of the several response, etc., signals available, 
in many cases only a few are actually used. The transmission signal 
levels used are ±1O-±12 V, and the receiver is intended to register a 
mark (or logic 1) on receipt of +3 V and a space (or 0) on receipt of 
-3V. 

The range of an RS-232C connection is limited by the noise 
sensitivity of the data lines, which in some receivers need change by 
only 1.5 V relative to GND to signal a mark or space and thus false 
signals may arise in electrically noisy areas. Overall, RS-232C 
transmission is defined for 15 m range at up to 19200 bits/s data rates; 
special implementations can obtain slower bit rates at ranges of 
50-100m, while personal computer data exchanges tend to be at 
115 kbps (kilo bits per second) over 1 or 2m. 

To circumvent the noise problem, RS-422 and RS-423 schemes may 
be used. These are variants of RS-232 in which a pair of wires is used 
for each of the data links, and the signal is defined as the difference 
between the two wires. The effect is that noise, which would tend to 
affect both wires equally (common mode), does not appear in the data. 
The differences between the two schemes are due to the fact that 
RS-422 uses only the line difference for signalling and hence may be 
biased as desired, whereas RS-423 has the data line pair balanced with 
respect to ground potential. Both have ranges up to 2km before 
distortion and noise become problems; RS-422 allows data rates up to 
1 Mbps and RS-423 allows up to lOOkbps. 

There are a number of differences between the RS-232C and GPIB 
(IEEE 488), including the fact that the latter is capable of carrying 8 
bits in parallel, but the most striking one is a philosophical one: GPIB 
is a bus system in many ways similar to the computer's internal 
structure of data/addresslcontrollines. The idea is shown in Fig. 7.2. 
The controller will almost always be the computer, and the devices 
could be either instruments or actuators. The terminology of the bus 
has the controller, plus listeners and talkers (who receive and transmit 
data, respectively). 

The bus has 16 signal lines plus several ground return lines. Eight 
of the signal lines are used for bus operation, three for handshaking 
(which is the signal and reply which verify that the communication 
channel is open) and five for bus management. The other eight lines 
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IEEE 488 Bus 

Bus Device Device 
controller #1 #2 

Figure 7.2 The IEEE 488 (GPIB, HPIB) is a bus oriented 
communication system with a central controller. It is used, for example, 
to have a data recording system poll the various sensors for data. 

are bi-directional data lines and are used to carry both data and 
address information. The connector is a 24-contact type. Signal 
levels are TTL (0 V for true and 5 V for false logical). Typical 
maximum transmission distance is 20m divided by the number of 
devices connected, and 2m cabling lengths are typical. Up to 30 
different devices may be addressed, but 15 is a more realistic limit to 
the system's capability. Short ranges can carry very high data rates: 
20 kbytes/s for a few metres or tens of metres using IEEE-488 
versions. 

In operation, the controller polls the devices to find if they wish to 
receive, transmit, etc. It then sets up the conversations, one talker and 
one or more listeners at a time, and commands the data transfer to 
take place. IEEE 488 does not specify signal coding, but ASCII 
(American Standard Code for Information Interchange) is commonly 
used. 

We mention the Centronics connection only because it is so 
popular. It is used principally for printers, although of course it can 
be used for other applications. There are eight data lines, so bytes 
may be carried in bit-parallel form, plus at least two control lines and 
several ground lines. The minimal control lines are a data-ready 
strobe and a receiver-acknowledge signal, used for simple poll­
response confirmation, called handshaking. 
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7.4 COMMUNICATION BETWEEN COMPUTERS -
NETWORKING OF SYSTEM ELEMENTS 

Networking is a very new element on the control system scene; the 
standard approach has been to have multiple computer elements in a 
hierarchy with a master-slave relationship. This is evident in multiple 
computer devices such as robots, where the Unimation PUMAs, for 
example, have microprocessors controlling each joint and robot 
control is by a minicomputer supervisor. 

Advances in computer networking, the sheer number of computers 
in a large plant (when counting all the microprocessors in the 
controllers and smart instruments), and the desire for more 
management information on activities (CIM - computer integrated 
manufacturing) have all combined to make pursuit of LAN ideas in 
manufacturing plants a topic of much interest, with emphasis currently 
on MAP (manufacturing applications protocol) and SP50 field bus. 

Computer networking developed originally because of a desire to 
save cabling costs in large computer systems with shared resources. 
Thus printers can now be shared by several computers without 
running cabling from each computer to each printer; several user 
terminals (which tend to generate data at relatively low rates) may be 
attached to a single communication line, etc. When computer systems 
such as those at universities, comprise a group of terminals, possibly 
in a separate building from the computer centre, the network concept 
requires one line from the terminal room to the centre whereas the 
direct plan requires one line per terminal; the potential cost savings 
are obvious. The disadvantage of this approach is the need for 
increased sophistication at the nodes of the network, for each element 
must now be able to deal with the communication system as well as the 
computer elements. 

Networks are also attractive for control systems, for similar 
reasons: 

• cost savings due to less cabling; 
• possible control advantages because of interactions of control 

elements (without need for a central communication node); and 
• flexibility of equipment choices provided that the network contact 

points are compatible. 

There are three properties which characterize a network: the 
physical topology, the technology of implementation, and the 
communication protocols. 
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7.4.1 Topology 

There are three building block topologies for a network: star, bus, and 
ring. An implementation may be purely one or another, or may 
involve combinations of the three. 

The star topology has the outlying elements all connected 
individually to a central element (Fig. 7.3(a». In a control system, this 
would have all instruments and controllers connected by individual 
cables to a central computer, probably in a central control room. 

In the ring topology, the cable is laid in a closed ring shape as in 
Fig. 7.3(b). Communications are usually uni-directional, and often 
two rings with contra-directional data flow are used. The ring's 
advantage over the bus is in reliability: a single break in the cable will 
still leave open a communication path between any two elements in the 
ring provided bi-directional flow can be allowed. 

A bus topology for the system is quite like the bus layout of the 
CPU itself. Here (Fig. 7.3(c» a single cable runs through the plant 
and the various instruments and controllers time-share usage of the 
wire. Traffic is usually bi-directional on the bus. 

(a) (b) 

(c) 

TI1Il1 
Figure 7.3 Networks can be configured with various topologies. Here we 
have in pure form (a) star, (b) ring, and (c) bus topologies. S denotes 
server or supervisor and U denotes user. 



www.manaraa.com

Networking of system elements 149 

For many applications, a combination of star with either bus or ring 
layouts is useful (Fig. 7.4). This is particularly appropriate to 
decentralized control, as control elements and their instruments may 
be placed in a star layout near their required plant locations (an 
increasing possibility because of improved hardening of computer and 
other electronic equipment). Then only required information is 
placed on the bus for communication to other control locations or the 
central control and monitoring room. A further alternative is the 
bus-bus topology, using IEEE 488 buses for short distance 
communication between decentralized controllers plus a long distance 
line for plant communication. 

MainLAN 9 o 
I 

[] [] BusA 

To telephone 
leased lines 

Figure 7.4 There is no technical reason that topologies cannot be mixed, 
with various buses attached to a master Local Area Network (LAN). It is 
even possible to send plant data over the telephone system. In this diagram, 
the circles are local LAN or communication supervisors, and the squares 
represent devices, possibly including inter-network ports, which are 
supervised. 

7.4.2 Technology 

The technology of the implementation is a major determinant of 
communication rates and distances for acceptable signal-to-noise 
ratios. Although radio is a possibility (an early network was the 
Hawaiian Aloha radio communication network), the current choices 
are basically twisted-wire pairs, coaxial cabling, fibre optics, and 
occasionally unguided laser light communication. The interfaces are 
almost certainly implemented with solid state electronics, and in 
commercial applications the electronics may be a set of one or two 



www.manaraa.com

150 Communications 

integrated circuit (IC) chips. 
The possible communication speeds of the three main contenders 

are shown in Table 7.1. Most of these are well in excess of the 
requirements of control systems; 1000 sensors sending their 16 bit 
data 100 times per second requires only 1.6 Mbps (million bits per 
second) of capacity plus overhead. Noise problems are likely to at 
least contribute to making a choice, as industrial plants generate much 
electrical interference due to motors turning on and off, high voltages 
in power lines, etc. On these grounds fibre optics are receiving 
increasing attention for communications over multi-hundred metre 
distances; coaxial cabling is a very common choice within plants, and 
twisted wire pairs can be used over short distances (metres). 

Table 7.1 Communication media - rates 

Medium Cost Cost Data rate Length 
(units/m) (units per (km) 

connector) 

Twisted-wire pair 0.1 0 lOMbps several 
Coaxial cable 1.5 12 lOMbps 2.5 

50Mbps 1 
Fibre optics 0.5 30 l00Mbps 100 

(to 10 Gbps) 

The tabulated values are typical rather than maxima. Twisted wire 
pairs constitute an inexpensive but noisy and vulnerable carrier 
medium. Coaxial cable is very popular, while fibre optics are fast, 
noise insensitive, and safe in an inflammable or explosive 
environment; they are still unfamiliar and expensive, however, and 
are unable to carry electrical power. 

7.4.3 Communication protocols 

The communication protocols are the rules which determine how the 
network resources are shared. The first choice to be made is between 
a centralized controller of the network and distributed control. In 
fact, it is arguable this is the fundamental determinant of the network 
data flow. Certainly, control systems can - because of their real-time 
communication needs, particularly in an emergency situation - have 
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requirements not found with data communications for banks or even 
telephone conversations between individuals. 

Centralized control means just that: there is a single central unit 
(probably the central computer) which is master of the system. All 
other units wishing to transmit must gain the permission of the master. 
The master can also override the slaves. The CPU usually functions in 
this role within a single computer system, with demands conveyed via 
interrupts and sense lines and the CPU setting up communication paths 
such as DMA (direct memory access). The network is philosophically 
an extended version of the computer bus concept. 

In distributed control all of the units attached to the network bus 
or ring are essentially equal, although this is a fairly pure form since 
priority setting is often possible. The units must contend for the use 
of the network. Some of the possibilities are CSMA/CD, token rings 
and buses, and register insertion rings. 

CSMA/CD stands for carrier-sensed multiple-access with collision 
detection. It dates to a radio data communication network (ALOHA) 
and is analogous to one even when implemented over cable. A node 
wishing to send a message checks the communication medium to see if 
it is in use (carrier sense). If so, the node waits. If not, the node 
begins to transmit its message. If another node has also been waiting 
and starts to transmit simultaneously, the messages interfere; both 
transmitters will sense this (collision detection), cease transmission, 
and retry the transmission some random time later. Available 
commercially, under such names as Ethernet, these systems give good 
performance when lightly loaded. A problem is that a maximum 
delay that a particular message might endure cannot be guaranteed. 

In token-passing networks, a short data sequence called a token 
passes from one node to another in sequence on the network. A node 
receiving the token, but no other node, is allowed to transmit its 
message if it has one. Upon either not having a message or on 
completion of its transmission, a node passes the token (Le. sends the 
token code) to its successor on the net. The most famous token 
network is a ring network implemented by Cambridge University and 
called the Cambridge ring. Token-using networks can be arranged so 
that maximum delay is restricted (to the time for which all other 
nodes send one message plus the time for sending a node's own 
message), but on the average a minimum wait of the time for the 
token to pass through half the nodes is entailed even when the network 
is lightly loaded. 

Buffer-insertion rings - there seems to be no point in having 
buffer-insertion buses - use a two-message length buffer at each node. 
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A node wishing to transmit fills one of its buffers so that it will be 
ready to transmit if given the opportunity. If a break in transmission 
by other nodes occurs, the node starts to transmit from its buffer 
(similar to CSMA). If another message starts to pass through while 
this node is transmitting, the message is fed into its second buffer and 
passed on only when it has finished its own transmission, i.e. it saves 
rather than cancels as in CSMA/CD systems. This system has been 
implemented so far at a university (Ohio University's DLCNIDDLCN 
- a variation of the Cambridge ring also using a partial buffer) and 
has the potential of higher throughput than other schemes. It can be as 
rapid in response as CSMA/CD; but it does not appear possible to 
guarantee an upper bound on the delay. 

7.4.4 What's happening - MAP/IEEE 802.4 and others 

Manufacturing application protocol (MAP) 

The evolving standard for control systems applications networks 
appears to be MAP, which implements a token-passing bus approach 
to the network. The concepts are defined by IEEE Standard 802.4. 
In fact, networks are defined in terms of seven layers (see Table 7.2) 
according to the Open System Interconnection (OSI) reference model 
of the International Standards Organization (ISO). 

Table 7.2 ISO Model 

Layer Description 

7 
6 
5 
4 

3 
2 

1 

Application 
Presentation control 
Session control 
Transport end-to-end 

control 
Network control 
Logical link control 
Medium access control 
Physical control 

Layer function 

Program program 
Translate format 
Make and keep connect 
Error check 

Message routing 
Intranet error check 

Signalling physical connect 

This model is partly the result of liaison between the IEEE and the 
European Computer Manufacturers' Association (ECMA) begun in 
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1981. The IEEE standards apply to the bottom two layers of the 
model. The logical link control falls under IEEE 802.2; medium 
access control and physical control are covered by 802.3 for 
CSMA/CD buses, 802.4 for token-passing buses, and 802.5 for token­
passing rings. Other standards are under development. 

In the case of MAP and the similar proprietary ARCNet, the 
network is physically of bus structure and operationally a token bus, 
in which the token passes sequentially from station to station. After a 
station finishes transmitting data frames, it sends a token-containing 
frame to its successor. The successor, now in 'possession' of the 
token, may transmit its data frames if it has any. When finished, or if 
it has no data, it transmits the token to its successor, and so on. 
Various procedures, mainly based upon the transmitter of the token 
listening to see if anything happens, are available for establishing if a 
successor has failed or gone off-line, for adding new stations to the 
bus, for setting up priorities for stations, for limiting the number of 
frames transmitted when in possession of the token, etc. 

Standard 802.4 describes three media and transmission methods. 
These are indicated in Table 7.3; notice that data rates are upward of 
I Mbps. 

Table 7.3 Media and Transmission 

Data rate Medium Drop cable Signalling 

1 Mbps Coax 25-50 ohm Manchester 
(RG-6,RG-ll CATV) < 350mm Coding 

5 & 10 Mbps 75 ohm semirigid RG-6 FSK direct 
Baseband 'very short' 

1,5, & 10 Mbps CATV AM three-level 
Broadband 

The token-bus system helps provide some of the properties needed in 
factories: flexibility in topology, with trees, stars, and repeaters; 
upper bound on response time; reliability checking; possibility of 
having a master station. Range is dependent upon the speed desired 
and the number of repeaters, but the order of hundreds of metres is 
achievable. 

Although MAP was developed in part from manufacturers needs, it 
is in some respects an 'overkill' for the needs on the factory floor. 
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This may be seen by examining Table 7.4, derived from LeFebvre 
(1987), which compares functional requirements of the six levels of 
the National Bureau of Standards model of factory computing systems. 

Table 7.4 Functional requirements and suitable communications 
networks for levels of NBS factory model* 

NBS factory Data type Time Possible 
level (nature) scale network 

recOUnting 
Hours MAPrrOp 

Corporate} Inventory Ethernet 
Plant Data processing etc. 

(Batch orientated) 

Area} 
tata consolidation t Seconds MAP 
Coordination J, MAP Cell (Intermittent) 

Workstation } real-time data msec mini-MAP 
Equipment Direct Digital Control proprietary 
(PLCs, PIDs) (High Speed Periodic) network 

* Derived from LeFebvre (1987). 

The last two, or maybe three, levels involve communications of a 
rather specialized type, where the programmable controllers and 
devices do the actual process controL They operate in real time and 
need information often, but in small amounts; e.g. each device needs 
an 8-bit byte of data every few milliseconds (ms). Although MAP is 
applicable in principle, it appears that not every computing device 
needs the full generality of MAP. In fact, the Instrumentation Society 
of America (ISA) has proposed a set of standards for this level which 
in effect has only layers 1, 2, and 7 of the OSI model. Implemented in 
a form called Mini-MAP, it is compatible in most respects with MAP. 
The primary difference, and the reason the devices will not be plug­
compatible but will need bridges, is the use of a carrier band. This 
gives frequency modulated signals rather like frequency shift keying 
(FSK, in which a different frequency is used briefly for each symbol) 
superimposed on a carrier. Cable distances are limited to 1.5-4.5 km. 
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LAN alternatives to MAP 

There are competing alternatives to the MAP token-bus systems. One 
of these is the common Ethernet approach, which some plants are 
finding adequate in spite of suspicions that its CSMA/CD protocol is 
not suitable for time-critical communications; one significant 
advantage is that front offices already have Ethernet installed, so 
plant-wide networking for such purposes as implementing CIM 
reduces to connecting the rest of the plant. 

A somewhat different approach uses a bus structure similar in 
concept to the computer's internal bus, for communications. The 
approach may be called a field bus, and essentially has a simple bus 
such as a twisted wire pair with access controlled by a single 
supervisory computer. Not atypical is Intel's BITBUS, in which as 
many as 256 modules are connected to up to lOkm of a twisted-wire 
pair with communications at 2.4 Mbaud. Concentrators can be used to 
connect a number (say 16 or so) I/O devices to each module 
connection, while gateway modules are one bus-connected way to 
allow communications with parallel input or output devices. The host 
computer can also, using other buses, networks, or modems, connect 
to other parts of the system. 

Another variation is Europe's SP50 field bus, currently being 
defined and standardized. The underlying philosophy is to replace the 
present approach of wiring individual 4-20 rnA signal devices to their 
appropriate sources or sinks, sometimes over long stretches of wiring, 
with a digital link shared by many devices. Part of the definition 
effort is devoted to defining and subdividing the OSI physical layer 
appropriately; the likely outcome will have one protocol for existing 
systems which derive their power from the field wiring and another 
protocol to meet requirements of higher performance systems 
including for example PLCs. 

Although serving a communication function, field buses are not 
considered true networks, but are perhaps best considered a notch 
down from networks in sophistication. Claimed advantages of this are 
that they are simple in concept and installation, use existing 
technology, and, because they are like field wiring rather than a 
communications system, can be handled by electricians. 
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7.5 NETWORK ARCHITECTURE - CENTRAL vs. 
DISTRIBUTED CONTROL 

Once it has been decided that a plant will have sensors and actuators in 
various places, and that these will be computer compatible, then it is 
possible to connect them either to a centralized control computer at 
the one extreme or by independently pairing sensors with actuators at 
the other. The trade-offs include optimality and (perhaps) computer 
cost-effectiveness in the first case versus fault isolation and short 
cabling in the second. In fact, because of the ubiquity of 
microprocessors in loop controllers, PLCs, and smart instruments, 
and because microprocessors are relatively easily networked, many 
systems are naturally employing distributed, hierarchical control. 

Decomposition of a system into a hierarchical one can be done on 
several different grounds. 

1. System structure This can seem very natural to the designer. 
For example, a pump motor may itself be a controlled device and 
may in addition be used to maintain a liquid level. Although the 
level error might in principle be used directly in control of the 
motor, it is likely that in fact the two loops - level control using 
the pump and pump speed control - will be nested. 

2. Levels of control In this approach, direct device control will 
be the lowest level. Computation of set points for the devices 
will be a supervisory level. Adaption of the set point 
computations to changing system characteristics might be a third 
level in the hierarchy. 

3. Levels of influence When this is the criterion, fast time 
constant devices will be at one level and slower ones at a higher 
level. An example is in control of the aerodynamic surfaces of 
an aircraft by an autopilot. These will require tight loops and 
rapid response in the presence of disturbances. The navigational 
corrections, on the other hand, may be made less rapidly. 

4. Theoretical Theoretical arguments involving process models 
can be helpful in determining hierarchies and the controllers to 
be used at each level. The results are only partial ones, however, 
although like many theoretical arguments they can help support 
decisions (see Chapter 34). 
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7.6 COSTING 

Costs are difficult to pinpoint in general. Wiring and shielding may 
be more of a labour than a materials cost, for example, while 
differential and isolated amplification are design problems. For 
standard connection types, the actual computer interfaces can range in 
cost from $50 or so for RS-232C connections and several hundred 
dollars per GPIB element through several hundred dollars per 
computer for a simple CSMA/CD LAN hook-up up to several 
thousand dollars for a computer modem. For some computers, signal 
conditioning modules are available which take in raw sensor signals 
such as those from thermocouples and output RS-232C or IEEE 488 
signals; such cost a few hundred dollars per module, where the 
module may allow several inputs. 

7.7 FURTHER READING 

Information on wiring and shielding tends to be scattered, although 
some electronics textbooks will contain it and some issues are covered 
by standards, or at least by standard practice. Some discussion is in 
Hunter (1987), and special textbooks such as Webb and Greshock 
(1990) are helpful. A recent text on interfacing is Derenzo (1990). 

Networks are discussed in the communications literature, e.g. Flint 
(1983) or Gee (1983), with a useful summary in Sloman (1982). One 
useful text is Tannenbaum (1988). 

Details of standards such as RS-232C tend to appear in the computer 
literature. The ongoing development of networks in industry may be 
followed in the engineering literature, often under the classification of 
distributed control (e.g. I&CS, Sep. 1990). 

Architecture of manufacturing computer systems is often a topic of 
the control engineering periodicals (see e.g. LeFebvre, 1987) and of 
texts such as Groover (1987). General theoretical issues are discussed 
by Larson (1979), and the textbook by Leigh (1988) has a partial 
presentation. 

Developments in a manufacturing environment are most easily 
followed in the trade journals such as I&CS. 
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Control laws without 
theory 

Many control systems can be and have been set up with almost no 
reliance upon the mathematical theory of control. Many more have 
been based upon a notion of how the mathematics might tum out but 
with no explicit reliance upon that tool. This is true even leaving 
aside the PLCs devoted simply to turning on and off the various 
machines involved. 

Such an approach has a long and partially distinguished history. 
Early windmills, with their vanes to keep the main propeller pointing 
to the wind, doubtless had no supporting theory, but only the 
understanding of some clever inventors of how things worked. 
(Similar things could be said of boat designers, who learned from 
their successes - and disasters.) The Watts governor, famed as the first 
of the explicit control devices, had no theory until Maxwell solved the 
'hunting' problem in 1869. 

Even today, many systems must do without strong theoretical 
underpinnings, as the mathematics may be too difficult, too expensive, 
or irrelevant. More to the point, a number of systems have not been 
modelled in detail, and hence the manipulation of mathematical models 
upon which theory is based is not possible. 

Such systems are still controlled, however. The control is based 
upon the engineering artistry of the designer and the skill of the 
system operators, just as was the case with early aeroplanes. In this 
chapter we review a few of the schemes in which a system is 
compensated and tuned through the use of heuristics and tuning. The 
reader will derive from this a notion of what to do when the theory 
fails, an appreciation of some real systems and how they are 
controlled and operated, and an introduction to the heuristics of 
control. 
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8.1 SYNOPSIS 

The parameters of many control systems may be adjusted to yield 
good performance, i.e. the control systems may be 'tuned', without 
recourse to much theory. 

1. PLCs are, by their nature as relay logic substitutes, virtually 
theoryless. 

2. A new breed of control devices are self-tuning. Their tuning 
algorithms were built in by the engineers who designed them. 

3. For many of the simpler control laws, and particularly the widely 
used PID law and its subsets, there are rules of thumb for setting 
the parameters. These schemes typically involve observing 
system operation under open-loop or simple closed-loop 
conditions, estimating parameters of their responses, and 
inferring satisfactory values of the control law parameters. 

These all have their limitations, of course, and few engineers would 
install them without having a good understanding of the plant. 

8.2 PLCs - THE SEMICONDUCTOR-IMPLEMENTED 
RELAY BANKS 

A great deal of what is taught about control systems seems exotic: 
advanced algorithms for shaping missile trajectories, fancy filters for 
extracting information from noisy data, methods for moving robot 
arms efficiently and rapidly, sensitive instruments for monitoring 
pollution. Underlying most of these are much more mundane tasks: 
turning equipment on and off, opening and closing valves, checking 
sensors to be certain they are working, sending alarms when 
monitored signals go out of range. Process control plants, aircraft, 
and indeed most controlled systems share this need for simple but 
important operations. 

The tool for handling these simple operations, of which there may 
be hundreds or thousands in a single factory, is the programmable 
logic controller (PLC). It is easiest, and also historically correct, to 
think of the PLC as effectively a large bank of relays implemented in 
a computer. The great advantage of the PLC over relay banks is its 
programmability - the implemented logic can be altered by changing a 
computer program rather than by changing the wire harness of a set 
of relays. 
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Implementation of logical commands does not require the engineer 
to be a theoretician, but a careful and thorough understanding of the 
plant and its elements is necessary. We have already met much of the 
PLC's hardware in Chapter 5 and hinted at its software in Chapter 6. 
In this section we partially reprise those presentations and add some 
discussion of applications. 

8.2.1 The basic scheme 

At its simplest, the PLC implements turning on a motor (say) via 
logic. The simple form of the operation is shown in Fig. 8.1(a), a 
relay form in Fig. 8.1(b), and a PLC implementation in Fig. 8.1(c). 

(a) 

POWER ~ 
-----=I~ 

Switch 

(c) 

Switch 

power 

Switch 

POWER 

(b) 

MOTOR POWER 

RELAY Relay solenoid 

Switch 

Figure 8.1 The progression in turning a motor on and off from 
(a) simple switching of the motor power to (c) using a pushbutton to 
activate a computer which, after suitable logic checks, commands its output 
unit to allow the power to be connected to the motor. 

Because the relays are used in (b), the relay switch need not carry the 
motor power and could in fact require only the few volts sufficient to 
power the relay coil. The PLC carries this further: input power is 
matched to the input unit, and could be an instrument signal 
(4-20mA), the computer is basically a low power 0-5 V device, and 
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the output unit can match the output command to the motor 
requirement, e.g. 120V, 240V, or 400 V AC, or perhaps 0-24 VDC. 
Further, the computer is able to implement logic such as 'tum on 
motor 2 s after switch is closed provided some other (e.g. safety 
switch is closed) conditions are met'. 

8.2.2 Programming in ladder logic 

The PLC turns output commands on and off after making logic 
checks. In essence, it implements checks on whether contacts are open 
or closed, runs timers and counters, and does sequencing. The usual 
logic tests are represented in logic ladder diagrams and 
programming of the computer can be done from those diagrams, 
although manufacturers may offer other options. 

The basic elements available in the PLC and their symbols are 
shown in Fig. 8.2. 

NonnaJly open contact input 

NonnaJly closed contact input 

'Coir output 

TImer symbols 

Counter 

Sequencer 

Figure 8.2 A few of the symbol types used in representing PLC 
programs. These are not standard. 

Along with the basic logic functions, PLCs are now available with 
arithmetic capabilities. These capabilities are sometimes combined 
with a special purpose auxiliary module to allow continuous (rather 
than just on-off) output commands. These modules may even have a 
PID capability (section 8.3), which overlaps into the 'tuning' area and 
definitely requires more than logical decisions from the engineer or 
technician setting up the program. 
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In using the PLC, the logic program - the logical relationship 
between inputs and outputs - must be detennined. There may be a 
great many instructions of the type 

IF the motor switch is ON and the appropriate alanns are OFF 

THEN start the motor tum-on sequence. 

and the components must be assigned codes (often numbers) that are 
related to the I/O wiring of the PLC. Thus the command above might 
translate to: 

IF nonnally open 0011 is closed 
AND nonnally closed 0001 is closed 
AND nonnally closed 0003 is closed 

THEN operate sequencer 0201 
with 2 second steps 
to close switches 1011 and then 1012 and then 1013 
to the 'coils' 1111, 1112, 1113 respectively 

The corresponding ladder diagram is in Fig. 8.3. 

Power Rail 

1011 0001 0003 

1012 1112 

1013 1113 

1011 

1013 

1012 

Ground Rail 

-I 

Figure 8.3 A simple PLC program in ladder logic. When pushbutton 
1011 is pressed and safety interlocks 0001 and 0003 have not been tripped, 
then after two seconds a counter is started. This successively trips switches 
1011, 1013, 1012 to do the motor start-up sequence. 
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8.2.3 The programming of PLCs 

The standard way of programming the PLCs is to enter the ladder 
diagram into the computer using a special keyboard and to look at the 
display on a dedicated device, either a VDU (computer visual display 
unit) or liquid crystal display. The display will look much like Fig. 
8.3, and is said to be easy for technicians to work with. Hard copy (in 
the form of printer output) is easy to obtain. 

Programming of PLCs has also been done in other languages, 
notably BASIC and its relative FORTRAN and, to a lesser extent, 
versions of Pascal; one assembly language type approach is that of 
Siemens' STL. These can be particularly useful if the PLC also allows 
arithmetic functions and proportional control laws. 

8.3 TUNING OF CONTROLLERS 

When the control computer's output is in other than a simple logical 
relationship to the input, there are usually a number of parameters 
which can be selected. Such selection is called tuning of the controller 
and is often refined even after theoretical studies, often with the aid of 
simulators or with the actual system. In some cases, perhaps driven 
by necessity or convenience, this adjustment is done without theory. 
This theoryless tuning can be done by special self-tuning controllers, a 
recent innovation, or by manual means starting with rules of thumb. 

8.3.1 Self-tuning controllers 

When command signals to the process are functions of errors between 
desired and actual outputs, the determination of what functions to use 
and what the parameters of the functions should be is at its core a 
matter requiring some theory. Long experience with certain function 
types, plus a certain ad hoc intuitive justification has allowed many 
practitioners to manage with only a modicum of theory. So, instead, 
they use now-standard functions and 'tune' their parameters to the job 
at hand. 

Since this tuning required manipulating the parameters to achieve a 
certain desired response pattern to system transients due to start-up, 
set point changes, or disturbances, it was perhaps inevitable that 
computers were programmed to do the pattern recognition and 
parameter manipulation. Controllers using such techniques are 
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adaptive controllers (Chapter 31), although the special nature of their 
functions and implementations has led them to be described as 'self­
tuning'. 

The usual function implemented in commercial self-tuners is PID, 
or three-term, control (see section 8.3.2). The tuning algorithms are 
mostly proprietary, but would (at least philosophically) be related to 
the manual tuning algorithms (section 8.3.3). A special subroutine in 
the control computer may be visualized as overseeing the operation of 
the PID law and changing the three parameters of that law when the 
error between desired process output and actual process output shows 
patterns (such as oscillations) indicating change was necessary. 

Claimed advantages of self-tuning, some proven in a research 
environment and others also established in an industrial environment, 
include the following. 

1. Skilled process engineers are not needed to tune the process 
initially. 

2. Control will be quite good regardless of set point changes or load 
disturbances. 

3. Technicians on start-up can spend their time on tasks other than 
tuning. 

4. The plant is always in tune, so its operation is more efficient. 
This can result in savings in energy and materials, and 
improvement has been shown to · be substantial in some research 
programmes. 

As commercial self-tuning controllers may even be delivered with 
'good guess' initial parameter values, the control engineer may well 
see this as theoryless control of a device. A responsible engineer, 
however, might be unwise to install one of these (or any other) black 
boxes 'blindly' without having some notion as to what it does. 
Particularly important may be considerations of what happens to the 
algorithm when things go wrong with the plant. Typical desirable 
capabilities may be as follows. 

1. The ability to find out the current parameters and to manually 
override them. 

2. The ability to enable and disable self-tuning. 
3. The ability to instigate a special plant input disturbance-like 

signal to cause a self-tuning cycle. 
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Of course, if manual tuning is available and is to be used, the 
process engineer must have some notion of how to do the tuning. This 
is the topic of the next section. 

Several commercial PID controllers are self-tuning (Clarke, 1986). 
One of the first of these was the Foxboro 'Exact' self-tuner. While 
manual tuning and set-up are of course possible the basic self-tuning is 
based upon the tracking of error transients introduced by load­
disturbances (Fig. 8.4) The disturbances are assumed to be of the form 
of step inputs. 

Figure 8.4 A self-tuner may apply a small perturbation and measure the 
error response. One algorithm uses the peaks e} ,e2, e3 to set new PID 
parameters. After Clarke (1986). 

The transient is tracked whenever lei exceeds a user-set noise band and 
the algorithm looks for three successive peaks e}, e2, e3 as shown. The 
computed values 

Overshoot = I :~I 

are compared with user-prescribed values. If the computed quantities 
are too small, for instance, it is inferred that the gain is too small and 
the gain is increased; if peaks are indistinct, the integral and derivative 
time parameters are reduced. There is an elaborate set of interlocks 
which guide the tuning so that the transients take on a desired form 
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and size; these have not been published in the open literature. 
Another self-tuner is that of Turnbull Controls, for which the 

details have again not been published. This appears to perfonn a 
system identification and design a PID controller according to some 
rule (see Chapter 30 and also section 8.3.2 below). 

8.3.2 Heuristics of PID controllers 

The standard process control law has a hundred-year plus history, 
rules of thumb for tuning dating back fifty years, and possibility for 
implementation with purely mechanical or pneumatic controllers. It is 
called the three-tenn, or proportional-plus-integral-plus-derivative 
(PID), law and has as a special case the proportional-plus-integral (PI) 
law. The PID rule, relating the controller's output command u(t) to 
its input signal e(t) as 

t 

f deer) 
u(t) = Kp e(t) + Kj e(s) ds + Kd dt (8.1) 

is often built into commercial controllers, with the designer or 
operator expected to set the three constants Kp, Kj, and Kd according 
to his application. A popular alternative fonn of this is 

(8.2) 

where Tj is called the integral action time or reset time, and T d is 
called the derivative action time or pre-act time. 

Because the output depends upon the sum of three tenns, these are 
sometimes called, logically enough, three-tenn controllers. Other 
names include loop controllers, PID controllers, and process 
controllers. 

One sampled-data or digital computer version of the above is 
defined by using a trapezoidal approximation for the integral tenn and 
a simple first difference for the derivative, to yield a near-equivalent 
form 
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i(nD = i(nT-D + (e(nT) + e(nT -T»)/2 

u(nD = Kp e(nD + Kj T i(nT) + Kd(e(nT) - e(nT -T»)/T (8.3) 

where T is the time between successive computations (and between 
samples, and between commands). Suppressing the T in the indexing 
and incorporating the Ts in the constants yields 

i(n) = i(n-l) + (e(n) + e(n-l»)/2 

u(n) = Kpe(n) + Kji(n) + Kd(e(n) - e(n-l») (8.4) 

The equation and notation of (8.2) also have a digitized form. 
Such controllers are frequently used in large systems which are not 

modelled sufficiently for extensive analysis to be done, as often they 
can be tuned to give satisfactory performance. In the subsections 
below we develop the heuristics associated with each of the three 
terms and then present a few of the tuning rules which have been 
proposed. 

It is possible to argue that the various terms of the three-term 
controller are a good idea - especially since the result is so often 
satisfactory. In this section we discuss the P-term, then P+I, then 
P+D. These are of course not derivations but justifications. A more 
profound question is: why do the simple control laws often work as 
well as they do? 

Proportional control - the P term 

Manual tuning has a heuristic motivation which is fruitfully traced to 
gain insight into the classical approach to control system design. If a 
plant is not responding accurately to commands sent to it, the first step 
is usually to introduce a feedback loop, compare the actual output to 
the desired output, and send a command to overcome the difference. 
In Fig. 8.5(a) is shown a schematic for this configuration. (We 
remember that this is in fact an abstraction in which a number of 
realities have been ignored: desired output is probably a number 
rather than a signal; actual output is probably a signal which measures 
output using a transducer; error may be either a number or a signal, 
but the controller (Fig. 8.S(b» is probably a digital computer device 
and hence works with numbers; plant commands may be voltages, 
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hydraulic pressures, or other signal carriers. Our implicit assumption, 
made explicit here, is that such scaling as is necessary has already been 
done.) 

(a) 

Parameter inputs 

i-----JLL-----, 
, prD Controller ' 

-- ---- - --------~ 

Measured value '---_--' 

(b) 

Figure 8.5 The three-tenn, or PID, or loop controller. (a) schema for 
inputs, (b) an industrial controller (see Fig. 5.7) opened to show three 
adjustment dials; the set point may be input using the front dial. 
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Given the simplifications, we still find this a useful model. To give 
ourselves a notation, we define 

desired output = input = r(t) (or in sampled fonn renT), 
denoted by r(n)) 

actual output = output = yet) (or y(nT) or yen)) 

error signal = e(t) (or e(nT) or e(n)) 

control signal = u(t) (or u(nT) or u(n)) (8.5) 

and we remark that the definition of the error has 

e(t) = ret) - y(t) (8.6) 

Now, if e(t) is positive, then yet) is too small and a control signal is 
sent to increase y(t), with the opposite if e(t) is negative. 
Furthennore, if the magnitude of the error is rather large, to have the 
magnitude of the control signal rather large also seems reasonable. 
Thus we can argue that a reasonable control law is 

u(n) = Kp e(n) (8.7) 

As the command is proportional to the error, this is called a 
proportional (P-type) controller. 

The amount of corrective command put out for a given perceived 
error will depend upon K p. Heuristically, we will have a large 
corrective effort, and hopefully rapid response, if Kp is large. Also, 
we might expect that steady-state error would be small if Kp is large, 
since there would be a substantial correction for small e(n). On the 
other hand, if the error signal is noisy, there will be a lot of control 
effort expended in tracking this noise if Kp is large. Also, if Kp is 
large and the error can also be large, the command signal might try to 
overdrive the plant. Responses of a simple system controlled using a 
proportional control only (also called a gain compensation), are shown 
in Fig. 8.6. Note that the apparent steady-state error between the 
actual output and the desired output (=1) decreases with increasing 
gain Kp, but the oscillation of the transient increases in magnitude at 
the same time. In fact, for Kp = 2.5 the output maintains a sustained 
oscillation. 
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K=2.5 

t - sec. 20 

Figure 8.6 Step responses of the simple closed-loop system for various 
values of proportional gain K. (The examples in this chapter all use the 
plant transfer function (Chapter 10) defined by (-s+4)/«s+2Xi42s+2)) 

Integral control - the I term 

Proportional control will not always do a satisfactory job. In fact the 
system sometimes acquires a steady-state error. We shall see why 
later (in Chapter 17) when we look at the mathematics, but the effect 
is similar to that in which we are sending a voltage to a motor which 
is supposed to rotate at a certain speed. Here, if the error is zero then 
the command is zero and the motor will stop and only restart when the 
error is non-zero. Eventually one hopes for steady offset in the output 
rotation velocity which yields a steady voltage command which 
maintains constant speed. For the error to be small in these 
circumstances, however, Kp must be very large which, if nothing else, 
will entail extremely large voltages to the motor when it is first 
switched on and e(n) has significant size. 

To overcome the above problem, another term is introduced into 
the control law. Suppose that e(t) is integrated. Then the integral will 
be small if the system oscillates but will gradually build up if a steady 
offset, even a small one, is present. Thus if 

t 

u(t) = Kpe(t) + Ki fe(s) ds (8.8) 
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we might expect the steady-state error to eventually disappear, with 
the integral retaining the offset information needed for the control to 
maintain a constant command. The above is called a two-term or 
proportional-plus-integral (PI-type) controller and is quite common. 
There are now two parameters to set (Kp and Kj) and tuning can be in 
stages: first set the rapid transients using Kp and then tune out the 
steady offsets at a rate determined by Kj. The integral term is 
sometimes called a 'reset' term and is associated with a minor problem 
of its own called reset windup, in which the integral becomes very 
large early in the operation (due perhaps to trying to follow big step 
changes in desired output) and dominates the proportional term. A 
typical remedy is to reset the integral to zero periodically. 

The implementation of the PI law in a digital computer is 
straightforward, and the reset logic is easy. The implementing 
equation will usually be derived from 

n 
u(n) = Kpe(n) + Ki LeU) (8.9) 

but will probably effectively accumulate the sum in its own register. 

sen) = s(n-l) + e(n) 

u(n) = Kpe(n) + Ki sen) (8.10) 

Another popular variation of this is to compute what is essentially 
the variation in the control. Thus, noting that 

sen) = e(n) + s(n-l) 

we have 

u(n) = u(n-l) + Ki e(n) + Kp (e(n) - e(n-l») (8.11) 

which has the virtue of maintaining constant control command 
whenever the error becomes zero. 

The influence of I-terms as shown in Fig. 8.7, is that the integral 
term seems to decrease the steady-state error, but increase the 
oscillation for the given value of proportional gain. 
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t - sec. 20 

Figure 8.7 Step responses for proportional gain = 1 and various values of 
integral gain Ki. showing the effect of integral control. Notice that the 
response eventually approaches 1. (Refer to Fig. 8.6.) 

Derivative control - the D term 

In use, the above sometimes need large gains to induce rapid enough 
response. Unfortunately the systems then end up lightly damped, 
demonstrating overshoot and oscillations of unacceptable levels. For 
this reason, the controller should contain a 'braking' tenn, which will 
act to decrease the magnitude of the command as the error comes 
close to zero at high speed, but increase the magnitude of the 
command if the error is diverging from zero. Clearly, then, the 
quantity of interest is the derivative of the error, and a candidate 
controller is 

de(t) 
u(t) = Kp e(t) + Kd dt (8.12) 

Examination of this shows that if ret) = constant and yet) < rand 
increasing, then e(t) > 0 and its derivative is negative. Thus u(t) will 
be smaller (assuming Kd> 0) than for the P case, so the system's error 
will not pass through zero as rapidly as before and in fact as it passes 
through zero, the command will already be trying to slow the system; 
hence, the control is proportional to a prediction of future error. 
Other cases may be argued similarly. 
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Control laws such as (8.12) are proportional-plus-derivative (PD­
type) laws and, although justifiable, can be hard to tune and are less 
common than PI controllers. The digital implementation of the law 
typically uses a back difference to approximate the derivative, i.e. 

u(n) = Kp e(n) + Kd (e(n) - e(n-l») (8.13) 

Examples of PD control are shown in Fig. 8.8. Starting with a 
steadily oscillating output with proportional control only, increasing 
Kd apparently increases the damping of the oscillation. 

Q) 
lJ) 
c: o g.1 
~ 
a. 
Q) 

U5 

o t - sec. 20 

Figure 8.8 The effect of derivative control, demonstrated for various Kd 
with Kp = 2.5. Notice the increased damping. (Refer to Fig. 8.6.) 

8.3.3 Rule-of-thumb tuning of PID controllers 

A common industrial fonn uses all three of the above to fonn the 
three-tenn, proportional-integral-derivative, or PID control law. The 
implementation may be of several forms, but generically is 

s(n) = s(n- l) + e(n) 

u(n) = Kp e(n) + Ki s(n) + Kd (e(n) - e(n-l») (8.14) 



www.manaraa.com

Tuning of controllers 175 

Tuning with three parameters (plus other parameters such as sample 
rate and integral term reset period to be set) can be tricky and it seems 
in many cases to be based on perturbation from settings found to be 
useful in the past. When starting from scratch on systems in which the 
steps are allowed, two approaches may be used: the first uses the 
controller in a closed-loop situation, while the second starts from the 
system's open-loop step response. 

Even when well tuned, PIn controllers have a problem in that they 
do not take explicit account of time delays, as opposed to time lags. 

Closed-loop tuning 

A typical and famous algorithm is that of Ziegler and Nichols (1942), 
as follows. 

Step 1. Operate the system with the loop closed and with Ki and Kd 
set to O. 

Step 2. Start the system and vary Kp until the system begins a steady 
oscillation. Set Kerit = Kp at oscillation, and let Perit = period 
of oscillation. 

Step 3. For P control, set 

Kp = Kerit /2 

Step 4. For PI control, set 

Kp = 0.45 Kerit 

Ki = Kp/Tj, where Ti = 0.83 P erit 

Step 5. For PIn control, set 

Kp = 0.6 Kerit 

Ki = Kp/Ti' where Ti = 0.5 P erit 

Kd = KpTd, where Td = 0.125 Perit 

An example of the result of this approach appears in Fig. 8.9. 

(8.15) 

(8.16) 

(8.17) 

Other methods also exist for rule of thumb parameter settings. In a 
variation of the above, for example, the initial value of Kp is chosen so 
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that the system exhibits a decaying oscillation in the response, with 
successive peaks a fraction (say 25%) of the previous peak. Notice 
that these schemes work on the plant with the control loop closed. 

2 
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Figure 8.9 The effect of Ziegler-Nichols tuning, demonstrating 
Proportional only (P), Proportional plus Integral (PI), and Proportional 
plus Integral plus Derivative (PID) control for the system used in Fig. 8.6. 

Open-loop response (reaction curve) based tuning 

Another possibility is to find the open-loop plant's response. An 
example is the transient-response method (Astrom and Wittenmark, 
1990) as follows. 

Step 1. Find the open-loop step response for the system. From this 
are found the three parameters: 

R = the slope of the response, 
K = ratio of output change to input change, and 
L = the apparent time lag before significant response occurs. 

See Fig. 8.10. 
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Figure 8.10 The step response of the plant (-s+4)/«s+2)(s42s+2)) alone, 
i.e. the open-loop system. This response is called the reaction curve. 
Compare with the closed-loop responses in Fig. 8.6. 

Step 2. For P control, set 

G = l/(KRL) (8.18) 

Step 3. For PI control, set 

G = O.9/(KRL) 

Tj = 3 L (8.19) 

Step 4. For PID control, set 

G = l.2/(KRL) 

Tj = 2L 

Td = L/2 (8.20) 

Using these rules on our example system results in the curves of 
Fig. 8.1l. 

This reaction curve method also has variations, including Cohen and 
Coon, presented by Stephanopoulos (1984) and Clarke (1986). 
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Figure 8.11 Reaction curve tuning, showing P, PI, and PID control for 
system of Fig. 8.10. Compare with tuning of Fig. 8.9. 

8.4 OTHER COMPENSATORS 

PID controllers are among a class of control laws, which might be 
called compensators, whose function is to shape the response of the 
open-loop system to have desirable properties. In the frequency 
domain studied in detail in Chapters 15 and 20, they are in essence 
filters which shape the error signal so that the plant responds 'well'. 

The basic fonn of such compensator elements is the phase-lead 
phase-lag element 

(8.21) 

which has a digital fonn 

u(k+l) = -bu(k) + Kd {e(k+ 1) + a e(k)} (8.22) 

where the exact characteristics for frequency shaping depend upon a 
and b (Chapter 20). Setting the parameters requires at least some 
know ledge of the underlying theory, but some precalculated 
relationships have been proposed. 
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One design for the fonn (8.22) has been proposed (Yeung and 
Chaid, 1986) which uses frequency response characteristics and which 
requires the designer to choose two of his parameters: 

coo: roughly the desired closed-loop 3dB bandwidth, i.e. the 
frequency at which the gain is down 3 dB from the DC 
value. 

<1> : phase margin desired (typical choice is about 45-55°). 
Frequency domain parameter related to damping. 

Sampling period T must also be chosen. Then a design rule is as 
follows. 

Step 1. Find the open-loop gain IG(coo)1 and phase arc(G(coo» by 
opening the feedback loop and applying frequency COo to the 
controller input. Measure the outputs. 

Step 2. Compute the intennediate parameters 

a = -180° + <I> - arc(G(coo» 

_....:1:.....----'-.::1 G:.....(~co'-"OL.) I....:c--=:.o~s a-=---:­a-
-IG(coo)lcosa - IG(coo)12 

h _ cas a -IG(coo)1 
- (2fT) tan(cooT/2) sine 

Step 3. Then the controller parameters are given by 

1-(2/ T)ah a = --'------"-
1+ (2 / T)ah 

b= 1-(2/T)h 
1 +(2 / T)h 

K =1+b 
d l+a 

(8.23) 

(8.24) 

PI and PID control gains designed on similar grounds are also 
suggested. A potential problem for the user is that the choices of 
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bandwidth and phase margin may not be arbitrary, and if any 
difficulty arises it may be necessary to plunge into the theory or at 
least to allow a cascade of compensators. 

8.5 FURTHER READING 

Theoryless control is not a standard topic in textbooks, so a further 
reading list is somewhat restricted. One cannot properly advise that 
theory be ignored, but engineers are often well served by these rules 
of thumb. 

PLCs are inherently theoryless. Their use is described in 
manufacturers' literature. One of the few extensive textbook 
descriptions is Kissell (1986). 

Although theory is absent, it is still possible and desirable to be 
systematic in planning and programming PLCs. One systematic 
review and programming approach is described by Pes sen (1989). 

Self-tuning regulators are a field of their own, and although we will 
present them along with adaptive control theory, use of such devices 
without theory is probably best described in manufacturers' literature. 
Some of the issues are discussed by Astrom and Hagglund (1988), who 
also discuss PID controllers. Another discussion of self-tuners is that 
of Gawthrop (1987). 

For three-term controllers, further reading can be found in 
manufacturers' literature, in a few texts such as Astrom and 
Wittenmark (1990) and Stephanopoulos (1984), where the latter is 
notably from the class of chemical process control textbooks, and of 
course from isolated technical articles such as Ziegler and Nichols 
(1942). Both Astrom and Hagglund (1988), and Bennett (1988) 
present discussion, including various forms of the implementations 
and engineering considerations such as bump less transfer (to allow 
switching from manual to automatic mode without transients) and 
anti-reset windup (to prevent such effects as slow settling due to 
build-up of the integral term during saturation or set point changes). 
An engineering look at the topic occasionally appears in the technical 
magazines; an example is St. Clair (1991). 

We also mentioned that there is a class of design rules which 
require a theoretical background, but for which rules or design tables 
have been deduced. In such approaches the engineer needs some 
appreciation of what is happening, but need not perform all of the 
calculations. One such approach is that of Knowles (1978). 
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Sources of system models 

In previous chapters we have virtually ignored the system being 
controlled. Knowing a temperature was to be controlled, it was 
implicit that a temperature sensor was to be used to measure the 
output and a heater of some kind to cause the output to vary, but the 
mechanism of heat transfer was ignored. It was even suggested that 
the loop could be tuned by formulae which barely recognized the 
nature of the controlled process. None of this is completely true, of 
course, as a good engineer will have a notion of how the system 
works, and how it reacts to input and he will be influenced by this in 
many aspects of engineering the system. So, while the previous work 
did not use mathematical models of the controlled plant, these will be 
pervasive in what follows. In fact, the use of mathematical models is 
fundamental to use of control theories. 

This chapter considers models, in particular ordinary differential 
equation models - but first looks at modelling as a scientific and 
philosophical exercise. We consider a simple and common controlled 
system, i.e. a DC motor, and its responses in certain types of control 
configurations with continuous elements. Then we present several 
examples which show models developed for different fields from 
differing points of reference: a rocket model from laws of motion, a 
liquid tank model from thermodynamic principles, a black box model 
using input-output data, and the nature of modelling of sensor noise 
and disturbances to the system. Then, because so much control theory 
is associated with linear systems, we demonstrate how models are 
linearized and mention a rationale for doing so. Finally, we consider 
what happens when we sample such systems, i.e. what they look like 
from within the computer, which sees only samples of the output. 

9.1 SYNOPSIS 

It is often useful to study models of systems rather than the systems 
themselves. Commonly used are scale models, analog models, pilot 
plants, simulations, and mathematical models. All are used in 
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engineering, but the most commonly used in control systems studies 
are mathematical models. 

Of the many types of mathematical models, we deal primarily with 
differential equation models, exemplified by the equation 

for describing a motor's shaft angle e as a function of the applied 
voltage Va with parameters 't and Km. This is an approximate model 
based, as many are, on the laws of physics plus careful engineering 
approximations. 

A common alternative, particularly in computer control, is a model 
such as 

y(kT) = 4.5y(kT -T) - 3y(kT -2T) - O.5u(kT-T) 
- O.2u(kT -2T) - 8e(kT -T) - ge(kT -2T) 

which relates the sampled outputs y of a paper press (paper basis 
weight) to the command inputs u (steam pressure at drying cylinders) 
and other inputs e (errors due to noise and disturbances for examples) 
at times kT, where T is the sample period of the system and k is an 
indexing integer. 

Models are essential for the development and analysis of computer 
control algorithms, and for this reason the present chapter is devoted 
to them. 

9.2 OVERVIEW 

Modelling has been defined as 'a deliberate intelligible cognitive 
activity aimed at abstracting, and reproducing in some convenient 
realms of discourse, features of an object or system of interest to the 
modeller'. The words here are carefully chosen to rule out the trivial, 
such as assertions that 'we all carry within us models of the world's 
behaviour', and to emphasize utility by not requiring the inclusion of 
features not of interest, such as thermodynamic considerations in 
simple spring -mass systems. 

We build models to achieve an understanding of: 

1. the inherent nature and characteristics of the system; 
2. the results of future changes in the system; and 
3. the system's response to external stimuli. 
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Modelling is generally regarded as indispensable for gaining 
understanding of the behaviour of complex systems, but it must also 
be recognized that it is in part an art form, as is much of engineering. 
Unfortunately for the user, there is no comprehensive, consistent 
theory of modelling, there is no set of theoretical notions which form 
an adequate basis for the existing methodologies, and there are no 
good sets of modelling heuristics nor notions which would lead to such 
heuristics. 

In spite of the above, engineers must have models to work with and, 
although many subsystems and systems have already been modelled, 
they must often construct models. To this task, they bring their 
experience and knowledge plus a great deal of ingenuity; they attempt 
to be systematic, in a way extending the so-called scientific method -
observe the system, formulate a theory, predict new observations, 
experiment, refine theory if necessary, etc. - and organized, perhaps 
in the manner advocated by Murthy et al. (1990) for mathematical 
models, who insist that first it is necessary to define the problem to be 
solved carefully. Then the system must be characterized, a step which 
requires deep knowledge of its physical aspects and involves 
considerable idealization and simplification. Next, a mathematical 
formulation, dictated by both the characterization and by ad hoc 
intuitive considerations, is selected, and the model's variables are 
related on a one-to-one basis to the variables in the characterization. 
The resulting mathematical model is analysed, and the variable 
behaviour is compared to data from the real system. If the data do not 
agree, according to a pre-defined criterion, then it is necessary to 
back-track and make changes in the characterization, the mathematical 
model, or both. 

Whether the engineer has been completely systematic or, more 
likely, a combination of systematic, ingenious, and resourceful in its 
development, the model must - in the end - be useful. For this, it 
must be parsimonious, having only the required level of detail. Thus 
for example a model of a machine may ignore long-term changes in 
behaviour due to wear and very short-term effects of spikes in the 
electricity supply to the motor. In addition, the model should be valid 
in the sense that enough evidence has been obtained to show that it is 
adequate to the task at hand, i.e. that it correlates with observations of 
reality and that its theoretical base is adequate. 

There are a number of types of models; the overwhelming caveat 
with all of these is that the model is not the real thing, and it may not 
perform identically. 



www.manaraa.com

184 Sources of system models 

1. Scale models are usually undersized but exactly proportioned 
models of physical devices such as the aircraft models placed in 
wind tunnels to show aerodynamic effects. They can be much less 
expensive and easier to study than the real thing, but have the 
potential problem that observed effects (such as drag) may not 
easily scale up to full size. 

2. Analog models are based upon the notion that two systems 
show structural similarity in their system models. For example, 
one physical quantity such as an electrical current in a circuit 
may be modelled analogously to another quantity such as 
displacement in a mechanical device or flow of a liquid, and 
hence the quantities may show similar behaviour. The use of the 
electrical analogy allows electrical circuits to be constructed 
which may be operated to show how the mechanical system, say, 
will operate. 

3. Pilot plant models are operational systems which are smaller 
versions of systems to be implemented. They are common in 
universities, which cannot afford and do not need full scale 
processes, and for other studies. Arguably similar in some 
respects to scale models, the results may for various reasons not 
scale up to full sized processes. 

4. Simulation models are systems which purport to approximate 
real system behaviour by the clever use of computer programs. 
For our purposes they are means of solving mathematical models 
of systems in which numerical quantities represent real quantities. 

5. Mathematical models represent the real system by sets of 
differential and difference equations, with variables assigned to 
represent real quantities such as voltages, displacements, 
temperatures, concentrations, etc. The advantage of such models 
is that the tools of mathematics may be brought to bear to 
establish stability, expected performance, etc. These properties 
may be difficult to show conclusively experimentally, a fault 
shared by the other model forms. 

Our primary tools are mathematical models and their expressions in 
simulation models. 

Simulation models 

For simulation programs on digital computers, there are a number of 
special purpose computer languages, although in fact a simulation can 
be written in a general purpose language, even in machine code. The 
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special languages are usually devoted to certain classes of problems, 
and their advantages are that they automatically do much of the 
'house-keeping' commonly needed by problems of the class they serve. 
Thus the differential-equation oriented languages will supply 
numerical integration procedures as part of their implementations, 
while discrete event languages have a built-in list processing to keep 
track of event statistics and forthcoming events. SIMULINK, EASY5, 
SIMNON and PSI are among the languages/programs especially suited 
to control systems studies, with the last two particularly easy to use 
for learning purposes. 

Simulations have a certain attraction in that they tend to be 
repeatable, require only a modest computer and a long time (or a 
large computer for lesser time) plus (considerable) programming. 
'Experiments' are usually easily performed on the simulated system­
just make another computer run - and models can be very elaborate 
indeed. The latter feature, with the possibility for consideration of 
subtle non-linearities and intricate logical configurations, provides 
some of the incentive for simulation modelling. 

The problems with simulation are many and are mostly the obvious 
ones: the simulation model may be wrong (as any model may be 
wrong), the implementation may be wrong or misleading, and in any 
case the simulation allows 'experiments' rather than structural 
analysis. An elaborate model may require much programming, which 
may not be cheap, and much computer time, which fortunately is 
becoming cheaper. 

Simulation models will be shown briefly in a later subsection and 
are used in several places to demonstrate points. 

Mathematical models 

As soon as we wish to apply a theoretical technique, we need a 
mathematical model. Partly for this reason and partly for the other 
reasons listed above for modelling, suitable models are usually part of 
the knowledge of the computer control systems engineer. 

The models used are mostly ordinary differential equations, with 
difference equations used in computer control. Furthermore, these 
equations are almost always linear with constant coefficients. That 
this is often appropriate is perhaps a surprise; this issue is commented 
upon in section 9.5. If non-linearity is a critical part of the system, 
we still tend to use linear models to attain insight before using 
simulation to enable further studies. 
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9.3 A TYPICAL SMALL PLANT: MODEL 
DEVELOPMENT AND USE FOR A DC MOTOR 

The traditional model presentation in textbooks is of the electric 
motor, and many examples are motivated by its control. We show 
such a model development here and include the effects of controlling 
the motor using some actual devices. 

9.3.1 The model 

The common mathematical model of a DC motor has 

where 

d(O tdt = - (0 + Kv(t) 

de 
dt = (0 

e = shaft angle relative to some reference (radians) 

(0 = angular velocity (rad/s) 

t = time constant (s) 

K = gain coefficient (rad/sN) 

v = input voltage (V) 

(9.1) 

As we explore this, we shall see that many simplifications have been 
made. It is not 'correct' because it ignores certain known effects, but 
it is correct enough for its usual intended application, and thus it is 
very useful. 

We will also add to this model to make a model of a controlled 
system: we shall assume that the shaft angle is measured using a 
potentiometer and the rotation rate is measured using a 
tachogenerator. The resulting closed-loop system will give us 
considerable insight into the operation of controlled systems. 
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9.3.2 Derivation of the model 

The essence of a direct current (DC) motor is that a magnetic field is 
created, using either a field current if in a coil or a permanent magnet, 
and a polarized rotatable coil called an armature is placed in this field. 
The polarization is maintained using a current ia in the armature, and 
the magnetic effects cause the armature to rotate. The motor may be 
either field-controlled (i.e. ia = constant and input is to the field) or 
armature controlled (i.e. if = constant and input is to the armature), 
but the latter is much more common because it has good speed control 
characteristics, whereas the former is preferred where high starting 
torque is required. The basic configuration and a more detailed 
representation are in Fig. 9.1. 

R, . 

" 

~,' 

Armature Circuit 

Load 

Figure 9.1 A model of an electric motor, showing both mechanical and 
electrical effects. After Chen (1975). 

The motor modelling couples two effects: the mechanical system 
described by Newton's laws and the electrical system described by 
Kirchhoff's laws. The assumptions concerning the mechanical system 
are as follows. 

1. The torque applied by the fields IS proportional to the two 
currents, ir and ia 

Torque = T = Kpiaif 

(if = constant) (9.2) 
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2. The moment of inertia of the annature and any attached system is 
given by J. 

3. The only appreciable friction effect in operation is viscous 
friction 

F .. .( de .( 
nctlOn = Jm dt = Jm CJ) (9.3) 

and coulomb and static frictions are neglected. 

The assumptions concerning the electrical system are as follows. 

1. There is a back electromagnetic force (emf) due to the annature 
rotation 

(9.4) 

2. For voltages within specifications the annature circuit will not 
saturate. The annature circuit exhibits both resistance Ra and 
inductance La in series so that the circuit is modelled by 

R · L ~ ala + a dt + Vb = Va (9.5) 

where Va is the applied voltage input. 

Using the above assumptions, we are left with coupled linear constant 
coefficient ordinary differential equations for the motor. 

d28 
Motor equation: J dt2 = L (torques) 

.( de K. = - Jm dt + tla 

C· · . R· L ~ lfCUlt equatIon: ala + a dt + Vb = va 

(9.6) 

(9.7) 
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Elimination of the annature current then yields 

(9.8) 

Because La is usually quite 'small', this is approximately 

(9.9) 

which is often written 

(9.10) 

where 

iRa DC' ( ) 
't = KtK b + fm Ra - = motor tIme constant s 

K - Kt = DC motor gain constant 
m -KtKb+fmRa 

in «rad!s)/volt) (9.11) 

We remark that the model was developed carefully from assumptions 
about the motor and was explicitly simplified by the ignoring of La. 
Thus this model is almost surely 'wrong' in both the assumptions and 
the simplification, but it is also 'right' in being useful for many tasks 
and satisfactory for prediction of perfonnance of many systems. 

9.3.3 Feedback control of the motor 

A typical control task with a motor is to have it produce either a set 
speed of rotation COd or a desired shaft angle ed. The latter in 
particular will almost certainly require feedback control, with the 
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angle measured, the measurement converted to a voltage of level 
appropriate to control, the measured value compared to the desired 
value, and the two numbers used to generate a command voltage to the 
motor. A simple such arrangement is shown in the block diagram of 
Fig. 9.2. 

Measurement 
"-------f device 

Figure 9.2 An abstraction of the motor model into a block diagram, 
showing angle feedback. 

In this example, the measurement device may be a simple 
potentiometer, geared to the motor shaft, with output 9m volts 
proportional to the shaft angle 9 . The desired angle 9d is also a 
voltage, perhaps from a manually-set potentiometer with voltage in 
the same range as the measurer. The voltage differencing can be done 
with a simple electronic circuit and the result then amplified to a 
voltage of a level appropriate for driving the motor. In equations, we 
have 

Va = Kamp e (9.12) 

In these, the amplifier is assumed linear with an amplification of 
Kamp while gext is the externally set desired angle in radians (or 
degrees) and Kpot = Kpoq = Kpot2 is the appropriate voltage gain per 
unit angle (say ±15 Vas 9 ranges from -1t to 1t radians). 

With the model now specified in equations (9.8)-(9.11) the task is 
to design the amplifier gain so that response is 'good' . This task is 
tackled in several ways in future chapters, but here we note that for 
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this simple situation, we are studying the second-order ordinary linear 
differential equation 

d2e de 
't dt2 + dt = Km Kamp Kpot (eext - e) (9.13) 

which can be written in the form 

(9.14) 

and that the design parameter is Kl = Km Kamp Kpot> where Km and't 
are motor parameters. 

If the motor speed is also measured, then the system can have a 
block diagram as in Fig. 9.3. 

Angle 
L-_____ ~ measurement 

device 

Figure 9.3 The motor block diagram when both shaft angle and rotation 
speed are measured and used for control. 

In this configuration, the speed of rotation is measured by, for 
example, a tachogenerator giving output em (volts) and this is 
amplified to give Kr,amp 8m (volts). The last is added (or subtracted, if 
the designer wishes) to the error signal e to give the input s to the 
amplifier. Hence we now have the system described by 
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d29 de [ de] 
l' dt2 + dt = KmKamp Kpot(eext - e) + Kr,ampKtach dt (9 .15) 

where it is assumed that em = Ktach de/dt (volts). Rearranging gives 
the differential equation for analysis as 

(9.16) 

Both parameters K 1 and K 2 are to be selected by analysis and 
implemented by choosing or designing amplifiers and measurement 
devices. 

9.3.4 System studies 

In selecting parameters for the motor control problem, the engineer 
will be presented with the classic choice of slow and steady, or rapid 
but oscillatory, in addition to the need to avoid instability (Fig. 9.4). 
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Figure. 9.4 Unit step responses such as might be possible for the motor's 
shaft angle and many other systems. Ideally, the output would overlie the 
input step, but a frequent engineering trade-off is between rapid reponse 
which overshoots the desired value and oscillates, and slower reponse. 
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All these respond to a sudden change in desired angle 8ext. a so-called 
step input. The setting of a constant desired angle is called the set 
point; if the system were required to track a changing input 8ext(t), 
such a tracking problem would probably require different amplifier 
gains even though the basic trade-off is the same. 

With variable amplifiers, an engineer might well tune this process 
manually. Analysis, however, will tend to give insight as to the 
available trade-offs, the achievable goals, and the chance of instability. 
Hence, modelling and the analysis of models are important parts of 
control engineering. 

Analytical studies may be performed using a number of tools and 
criteria. We meet conversion to discrete time systems in Chapter 12, 
design criteria in Chapter 13, and controller analysis and design in 
most of the theory sections. 

Studies can also be done using simulation, which becomes almost a 
necessity if non-linearity, such as amplifier saturation, is introduced. 
A SIMNON digital computer simulation program for the motor is 
shown below. 

CONTINUOUS SYSTEM motor 
STATE omega theta 
DER omegadot thetadot 
vin=if t < 1 then 0 else 1. 
thetadot = omega 
omegadot = -omega/tau + ka* vin/tau 
tau: 0.1 
ka: 2. 
END 

9.4 MATHEMATICAL MODELS FOR CONTROL 
SYSTEMS 

Control systems engineers are unlikely to be required to develop a 
model from scratch, because they are usually working with systems, 
or at least components, which are fairly well understood. They should 
be aware of how those models arise, however, and particularly how to 
develop 'black-box' models. Thus a systems engineer is often 
required to have at least a rudimentary understanding of the physics, 
chemistry, biology, etc., of the systems to be controlled, even if the 
detailed model is supplied by specialists. 
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Control systems models range from input-output (black box) 
models to postulated-fonn (mathematico-physical, theoretical) models. 
The usual level is an intermediate one: the system is represented as an 
interconnection of subsystems on physical grounds and the subsystems 
are then modelled, using physical laws to supply the form and 
parameter fitting (grey box) to supply the numerical values. The 
distinction may be seen by considering the motor in the previous 
section; mechanical and electrical laws determine the form of the 
input-output relation for any DC motor, but the actual numbers come 
from a combination of simple tests and physical arguments. 

The black box approach is called system identification by 
control systems engineers; it is an extensive branch of the field which 
we shall meet in Chapter 30. Done off-line it is truly system 
identification, or at least parameter identification. Done on-line, 
identification becomes an important part of adaptive control and self­
tuning control, the latter of which is a special case of the former and 
is a commercial product. Most identification is, in effect, parameter 
estimation, since most algorithms have strong implicit or explicit 
assumptions about the system built in. 

For examples of mathematical model development, we show the 
following. 

1. On the basis of kinematics and electrical principles, an electrical 
motor model was developed in section 9.3. 

2. A generic response model is mentioned in section 9.4.1. 
3. The laws of motion yield models for studying rocket trajectories. 

A simple such planar model is discussed in section 9.4.2. 
4. Conservation of mass and energy give the basis of a model of 

temperature T and depth h of a liquid in a tank in section 9.4.3. 
5. Kinematics via Lagrange theory give a simple robot arm model 

in section 9.4.4. 
6. System identification methods (Chapter 30) give a paper press 

model mentioned in section 9.4.5. 
7. Noise and disturbances are mentioned in section 9.4.6. 
8. Physical arguments and knowledge of the system provide models 

of computer sampling in section 9.4.7. 

The above exemplify the types and origins of models of use in 
control systems studies. 
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9.4.1 A generic response curve model 

Mathematical models may be built in several ways, but most seem to 
reduce to a combination of physical principles with examination of 
response curves. Thus, in the approach of simply fitting a response 
curve, a system may have a sudden step change in input at a time 
arbitrarily called 0 and have the resulting response of Fig. 9.5. From 
this, a guess is that the system is roughly modelled as a time delay and 
a first order response, i.e. that it can be described by the differential 
equation 

Q) 
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Figure 9.5 For simple modelling, it may be sufficient to get the response 
to a step at time 0 and note the asymptotic value, b, and the delay before 
response begins, T. 

dx 
dt = -ax(t) + bu(t- T) (9.17) 

where u represents the input and x represents the output. T is the time 
delay, and t = Ila is the time constant. The Laplace transform of this 
is 

sX(s) - x(O) = -aXes) + b e-sTU(s) (9.18) 
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so that the quantity 

X(s) _ be-sT 

U(s) - s + a 
(9.19) 

which contains no initial conditions, is the transfer function of the 
system (whatever it is). Notice that there is no underlying 
understanding of the system involved, only a guess and a curve fit; this 
is a type of 'system identification' (Chapter 30) and is very commonly 
used. 

9.4.2 Modelling an exo-atmospheric rocket 

Let us consider a rocket launch guidance task and for simplification 
take a two-dimensional plane approach, considering only vertical and 
horizontal coordinates. This is not completely unrealistic because 
space launchers seldom do elaborate cross-plane manoeuvres because 
of the fuel required. Then the situation is as in Fig. 9.6. 

9 

--t-------------3> X 

Figure 9.6 Coordinates and variables used in developing an exo­
atmospheric rocket flight model. 
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Taking the coordinates 

x = horizontal distance (metres) 

y = vertical distance (metres) 

and the defmitions 

'" = pitch attitude of thrust (rad) 

u = rate of change of attitude = command quantity (rad/s) 

T = rocket thrust (N) 

g = gravity acceleration (m/s2) 

G = gravitational constant (Nm2) 

m = vehicle mass (kg) 

m = fuel burning rate (kg/s) 

we can apply Newton's law to obtain the equations of motion. 

i = force in x-direction/mass 

(-mg + T)in x-direction 
= m 

-Gx Tcos'll - + - m(x2 + y2)3/2 m 

and similarly 

.. _ -Gy + Tsin'll 
y - m(x2 + y2)3/2 m 

where usually Th is a constant characterizing the motor and 

(9.20) 

(9.21) 
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T - {~h(t) 

m = {~(t) 
\jF=u 

with motor off 

with motor on 

with motor off 

with motor on 

(9.22) 

One notes that this simplified case is non-linear and time-varying. 
It involves four differential equations: two of first order and two of 
second order. The approximations for thrust and mass rate are results 
of design, the characteristic operation of rocket motors, and 
observation; actually, they tend to have initial transients and fmal tail­
offs, plus a slight fluctuation during flight. 

The model can rapidly become elaborate. The first step is to 
include the actual rocket vehicle rotational dynamics, i.e. its rotation 
about its centre of mass: we make the further definitions shown in 
Fig. 9.6. 

Defming the quantities 

J(m) = moment of inertia about centre of gravity (N -m) 

= function of mass 

d(m) = distance from c.g. to engine mount (m) 

= function of mass 

a = vehicle body attitude angle relative to horizontal 

= pitch attitude (rad) 

o = angle of thrust relative to vehicle axis (rad) 

P = atmospheric density (=poe-kh where Po is the density at 
zero altitude and k is a constant) 

we may use the torque equation 

d2a 
J(m) dt2 = L. (applied torques) 

= -d(m) TsinO (9.23) 
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We remark that J and d depend upon m because the centre of 
gravity of the vehicle shifts toward the motor as the fuel bums. The 
control equation (9.22) 'if = u will now be replaced by a command on 
the body pitch attitude a, implemented by commanding gyros in the 
vehicle to change their settings. The result is that 

'I'=a+o 

0= Cc(a,Uctes) 

Uctes = Nc (x,y,x,y, '1') (9.24) 

in which both the vehicle control function Cc and the navigation 
function N c must be designed by the control systems engineering team. 

A further elaboration is to consider atmospheric flight, in which 
case the forces of drag and lift must be accounted for. These are often 
taken as 

where 

Drag along axis = Cd(P)pA v2 

Lift perpendicular to axis = CL(P)pAv2 

p = atmospheric density::: poe-kh 

(N) 

(N) 

A = effective vehicle cross-sectional area (m2) 

P = angle of attack 
= angle between body axis and velocity vector 

= a - tan-1 [ f 1 (rad) 

(9.25) 

Cd(P), CLCP) = drag and lift coefficients as functions of angle 
of attack 

v = speed (or velocity magnitude) 

= (x2 + j2)! (m/s) 

h = altitude above reference 

= (x2 + y2)1 - ho (m) (9.26) 
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Since these forces effectively operate through a point called the 
centre of pressure cp which is different from the centre of gravity Cg, 

the distance between them must be defined. Usually the cp is a fixed 
function of the vehicle shape and hence is fixed relative to, say, the 
motor attachment point. Thus we need 

dcp = distance from rocket motor attachment to cp (m) (9.27) 

A result of all of this is that the model quickly builds to a form such 
as the following: 

.. -ex Tcos", CdcP)pA v2cosa + CLm)pA v2sina 
x = + m(x2+y2)' m m 

.. -ex Tsin", CdcP)pA v2sina - CLm)pA v2cosa 
y = m(x2+y2)~ + m m 

d2a 
J(m) dt2 = L (applied torques) 

= - d(m) Tsino + (dcp - d(m»CL(~)pAv2 (9.28) 

in which the various quantities were defined above. 
In this gradual building of a model, the key tools were Newton's 

laws of motion. Three dimensions require further refinement, and of 
course the navigation and attitude control laws must be defined. 
Elaborate analyses and simulations need even more elaborate models, 
and the latter will often use much more detailed gravitational models, 
thrust depending upon external air density, non-constant mass flow 
rates, etc. 

9.4.3 Process control of a tank's contents 

Whereas the rocket model above was based upon the laws of motion, 
the models of chemical processes are based upon conservation of mass 
and energy and upon the nature of chemical processes. Fundamental 
are the simple laws governing contents and temperature of a simple 
tank, as in Fig. 9.7. 
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INLET ,---____ -----, 

Water level 

HEATER OUTLET 

Figure 9.7 A liquid tank, with input of water and heat, and output of 
heated water, for development of a process model. 

Conservation of mass 

Taking the contents as liquid and ignoring evaporation yields the 
expression 

d(mass of contents) . 
dt = mass flow In - mass flow out (9.29) 

so that with a substance of density p and a tank cross-section A (m2) 

and substance depth h we have, for flow rates Fi and F 0 at inlet and 
outlet respectively, 

(9.30) 

or, if the density is constant independent of temperature, 

(9.31) 

Conservation of energy 

For the energy balance, we consider the energy input and output in the 
substance and the energy supplied by the heater at rate Q. We assume 
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Energy in substance oc cp (T - Tref) (9.32) 

where T is actual temperature and Tref is a reference temperature for 
the approximation. Then we have 

d(energy of tank contents) fl' 'th b 
dt = energy ow ill WI su stance 

- energy of outlet substance 

+ energy input by heater 

- energy losses 

Using constant values of p, Tref, cp, and ignoring losses gives 

(9.34) 

Using the chain rule on the left-hand side and substituting from (9.31) 
yields 

(9,35) 

From a controller's point of view, A, p, and cp are parameters, h 
and T are variables representing the state of the substance in the tank, 
and F 0, Fi, and Q are possibly either given or controllable variables. 
For example, F ° and T may be requirements on the tank output 
imposed by other operating considerations, while the input flow Fi and 
the heater input Q may be manipulated to achieve those ends. 

Once again the model can rapidly become more elaborate. In a 
continuous stirred tank reactor, for example, a simple exothermic 
reaction A ~ B takes place and the heat is removed by a coolant. 
Thus we must account for the concentrations of A and B in input and 
output. 
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We define 

v = volume of mixture in tank 

pj, P, Po = densities of input, tank, and output streams 

Fj,Fo = volumetric flow rates of input and output streams 

Tj, To = temperatures of input and output streams 

CAj, CA, cAo = concentrations of A in input, tank, and output (moles/vol) 

CB, CBo = concentrations of B in tank and in output (moles/vol) 

r = rate of reaction per unit volume 

hj, h, ho = specific enthalpy content of input, contents, and output 

cp = specific heat capacity of reacting mixture (9.36) 

Then total mass balance requires 

d(pV) 
dt = pjFj - PoFo ± (mass consumed or generated) (9.37) 

Mass balance on component A requires 

(9.38) 

Energy balance gives approximately for a liquid 

Energy = Internal Energy + Kinetic Energy + Potential Energy 

and for a stationary tank 

d(Energy) d(Internal Energy) d(Enthalpy) 
dt = dt :=: dt 

which with H defined as total enthalpy gives 

(9.39) 
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Since H is a function of the temperature and composition of the 
liquid substance 

we can find from thermodynamics that 

dH dH dT dH d(cAV) dH d(cBV) 
dt = at dt + d(CAV) dt + d(CBV) cit 

dT - -= P VCp dt + HA (cAli - cVo - rV) + HB (O-CBc!O + rV)(9.40) 

where H denotes a partial molar enthalpy. 
Substituting this in (9.39) 

From the definitions of the various concentrations, etc., 

PiFihi(Ti) = Fi [cAll A(T) + Pi cPi(Ti-T)] 

PoFoho(To) =Fo [cAoHA(To) + CBoHB(To)] 

(9.41) 

(9.42) 

Provided the tank is well stirred, the output has the same 
characteristics as the tank contents, so that To = T, Po = P, etc. Hence 
we have 

Introducing the assumptions Pi = P (the density of the liquid is 
constant), r = koe-E/RTcA (for the reaction rate dependence on 
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temperature and cO,.!lcent@tion, with ko, E and R as parameters), and 
the notation J = (H A - HB)/(pcp) into equations (9.37), (9.38) and 
(9.43) gives the system model as 

dT ~ Q dt = V (Ti - n -Jkoe-E/RTcA - pcp V (9.44) 

In this model, ko,E,R,J and cp are parameters characterizing the 
process. Of the variables, various combinations may be control 
variables to be manipulated, output variables with desired values, and 
externally affected variables which act as disturbances to impede the 
achievement of the output values desired. For example, F 0 and CBo 

(and hence by implication CAo) might be specified, Q and Fi might be 
manipulated, and C Ai and Ti might be characteristics of the incoming 
liquid which vary due to disturbing factors beyond immediate control. 

Once again the modelling can be extended to encompass more 
issues. Here we have used mass balance, energy balance, and 
thennodynamic processes to give an illustration of the evolution and 
reasoning in developing system models. 

9.4.4 Dynamics of robot arms 

The equations associated with robots are complex mostly because of 
the complicated set of several links, each movable with respect to 
some others, which comprise them. Entire books are devoted 
to deriving these equations for specialists, and indeed a number of 
interesting control tasks are associated with robots: movement 
of individual links with precision and speed; planning of trajectories 
of the manipulator; using feedback from sensors such as joint angle 
measurers, tactile and proximity sensors, vision systems. This does 
not even mention the systems design tasks involved in selection and 
installation, design of processes, etc. 

We derive the kinetic equations of the simple manipulator of 
Fig. 9.8 simply to show what the equations of real systems might look 
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like and also to demonstrate the application of lagrangian kinetics 
(following Snyder, 1985). The system consists of a telescoping radial 
arm which can rotate at angle e in the vertical plane. The mass of the 
telescoping arm and load are modelled as mass m2 at radius r, and the 
outer cylinder is modelled as having fixed mass mI at fixed radius rI. 

(a) 

Figure 9.8 A simple planar robotic manipulator in which the arm 
assembly rotates and the arm itself extends. (a) The robot and (b) a 
coordinate system and definition of variables. 

The lagrangian for this system is 

L =K-P 

x 

(9.45) 

where K is the system's total kinetic energy and P is the total potential 
energy. If an actuator torque T is controlling a rotary variable, then 

T = l aL _ eJL 
at ae ae (9.46) 

while a force F applied in the direction of motion of the prismatic 
joint in the r-direction gives 

F=~aL _ aL at a,. ar (9.47) 
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We must now find Lin tenns of r,;, rh;I,9, and 9. We look first 
at the fixed length outer cylinder. The kinetic energy Kl is given by 

(9.48) 

which is easily shown to be 

(9.49) 

Its potential energy PI is due to gravity acting upon the mass and is 
given by 

(9.50) 

For the telescoping ann, which can both rotate at rate e and extend 

at rate r, the expressions are 

P2 = m2grsin9 

From these we find that 

L =KI +K2-PI-P2 

= ~mI ri 92+ ~m2r292 + ~mI;2 - mI grI sin 9 

- m2grsin9 

(9.51) 

(9.52) 

(9.53) 

Computing the partial derivatives as in (9.46) and (9.47) then gives 
the differential equation model 

m2r - m2rB2 + m2gsin9 = F (9.54) 
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In a system such as this, the control task will ordinarily be to choose 
and implement force F and torque T, possibly by commands to 
electric motors or hydraulic actuators, which will move the 
manipulator from one position coordinate set (rj,9j) to another set 
(rf,9f) in a smooth and safe manner. The mass m2 may be variable as 
the manipulator picks up and moves objects or fixed because the 
manipulator is a welder or spray painter unit. 

The equations of motion are notably non-linear, and if the desired 
positions are specified in cartesian coordinates (x ,y) = 
(horizontal,vertical) centred at the rotation axis of the arm, then even 
the coordinate transformations 

x = rcos9 r = (x2 + y2)! 

y=rsine 9 = tan-1[;] (9.55) 

are non-linear. 
The situation is much more complicated in three dimensional 

motion with an industrial robot and indeed entire books are devoted to 
deriving the transformations. A standard representation in terms of 
generalized coordinates in an n-vector q is that 

D(q)([ +C(q,q)4 +g(q)='t (9.56) 

where 't is the vector of applied generalized forces. The matrix D(q) 
is the generalized inertia matrix, C(q,q) is a matrix containing what 
are called the Christoffel symbols of the first kind and are results of 
the centrifugal and Coriolis forces, and g (q) arises in the 
differentiation of the potential energy terms. 

9.4.5 Presses 

One of the more famous examples of adaptive control application is 
the work of Astrom et al. (1977) on the control of paper making 
machines. We will meet this again in Chapters 30-31. 

The results of this modelling effort gave the surprisingly simple 
sampled data model 
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y(kT) = -al y(kT -T) - a2y(kT -2T) + ~l u(kT- T) 

+ ~2 u(kT -2T) + 11 e(kT -T) + 12 e(kT -2T) (9.57) 

and it was found through recognition methods similar in philosophy to 
least-squares data fits that (approximately) 

al = -4.5 
~l = -0.5 
11 = -8.0 

a2 = 3.0 
~2 = -0.2 
12 = -9.0 

where the quantities involved are y(kT) = paper basis weight = output, 
u(kT) = steam pressure to drying cylinders = control variable, and 
e(kT) = 'noise'. T is the sampling period for the computer to measure 
and command the process, so that kT is the time, k=O, 1,2, ... 

Such black box methods have been shown to be quite useful and are 
at the heart of some commercial controllers which have a self-tuning 
property. 

9.4.6 Modelling of noise and disturbances 

An important part of the design of many control systems is allowing 
for extraneous inputs and for unmodelled plant characteristics. The 
undesired inputs consist of such effects as sensor noise and random or 
varying environmental effects such as gusts on aircraft. Unmodelled 
plant effects can be unknown or known, but ignored, characteristics, 
such as non-linearities or high frequency vibration modes. 

Noise, such as measurement noise, is usually modelled as being a 
random process with certain known statistical characteristics 
(Appendix C). The common characteristics assumed for a noise 
process ll(t) include stationarity (the properties of the process do not 
change over time - used in property 2 below), ergodicity 
(probabilistic properties can be approximated using time averages), 
and that certain second order properties hold. Thus it is often 
assumed that the process has zero mean (average) value (properties 1 
and 3 below) and that at any instant it has a gaussian (or normal) 
distribution (property 3). A further common assumption is that the 
process is white noise, which means among other things that ll(t) and 
ll(t) are uncorrelated for t * t (property 2). In summary the three 
properties are: 
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1. g" [ll(t)] = 0 

2. g" [ll(''C)llT(t)] = R(t-t) = Ro(t-t) R ~ 0 

S(oo) =.9(R(t» = R = constant 

3. p(ll(t» = N(O,R) (9.58) 

where S(oo) is the power spectral density of the process, .9(.) denotes 
the Fourier transform operation, and R(t) is the auto-correlation 
function. 

Many models assume coloured noise rather than white noise. This 
is based upon either physical arguments (about the auto-correlation of 
the noise or the frequency band it must use) or on measurements of 
the noise (which are inferred from measuring known signals). In this 
case S(oo) is not constant, and of course then the auto-correlation R(t) 
:j; 0 for some t :j; o. This situation is often modelled by assuming the 
noise is the output of a linear system with white noise input. In 
particular, the output can be 'computed' as the convolution 

v(t) = J h(t-t)T1(t)dt = h(t)**T1(t) (9.59) 

and it follows that 

Rv (t) = h(t)** h(-t)** RT\(t) 

Sv(oo) = ly(h(t»12ST\(OO) = IH(oo)12ST\(OO) (9.60) 

Such a model, with a carefully chosen linear system, is often an 
approximation used in analysis, with the input noise chosen to be 
white. 

Disturbances are modelled in several ways, depending upon the 
analysis tools available and of course on the physical situation. One 
way is as a noise, often a low-frequency one. A second way is to 
suggest that the disturbance is always a special signal, typically a step 
or ramp, appearing as an input at a particular point of the system; this 
represents situations such as changes in quality of a process input 
material or flight into a high altitude jetstream. A third way is to 
consider all signals of a certain class, such as all those with bounded 
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square integrals. This last we might denote as d(t) E D where D is a 
set of signals 

D = { d(t) : f IId(t)1I2 dt $ 1 } (9.61) 

9.4.7 Sampling of data 

When computers are used for control, the data are discretized, i.e. 
converted to computer approximations for which the accuracy is finite 
and determined by computer and converter word length; at best, with 
a 12-bit ADC, the precision is within 1 part in 213 , about 0.0125%, of 
full range. This effect is usually ignored, simply because other errors 
in the system (also frequently ignored) contribute 1-2% or more to 
output variation. 

Another problem arises because the computer computes 
incrementally and sequentially in time. Thus, the data are sampled 
and the outputs occur only intermittently, albeit usually regularly with 
period T seconds, where T is typically in the range 0.1-10 s (with the 
option of much higher and lower values if appropriate). So, between 
samples the computer must generate commands which apply until the 
next are computed and output. Both effects must be allowed for in 
modelling and are discussed further in later chapters. 

A summary of what we will need is straightforward. First, we 
cannot use differential equation models for our analysis, or not for all 
of our analysis; instead, we use difference equations such as the press 
model in section 9.4.5. These models work with samples of the 
signals, as defined by 

{
Input (t) T=nT, n=0,±1,±2, ... 

Output(t) = (9.62) 
Undefined (or 0) t*nT 

and sometimes represented mathematically using the Dirac delta 
function 0 as 

Output(t) = I: Input(t) o(t-nT) (9.63) 

The physical situation and its representation are shown in Fig. 9.9. 
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(a) 

Input ~ Sample and Hold H ADC H COMPUTER 

(b) 

Input 
T,x: __ --I 

COMPUTER 

(Periodic Sw~ch) 

Figure 9.9 Modelling the computer input interface: (a) the devices; and 
(b) modelling as a periodic switch. 

The zero-order hold is a component peculiar to computer (and 
other sampled-data) systems. It is a device with the property 

Output(t) = Input(nT) nT ~ t < nT+T (9.64) 

used for the output, to approximate the physical device(s) of computer 
output buffer-DAC combination, as in Fig. 9.10. 

Thus if the computer outputs a command u(kT), the plant receives 
the signal of Fig. 9.11. 

Interpreting the computer output as impulses leads to the standard 
model of the ZOH as having characteristic 

Uout (t) = u(kT) kT ~ t < kT+T 

The Laplace transform representation of this characteristic is 

I - e-Ts 
Z 0 H (s) = --=-----=s =---

9.5 LINEARIZATION 

(9.65) 

(9.66) 

It is surprising that most control theory results apply to linear constant 
coefficient ordinary differential or difference equation models; 
exceptions are in the optimal control field (Chapters 26-27), where at 
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(a) 

COMPUTER I I Buffer I DAC r Output 

(b) (a) 

I COMPUTER I TX 
"~~ Output 

Figure 9.10 Modelling the computer output interface: (a) the devices; and 
(b) modelling as a switch leading to a zero-order hold (ZOH). 

(ij 
c: 
Cl 
'iii 
'S 
a. 
'S o 

u(t) = u(kT) 

-1-1 ---4 ---p..----I-------11 Time t 

kT-T kT kT+T kT+2T 

Figure 9.11 The computer's output hardware produces a square voltage 
pulse when the computer sends an output number, 

least the forms of results can be found for non-linear ordinary 
equations, and some parts of the Lyapunov stability theory (Chapter 
16). Yet the world is a non-linear place, exhibiting at least the 
properties of saturation (a maximum rotational speed for a motor, for 
example) and, in the case of digital systems, non-linearity due to the 
minimum resolution with which finite-length computer words can 
represent numbers. 
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There are at least two reasons for concentrating on linear constant 
coefficient ordinary differential/difference equations. 

1. Because so much is known about vectors and matrices from 
linear algebra and from the theory of linear transforms (such as 
Laplace, Fourier, and z), many useful results are available. 
Generalizing the system model seldom leads to results amenable 
to implementation except in special cases. 

2. The linear models are a reasonable approximation precisely 
because we use them in automatic control systems. In what seems 
a circular argument, by using a control system to force the plant 
to function 'near' an operating point, we keep deviations from 
linearity 'small' so that the linear assumption is a reasonable one. 

Obtaining a linear model from a non-linear one is, in principle, 
straightforward - we use a Taylor series expansion of non-linear 
elements about the proposed operating point and retain only the linear 
term. 

As an example, suppose a system is known to be modelled by the 
differential equation 

i =f(x ,x,u) (9.67) 

where f is a known and sufficiently smooth function, i.e. its partial 
derivatives exist and are not too large numerically. Suppose that 
x = Xref(t) is known to be the trajectory description when Uref(t) is 
applied, so that 

iref = f(Xref, ieef, Uref) (9.68) 

Consider varying Uref(t) by an amount ilu(t), with the result £lx(t), 
so that 

ili = f(Xref + £lx,Xref + M, Uref + ilu) (9.69) 

Provided the partial derivatives exist, a Taylor series expansion 
may be performed, yielding 
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Ai =(~I.~+ (~)I.Ai+ (¥.)I.M 

(9.70) 

where * denotes the point (Xref (t),Xref (t), Uref (t)) for evaluation of the 
partial derivatives. 

Suppose ~u can be made small enough that ~ is small; further 
suppose that the second partial derivatives are small. Then the above 
is approximated by 

~X = aCt) ~ + bet) M + e(t) ~U (9.71) 

where 

e =211 au * 
(9.72) 

Then under these assumptions, we now have a linear ordinary 
differential equation in place of the original non-linear ordinary 
differential equation. If we further have Uref = constant and 
Xref = Xcef = 0, then aCt), bet), e(t) are constants, which is even simpler. 

Cases of such linearization abound, although often the linearization 
is done at the stage of original model construction. Consider a few 
examples. 

1. For the rocket flight, if the engine bum is a short one, the mass 
may stay nearly constant - near enough that it can be treated as 
constant by the guidance algorithm. Similarly, for short periods 
of time, the altitude may be constant enough that the gravity can 
be treated as constant in magnitude and the orbital arc short 
enough that the gravitational direction is also constant. Then the 
rocket is described by linear ordinary differential equations, even 
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without the Taylor formalism; in fact, some of the terms are 
truncated after the constant term in their expansions. 

2. Aerodynamic drag and lift forces are proportional to air density 
and to speed squared, but at near constant altitude and speed 
linear or even constant, approximations may be good enough. 
This is particularly true if the objective is to understand an 
autopilot which will maintain a constant altitude and speed. 

3. In mechanical systems, non-linear frictions such as stiction 
(opposing the initial movement) and speed-squared drag are both 
present and often ignored. 

And finally, if linearization is not good enough, or if it is not 
known whether it is good enough, what can be done? Usually, the 
engineer needing answers will use whatever he can learn from the 
linear model and check it with a simulation. Frequently much design 
can be done for regions of the operating regime of the plant; for 
example, helicopters are 'close enough' for linear approximations to 
apply to within ±5 km/hr or so of cruising speed of perhaps 85 kmlhr. 

9.6 MODEL ERRORS 

There is little doubt that models will be 'wrong', although for many 
purposes they will be adequate. Some techniques make implicit 
allowance for possible modelling errors; for example, one of the 
justifications for allowing gain margin and phase margin in frequency 
domain design (Chapters 15 and 20) is to allow for actual device 
transfer functions being different from the design standard, due 
perhaps to component tolerances. Other methods admit to explicit 
allowance for modelling inaccuracies, provided that some model 
allowing for the inaccuracies is present. 

One method for incorporating inaccuracy is to assume that the 
output depends on the modelled effects plus noise. In such schemes 

y(t) = F(y( 't), u('t), 't; 't ~ t) + 11 (t) (9.73) 

where F is a known function developed from physical considerations 
and 11 is a 'noise' of character which allows for model errors. A small 
white noise might be used to compensate for un modelled high 
frequency effects, for example. 
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Another approach treats the model as known to within a parameter 
set e, with a particular piece of hardware representable as a function 

yet) = F(y( 't), u( 't), e, 't; 't ~ t) (9.74) 

where a E 0. One might then design around a particular value of a, 
around the average value, or around a worst-case value. Particularly 
in the latter cases, one might need a characterization of 0, such as 

0= {a : II a II ~ 1 } (9.75) 

All of these are made more precise in Chapters 10-11 when we 
start working with specific model representations. 

9.7 COMPUTER ASSISTANCE 

Computers are used in simulating models, which usually means 
solving the differential equations describing the system, and in 
parameter estimation forms of system identification (Chapter 30). 
Some computer assisted control systems design (CACSD) programs 
also allow the manipulation of models, such as the building of system 
models from subsystem models, and the simulation of model 
responses. 

9 .8 COMMENTARY 

Mathematical models attempt to represent the real system by sets of 
equations whose variables and parameters are (hopefully) predictors 
of variables and parameters of the real system. In control systems, the 
only class available is that of ordinary linear differential equations 
with constant coefficients and difference equations of the same kind; 
some randomness is acceptable, provided it is gaussian and not too 
complicated in its time evolution, but even this variation complicates 
things. It is indeed fortunate that this restricted class allows us to 
obtain some quite useful results. 

The advantage of mathematical models is best seen by first looking 
at the alternatives, which only allow us to experiment upon the model 
and hence indirectly on the system. Then we may miss a revealing 
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experiment because only a finite, usually small, number of tests are 
available to us. By contrast, the tools of mathematics allow us to 
analyse the structure of a mathematical model and hence of the system 
it (hopefully) represents. The example of Maxwell, who demonstrated 
that Watt's governors needed damping to operate stably and without 
oscillation - damping lost because of improvements in machinists' 
abilities to build to close tolerances without friction - is an early 
demonstration of the value of analysis. One can also envisage a great 
deal of effort being put into simultaneously controlling several outputs 
of a process to selected values when analysis might demonstrate that 
this was impossible without a change in the process (Chapter 22). 

The disadvantage of a mathematical model is that it is so seldom 
computable in a useful form. Computers can be used to convert the 
equations to numbers, of course, but these mayor may not be helpful 
of themselves. Even if closed form expressions can be found, they 
may give little insight into the system. 

Nevertheless, control theory is essentially applied mathematics, with 
a whole tool kit of techniques, including graphical ones, which help to 
make it an enjoyable and useful field. A large fraction of this book is 
about those techniques. 

9.9 FURTHER READING 

The question is: where do the mathematical models needed for 
analysis come from? Our answer has been indirect, through examples 
and some discussion, but several different approaches have been 
demonstrated, including Newton's laws of motion, thermodynamics, 
and Lagrange methods. One observation is that a great deal of 
knowledge of the process is needed before it can be modelled. Many 
control engineers will find that they must either use a black box model 
with an identification algorithm (Chapter 30) or a published model 
concerning the plant to be controlled. For either of these, the control 
engineer will find that having basic knowledge of physics (and 
sometimes chemistry and biology) will be very helpful. 

A major discussion of mathematical modelling in a broader context 
than control systems is in Murthy et al. (1990). More immediately 
devoted to dynamic systems is (McClamroch, 1980). 

A few simple models are given without derivation by Astrom and 
Wittenmark (1990, App. A). Dorf (1989, Ch. 2) gives the models of 
several components, while Franklin et al. (1990) present models of 
several interesting systems. Stephanopoulos (1984, Part II) presents 



www.manaraa.com

Further reading 219 

models of chemical processes and was the source of the presentation of 
section 9.4.2. The modelling of joint movements for robots is 
covered in a number of texts, including (Paul, 1981) and (Snyder, 
1985). 

Linearization is done more elaborately in such texts as (Skelton, 
1988, Ch. 3). Some studies of non-linear systems were published in 
the 1950s and 1960s by authors such as Gibson (1963). 

Specific examples of applied or studied models of real systems are 
usually kept within industry, partly because they are too long and 
complicated to publish in a textbook. Significant studies are 
occasionally reported. Examples are found in the text of Grimble and 
Johnson (1988) (Volume 1 has a shape controller for a steel mill; 
volume 2 has a drill ship positioning system, plus more steel mill 
problems). Many texts have summaries and leads to real problems. 
The IEEE Reprints and the IEEE Control Systems magazine also lead 
to such models; Kalman Filtering (Sorenson, 1985), and Adaptive 
Methods for Control Systems Design (Gupta, 1986) exemplify the 
former, while the CACSD Benchmark problems (August 1987, 
August 1989, August 1990) lead to others. Solutions to the latter are 
available from CACSD system producers such as System Control 
Technology, Inc., Palo Alto, CA, designers of Ctrl-C, illustrating both 
the problems and CACSD application. 
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Continuous-time 
representations 

system 

The mathematical model of a plant or process usually comprises a set 
of differential equations to describe its operations. For convenience, 
these are frequently converted to other representations and this 
chapter considers the linear time-invariant systems to which these 
representations apply. 

10.1 SYNOPSIS 

The control engineer's 'real world' can usually be described by sets of 
differential equations, as in Chapter 9. Often useful for both 
processes and components is the special case of linear ordinary 
differential equations with constant coefficients, such as 

y(n) + an_Iy(n-l) + ... + a2Y + ad' + aoy 

= bm u(m) + bm- I u(m-I) + ... + b i it + bo u (10.1) 

where y(n) is the nth derivative of the function y(t) and y and yare the 
1st and 2nd derivatives respectively. Alternative representations of 
the essential aspects of such systems are available in the forms of 
transfer functions 

TIll 
U(s) = 

bmsm + bm_ISm- 1 + ... + bl s + bo 
Sn+an_IS n- l + "'+als+aO 

or frequency responses 

fUro) _ bmUro)m + bm_IUro)m-1 + ... + blUro) + bo 
UUro) - Uro)n + an-l Uro )n-l + ... + a I Uro) + ao 

(10.2) 
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where we use the usual notational conventions that j = r-i and co is 
radian frequency. An alternative notation uses the operator Di == di/dti 
to give 

(Dn + an-I Dn-I + ... + ao)y(t) 

= (bmDm + bm_IDm-I + ... + bo)u(t) 

The above are especially useful for the design techniques 
characterized as classical and for SISO systems. The transfer 
function can be written in a number of different forms, of which 
(10.2) is the direct form; others include parallel, cascade, and 
continued fraction forms. 

For modern approaches and MIMO systems, a set of first-order 
ordinary differential equations is used (called a state variable model) 
and in the special case of constant coefficient linear differential 
equations this model has a matrix representation as 

x = Ax + Bu 

y = ex + Du 

These representations are not unique, although the input-{)utput 
relationships must be the same for each representation of the same 
system. It is sometimes convenient to have the matrices in canonical 
forms; one example is the controllable canonical form, which for 
the system described by (10.1) is 

0 I 0 ··· 0 0 0 
0 0 1 ··· 0 0 0 

x = 0 0 0 1 0 x+ u 

0 0 0 ···0 1 0 
-ao -al -a2 ... -an-I 1 

y =[bobl .. ·bmO · .. O]x 
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Others include the observable canonic form and the Jordan 
canonic form. These are useful in certain derivations, although 
ordinarily one attempts to use forms in which the state variables have 
physical significance. 

10.2 TRANSFER FUNCTIONS 

Transfer functions allow operation in the frequency- or s-domain of 
complex numbers, rather than in the time domain. They are usually 
considered primarily with SISO systems, although at least notationally 
it is possible to represent MIMO systems. In either case, they apply to 
linear ordinary differential equations with constant coefficients; we 
will see the difference equation variation in Chapter 11. 

10.2.1 Single-in put-single-output (SISO) systems 

If the differential equations describing a system are linear, have 
constant (or highly special) coefficients, and have no time delays, then 
analysis based upon Laplace transforms is common and convenient. 
We observe that, in the absence of initial conditions, a variable x(t) 
with Laplace transform Xes), i.e. 

00 

x(t) ¢::> Xes) == f x(t) e-st dt 
o 

also has for integer k 

dkx(t) 
dtk ¢::> sk Xes) - sk-l x(O+) - sk-2 x(O+) - ... - x(k-l)(O+) 

where x(O+) is the limit of X(E) as E~O and E>O, and 

t !.(U 
fx('t)d't<=> s o s 
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A time delay, which we will have occasion to use, albeit reluctantly 
for continuous time systems even though they are easily handled for 
discrete time systems such as those used in computer control studies, 
has transform effect 

x(t-'t) ¢::> e-s't Xes) 

Using these properties, we see that the Laplace transform variable s 
can virtually be used as a 'differentiator operator'. For example, the 
system 

dnx dn-1x dn-2x dx 
dtn + an-l dtn-l + an-2 dtn-2 + ... + al dt + aoX 

has, if we define Xes) and U(s) as the Laplace transforms of x(t) and 
u(t), respectively, a representation (without initial conditions) of 

(sn + an-l sn-l + an_2Sn- 2 + ... + al s + ao) Xes) 

= (bmsm + bm-l sm-l + ... + bl s + bo) U(s) 

The ratio of Xes) to U(s) is then called the transfer function from 
input u(t) to output x(t), e.g. 

Xes) bmsm + bm-l sm-l + ... + bl s + bo 
U(s) = sn + an-l sn-l + an_2Sn- 2 + ... + al S + ao (10.3) 

Roots of the denominator polynomial are the system poles, and roots 
of the numerator are the system zeros. The transfer function 
approach has several applications: 

• manipulation into special forms, 
• solution of the differential equations represented, 
• manipulation (such as reduction or elimination of variables) of 

subsystem models to obtain system models, 
• generation of the frequency response. 
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Transfer function forms 

The expression in (10.3) is a direct form of the transfer function, 
but other forms are sometimes useful, particularly if the transfer 
function represents a filter or control law to be implemented. The 
basis for two of these is the fundamental theorem of algebra, which 
allows the numerator and denominator polynomials to be factored to 
first-order terms, as in 

x (S ) -:"(S=----::-S'-'"l )L-(=S_--7-'S 2!<L)_' _ •• --,,( S=----=S7"mtL..) - H(s) - K-c-U(s) - - (S-A,l) (S-A,2) ... (S-A,n) 

where Si, i = 1,2, ... , m are the zeros and A,j j = 1, ... , n are the system 
poles. These may be combined in a variety of orderings to give 
cascade or series forms, such as 

where 

(l0.4) 

Another possibility is parallel form, exemplified by 

H(s) = HI(S) + H2(s) + '" + His) 

with the Hi(S) similar in form to the factors in (l0.4). A further 
possibility is the continued fraction form, exemplified by the 
special case of the Cauer form (used in filter network realizations): 
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The utility of the above forms is both analytical and, in some cases, 
synthetic in that computations of control laws may be organized. The 
first three structures are shown in Fig. 10.1; the last is met in section 
30.2.4. 

(a) (c) 

~ H(s) r-

(b) 

Figure 10.1 The structure of transfer functions. (a) The direct form is a ratio 
of polynomials. (b) Using partial fraction expansions gives an equivalent 
form, as does (c) using a product form or cascade decomposition. 

Example 

The following forms can be easily derived for the system described by 
the differential equation 

y(3) + 9y + 23y + 15y = il + 6il + 8u 
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S2 + 6s + 8 
H(s) = S3 + 9s2 + 23s + 15 

(s + 2) (S + 4) ( 1 ) 
= S+l" s+3 s+5 

0.375 0.25 0.375 - ---- + ---- + ----
-s+l s+2 s+3 

1 
=----------~--------1 

s + --------~1-------
t+--------~1-----

3s + ---""71----
1 
6+ 1 

12s+-­
(l / 30) 

Solution of differential equations 

Transfer functions 227 

The obvious use of Laplace transforms is to solve the differential 
equations represented. Thus, if G(s) is a known transfer function 
from u(t) to x(t) and if u(t) is a form such that U(s) is readily 
available, then using the notation x(t) {:=::> Xes) to mean that x(t) and 
Xes) form a transform pair in that Xes) is the transform of x(t) and 
x(t) is the inverse transform of Xes), 

x(t){:=::> Xes) = G(s) U(s) 

may often be readily found. In control systems, we often seek the 
response to a unit impulse, i.e. the Dirac delta function o(t) (Fig. 
1O.2(a» for which 

oCt) = 0, t :;t 0 

e 
fO(t)d't = 1, e > 0 

-£ 

o( t) {:=::> 1 
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This special function, one of a class called distributions, is often taken 
as the limit of a pulse of unit area whose width vanishes. This is 
shown for a rectangular pulse in Fig. 1O.2(a) along with a common 
graphical symbol for the function. 

Another commonly sought response is to the unit step function W(t), 
shown in Fig.1O.2(b), for which 

W(t) = { ~ t < 0 
t ~ 0 

1 
W(t) <=> ~ 

(a) 

--
B(I) 

Limit as T-7-0 

-T 1 

(b) 

I U(I) 

1 I 
Figure 10.2 (a) Dirac delta function, o(t); (b) unit step function, Zf(t) . 

We note that the transform of the impulse response of a system is 
equal to the transfer function. 

The actual solution can usually be found using tables of Laplace 
transforms, although in general the inverse Laplace transform is 
needed. A typical case will require that X(s) be expanded in partial 
fractions to forms available in tables and that the tables be consulted. 
Hence if 
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bmsm + bm_ISm- I + ... + biS + bo 
Xes) = e-st -----------­

sn + an_lsn- I + ... als + ao 

then we take 

k 
Xes) = L e-st XiCs) 

i=l 

by partial fractions (out to first-order terms if necessary) and use 
tables to yield 

k 
X(t) = L Xj (t-t) 

i=l 

It is presumed this approach is familiar to readers from their 
mathematics background. 

Example 

Consider 

1 
H(s) = s(4s+ 1) 

1 4 
= ~ - 4s+ 1 = HI(S) + H2(s) 

then the impulse response of the model is 

h(t) = hI(t) + h2{t) 

= 1 - e-t/4 
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Manipulation oj representations 

The Laplace transfonn has a number of properties which make it 
useful in the study of linear systems: it is a linear operator; the 
transfonn of the convolution of two functions equals the product of 
the transfonns of the functions; because of these it is easily shown to 
be associative, distributive, and (in the case of scalars, but not 
matrices) commutative. Manifestations of these properties allow 
manipulation of transfer functions almost algebraically and are very 
useful in analysing systems. For examples, 

a. If X(S)=Gl(S)U(S) and Y(s) = G2(S) X (s), then Y(s)= 
G2(S) Gl(S) U(s) = G(s) U(s). Thus association justifies generation 
of an intennediate signal x(t) <=>X(s) or the alternative of a single 
transfer function G(s) = G2(S) G1(s). 

b. If G(s) =G1(S)+G2(S) and yes) =G(s) U(s), then yes) =X1(s)+ 
X2(S) where Xl(S)=Gl(S)U(S) and X2(S)=G2(S)U(s). This use of 
the distribution property allows, for example, the construction of 
control laws in alternative fonns (e.g. three-tenn controllers as 
sums of P, I, D tenns or as second-order systems). 

The most common use is to derive a closed loop transfer function 
from the transfer functions of several components. 

For the system of Fig. 10.3, we see that 

Yes) = G(s) U(s) 

E(s) = R(s) - M(s) 

from which a little algebra yields 

rill G(s)C(s) 
R(s) = 1 + F(s) G(s) C(s) 

U(s) = C(s)E(s) 

M(s) = F(s) yes) 

as the closed-loop transfer function. The simple manipulations above 
are common; more complicated versions of the algebra can sometimes 
be done more easily by looking at and manipulating the patterns of the 
blocks - an approach called block diagram algebra - as found in 
older textbooks. 
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(a) 

+ e(t) u(t) 
r(t) Computer Process/Plant 1--.....-__ y(t) 

m(t) 
Sensor 

(b) 

R(s) 
+ E(s) U(s) .. C(s) G(s) ./ - Y(s) 

• 

M(s) 
F(s) 

Figure 10.3 Two representations for a control system. (a) Block 
diagram of the physical situation with variables denoted as indicated. (b) 
Taking Laplace tranforms allows an equivalent representation. 

10.2.2 Multivariable - multi-input-multi-output (MIMO) -
transfer functions 

For systems with m inputs and n outputs, it is possible to write 
differential equation sets such as 

i=l, ... ,n 

with transfer function representations 
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rn 
= L Gi,is) Uis) 

j=l 

i= 1, ... ,n 

i= 1, ... ,n 

This is more convenient notationally in the matrix form 

yes) = 

Yn(s) Urnes) 

= G(s)U(s) 

Since the operators are all linear, this representation can be 
manipulated almost as if they were scalars. Thus, assuming the 
dimensions are correct, we may find that series, parallel, and feedback 
connections may be formed in the expected way. For example, series 
connection yields 

yes) = G(s) W(s) and W(s) = H(s) U(s) 

==>Y(s) = G(s) H(s) U(s) 

(but not H (s)G (s)U (s) because matrix multiplication is not 
commutative ). 

Parallel connection yields that 

yes) = W(s)+ yes) 

where W(s) = H(s) U(s) and yes) = G(s) U(s) 
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=>V(s) = [H(s) + G(s)] U(s) 

Finally, feedback connection, defined by Fig. 10.3, has 

yes) = G(s) C(s) E(s) 

E(s) = R(s) - M(s) 

M(s) = F(s) yes) 

and yields 

yes) = [I + G(s) C(s)F(S)]-l G(s)C(s)R(s) 

and 

yes) = G(s) C(s) [I +F(s) G(s)C(s)]-l R(s) 

where 1 is the identity matrix. In the basic representation, the matrix 
G(s) is n x m and so not necessarily square. 

Special forms: the Smith-McMillan form and matrix fraction forms 

The notions of system poles and zeros are not so clear for matrices as 
for SISO systems (where they are simply the roots of the denominator 
and numerator polynomials, respectively). As part of the 
determination of this and other questions, it is useful to have a 
canonical form for the transfer function matrix. The form used is the 
Smith-McMillan form. 

The Smith-McMillan form M(s) of a rectangular matrix G(s) is a 
rectangular matrix in which the only non-zero elements are those for 
which the row and column indices are equal. M (s) may be derived 
from G (s) by elementary row and column operations, and the 
polynomials making up the rational terms satisfy certain divisibility 
properties. In particular, the Smith-McMillan form of G(s) is 
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( 
M(s) 

M(s) = 0 

. {~~ Ur(S)} 
Ml(S) = dlag ()l(S)' ~(s) , ... , <>res) 

where r is the normal rank (i.e. rank for almost all s) of G(s), uiCs) 
and ()j(s) are co-prime, i.e. they have no common factors, and 

Uj(s) divides Uj+l(S) } ._ 
~ ()d"d ~() l-l, ... ,r-l Vj+l S IVl es Vj S 

Computation of the Smith-McMillan form follows from first 
forming 

where des) is the least common multiple of the denominators of all the 
terms of G(s) and pes) is a polynomial matrix. Then pes) is manip­
ulated using a sequence of elementary operations; each such operation 
is representable as a pre- or post-multiplication by a simple matrix 
called an elementary matrix. The operations and their matrix 
multiplier equivalents are: 

• interchange of two rows/columns - the elementary matrix is an 
identity of appropriate size in which the required two 
rows/columns have been interchanged - pre-multiplication 
interchanges rows while post-multiplication interchanges 
columns; 

• multiplication of a row/column by a constant - the elementary 
matrix is an identity matrix except that the desired constant is 
placed on the diagonal at the required row/column; again pre­
multiplication affects rows and post-multiplication affects 
columns; 

• addition of a polynomial multiple of one row/column to another 
row/column - the elementary matrix uses the identity with the 
polynomial placed in the appropriate row/column - with pre- and 
post-multiplication effects as above. 
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The elementary matrices used to pre- or post-multiply (Li, Rj) can 
be applied to pes) to create a matrix Q(s) 

The particular matrix we seek is the Smith form, S(s), which is 
given by 

~ 1 

where 

with does) = 1, and db) the greatest common divisor polynomial of all 
i x i minors of P (s), normalized to be monic, i.e. to have the 
coefficient of the highest point term in s be + 1. 

Example 

As in Maciejowski (1989), consider the two-input- three-output system 
described by 

1 -1 
s2 + 3s + 2 s2 + 3s + 2 

s2 + S - 4 2s2 - S - 8 
G(s) = s2 + 3s +2 s2 + 3s +2 

s - 2 2s - 4 
s + 1 s + 1 
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1 

=[ s2 + S - 4 

s2 - 4 

2s2 - S - 8 
-1 ] 

2s2 - 8 

S2 + 3s+ 2 

It is easily shown that do(s) = 1, dl = 1, d2(S) = s2-4 and hence the 
Smith-McMillan fonn of G(s) is 

M(s) = [~ ~~4] 
s2 + 3s + 2 

The elementary matrices in the transfonnation are presented in 

f
lO O]f I 0 O]f I 

M(s) = 0 1 0 -1 1 0 0 
-s 0 1 0 0 1 1 

o 0] t 0 G(s) 

1 -1 

[2 O][t 0][1 1] 
x -1 1 0 1 0 1 

f lO 0] [2 _-22:] = -1 ! 0 G(s) !l 
1- s 1 -1 3 

Using the Smith-McMillan fonn, a number of useful definitions 
maybe made. 

p(s) = Ol(S)02(S) ... or(S) = pole polynomial of G(s) 

z(s) = Vl(S)V2(S) ... vr(s) = zero polynomial of G(s) 

Deg(p(s» = McMillan degree of G(s) 
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If (S-Sk)P is a factor of pes) {of z(s)}, then p is said to be the 
multiplicity of the pole {resp. zero} at so. 

Zeros of G (s) are called transmission zeros of the system. 
Transmission zeros can be observed to be points at which the rank of 
G(s) decreases. Their name comes about because they have the 
property that for particular inputs related to the zero locations, the 
system will have no output, i.e. they have a transmission blocking 
property. 

An alternative form for a rational transfer function matrix, which 
makes the notation seem even more analogous to the scalar case, is the 
matrix fraction description. In this, appropriate (and non-unique) 
matrices of polynomials N (s) and D (s) are used to enable 
representations such as G(s) = N(s) D-l(s). This is called the right 
matrix-fraction description, and N(s) and D(s) are called the 
numerator and denominator matrices, respectively. One way of 
finding them involves the Smith-McMillan form. In particular, we 
write 

G(s) = L(s) M(s)R(s) 

. {'Ul(S) 'U2(S) 'U IS\ 0 0 o} = L(s) dlag , , ... , ~, , , ... , R(s) 
~h(s) ~(s) ~r(s) 

where L(s) and R(s) are the products of the elementary matrices as 
before. Then we define 

NM(S) = diag {'Ul(S), 'U2(S), ... , 'Ur(s), 0, ... , o} 

DM(S) = diag {~l(S), ~2(S), ... , ~3(S), 1, 1, ... , I} 

so that M(s) = NM(S)D~ (s) and, because elementary matrices are 
always invertible, 

G(s) = L(s) [NM(S)D~(s)] R(s) 

G(s) = [L(s)NM(S)] [R-l(s)DM(s)r1 

= N(s)D-l(s) 
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where the definitions of N and D are obvious. We remark that it is 
now clear that a point z is a zero if N(z) is of lesser rank that N(s), 
and a point p is a pole if D(P) is of decreased rank (and hence not 
invertible at that point). Notice that similar arguments lead to a left 
matrix-fraction description: 

G(s) = fj-l(s)N(s) 

10.3 FREQUENCY RESPONSE 

A very special input to a system is a sinusoid B sin (rot), and if the 
system is linear, the post-transient output is A sin (rot + <p). The effect 
of the system is represented by the ratio AlB and the phase shift <p; 
the variation of these with ro is the frequency response of the system. 
Thus when the input is sin (rot), the steady-state output will be of the 
form A(ro) sin (rot + <p(ro» 

For a linear constant coefficient system described by transfer 
function G(s), it is almost always true that the complex function GUro) 
gives the frequency response: 

or 

A(ro) = IGUro)1 

<p(ro) = arc(GUro» 

GUro) = A( ro) ei$(w) 

This information is usually represented graphically; three different 
sets of graphs are in common use. 

1. Two plots are used: A(ro) vs ro, called the amplitude response, 
and <p(ro) vs ro, called the phase response. Frequently the plots 
are A (ro) in decibels (i.e. 20 log (A (ro») vs log ro (or ro is on a 
logarithmic scale) and <p(ro) in degrees vs log roo These are the 
Bode plots for the system when G is an open-loop transfer 
function. 

2. One plot of Im(G(jro» vs Re(GUro» is made with ro as a 
parameter. An alternative point of view is that the plot is a polar 
plot of radius A(ro) and angle <p(ro), with ro as the arc parameter. 
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This is a portion of the Nyquist plot for the system when G is 
an open-loop transfer function. 

3. A plot of A(oo) in dB is made against $(00) in degrees. With 
auxiliary information and when G is an open-loop transfer 
function, this log (magnitude) - phase plot is the Nichols' chart 
for the system. 

These plots can be very useful because the frequency response can 
for some systems, especially electronic ones, be established 
experimentally. Many readers will be familiar with the concept of 
frequency response specifications for audio equipment; the concept 
here is similar. 

The frequency response of a system (e.g. an idealized small motor) 
with transfer function H(s) = 1/[s(4s+ 1)] is shown in Fig. 10.4. 

(a) 
40 

al 
0 "0 

dl 
"0 
2 
'c 
CJ) 

·40 '" ::; 

0.Q1 
w· radls 

(e) 

~~, /! 
t 0 17 
~ ·40 .... : .............. .... ....... ~ ........ ................. . 

·180 Phase· deg. o 

CJ) 
Q) 
"0 

5l co 
J:. 
Il. 

(b) 

·90 _. - --- -:.- -- -- --:-- -- .- -

0.Q1 w· radls 100 

(d) 

·2 1m 

---+----:===--__ -+-_ Ae 

•.. .... ... .................. .. , ............................• ·40 

• ......... .................... , ................... ..... ....• ·80 

Figure 10.4 Equivalent to the transfer function is the Fourier transform 
of the impulse response, which if necessary can be found experimentally by 
measuring the output when sinusoidal inputs are applied. This frequency 
response has three forms of representation: (a) and (b) are the magnitude 
and phase of the system (Bode plots), (c) is log-magnitude vs phase 
(becomes a Nichols plot with additional information), (d) is a polar plot 
(partial Nyquist plot). 
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Multivariable Frequency Response 

It is quite feasible to plot the frequency responses of the elements of a 
G(s) matrix, i.e. to compute and plot Gij(jro) for input j and output i 
for frequency ro. In the scalar case, the magnitude of such a term 
represents a gain at that frequency. To extend this concept of gain to 
the matrix, it is logical to compute a gain as the magnitude measure of 
the output divided by the magnitude measure of the input. This is 
done using induced norms as discussed in Chapters 15, 20 and 33, and 
Appendix B. In particular, the gain for an input u(t) is defined as 

Gain = II y(t )11 
lIu(t)1I 

which can be shown to be bounded, when u(t) is a mix of inputs at 
frequency ro, by the largest and smallest singular values of the matrix 
G(jro). This fact is expressed mathematically by 

cr(G( ·ro» ~ Ily(t)1I ~ a(G( ·ro» 
- J lIu(t)1I J 

where the cr are computed using a matrix singular value 
decomposition (SVD). This of course yields bounds for designing 
multivariable compensators. 

10.4 STATE VARIABLE REPRESENTATION 

The notion of the state of a system is fundamental to the class of tools 
of control systems analysis called 'modem' and can be defined in 
many ways. Common to all definitions is the following set of notions: 

The state of a system is a set of variables which, if known at 
time to, is sufficient to allow the prediction of the same set at any 
future time t ;::: to whenever all of the inputs are known for all 't, 
to ~ 't ~ t. The variables are called state variables. The set of 
all states for a system is called the state space. 
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Note that there is no requirement for the state to be unique or of 
minimal size, although the latter is often part of the definition. 
Typically, the state of a SISO system will be of the same size 
(dimension) as the order of the ordinary differential equation 
modelling the system. 

The notion becomes more precisely defined - when we restrict the 
discussion to systems of differential equations (and hence implicitly to 
the physical systems they represent) - to the following: 

The state of a system of equations is any set of variables which, if 
specified at time to, provides the information necessary to solve 
that set of equations for any t ~ to for any specified set of forcing 
functions . 

It is fundamental to the state variable approach to systems studies to 
assume that the system may be placed in a form in which the variation 
of the state variables can be described by a coupled set of first-order 
ordinary differential equations, one for each state variable. This 
assumption holds for systems of linear ordinary differential equations; 
it mayor may not hold for other, non-linear systems, although it does 
appear to hold for many systems of interest. In addition, the original 
model may often be linearized so that a state-space description is 
possible for the region of linearization. 

10.4.1 Obtaining state-space descriptions - linear systems 

A set of ordinary linear differential equations may be placed in the 
vector-matrix form 

x = A(t) x + B(t) u 

y = C(t)x + D(t)u 

where x is an n-vector (i.e. an n x I matrix) containing the state 
variables, u is an m-vector of the inputs to the system, and y is a p­
vector of the system outputs (whether measurement quantities or 
physical quantities depends upon the system being modelled). The 
matrices A, B, C, and D are respectively n x n, n x m, p x n, and 
p x m; frequently D is a matrix of zeros and so it is not always shown 
in the above form. If the original differential equation model has 
constant coefficients, then the matrices also are constant. 
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Placing a system of differential equations in the above form is 
sometimes straightforward, but not infrequently some clever 
manipulation is needed. We consider some of the possibilities using 
examples of the forms used. We note, however, that the point of the 
representation is seldom to convert a simple SISO differential equation 
system to this form. 

For a simple constant coefficient nth order ordinary differential 
equation 

we may define the n state variables 

Xl = Y X2 = Y 

so that 

Then 

d2y 
X3 = dt2 

Xn-l = Xn 

dn-Iy 
Xn = dtn- l 

. dny dn-Iy dn-2y dy 
X = dtn = -an-l dtn- l - an-2 dtn-2 - •.. - al dt - aOy + u 

Defining 

u=[u] 

(10.5) 

(10.6) 
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0 1 0 0 0 0 
0 0 1 0 0 0 

A= 
0 0 0 1 0 

B= 

0 0 0 0 1 0 

-aO -al -a2 0 -an-l 1 

C=[IOO .. ·O] D = [0] (10.7) 

then gives the desired fonn with 

x = Ax + Bu 

y=Cx (10.8) 

This is a simple case of a common fonn called the controllable 
canonical form. 

More difficulty arises when derivatives of the control variable 
appear, as the state variable form does not allow explicit 
differentiation of an input variable to be another variable. (Thus it is 
not allowed for u to be defined as the vector 

for example.) It is usually desired for a SISO system to have the A 
matrix be of the fonn of (10.7) or a somewhat similar form to be seen 
below. Even with this proviso, there are several different possible 
state variable definitions, each giving somewhat different matrices. 
We consider the differential equation 
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dmu dm-1u du 
= bm dtm + bm-l dtm-l + ... + bl dt + bou (10.9) 

and assume m ~ n. By superposition arguments, we have that if 
(10.7-8) give the response to an input u(t) for (10.5), then 

x = Ax + Bu 

gives a solution to (10.9). We remark that it is no longer true that the 
definitions (10.6) apply; e.g. no longer is X4 the third derivative of the 
variable y. 

An alternative state variable definition may be justified by 
observing that (10.9) implies 

+ J(-aoy(to) + bo u(to)) dto) dtl) ... ) dtn-l dtn 

Defming the variables 
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(10.10) 

and observing that this makes 

y = bnu + Xl (10.11) 

gives, with differentiation of (10.10) and substitution of (10.11), the 
result 

-an-l 1 0 

-an-2 0 1 

A= 

-al o 0 

-aO o 0 

C=[100···0] 

with 

x = Ax + Bu 

y = Cx + Du 

o 0 

o 0 

o 1 

o 0 

B= 

bn-l - bnan-l 

bn-2 - bnan-2 

This is in fact a commonly seen form called an observable 
canonical form. 

Another variation may be defined by proposing a structure and then 
choosing the coefficients. For example, we propose the following: 
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To find coefficients aj and Pj, we differentiate y successively to find 
(following e.g. Wiberg (1971)) 

= 

100 

an-l 1 0 
an-2 an-l 1 

o -1 

o 
o 

Using this solution, the state equations become 

where 

x = Ax + Bu 

y = ex + Du 

010 

001 

A= 
0 0 0 

0 0 0 

-ao -al -a2 

C=[1000···0] 

and the pj solve (10.12). 

o 0 
o 0 

1 0 

0 1 

-an-l 

(10.12) 

bo 
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The above fonns of the A matrix are called companion forms of 
the system matrix. A very different fonn is best approached by using 
the transfer function. For the present system, the transfer function is 
as given in (10.2), which, by the fundamental theorem of algebra, may 
be expanded in partial fractions using the roots (here assumed distinct) 
Ai , i = 1,2, ... , n, of the denominator. Thus by assumption 

and using this, we may expand (10.2) as 

yrs\ Cl C2 C'l Cn d ~ ___ + __ +--=...L-+ + __ + 
U(s) - S-Al S-A2 S-A3 .. . S-An 0 

Putting Gi(s) = cJ(s - Ai ), we see that 

yes) = Gl(S) U(s) + G2(S) U(s) + ... + GnCs) U(s) + do U(s) 

= Xl(S) + X2(S) + ... + Xn(S) + do U(s) 

Inversion arguments show that we may define XI = A 1 X 1 + C i U 
(i= 1,2, ... ,n) and have 

Y = Xl + X2 + ... + Xn + do u 

In matrix notation, this becomes the modal form 

Al 0 0 0 Cl 

0 A2 0 0 C2 

X= x+ u 

0 0 0 An-l 0 Cn- 1 

0 0 0 An Cn 

y = [ 1 1 1 ... 1 ] X + do u 
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If the roots are not distinct, this approach yields a Jordan form 
for the A matrix. As given, roots and coefficients may be complex, 
and therefore the numbers Xi may be complex. 

If the eigenvalues are complex numbers, they necessarily come in 
pairs. This yields the possibility of using real number representations 
by rearrangement. Thus the system with eigenvalues 0' ± joo may be 
written 

instead of 

. [O'+jOO 0 ] 
Z = . Z + Bu o O'-JOO 

where the matrices B are different in the two representations. 

Example 

Consider the simple second-order system 

y + 25' + 5y = 3il + u 

Among its alternative representations are 

1. 

2. 

3. 

M 3s + I 
U(s) = s2 + 2s + 5 

rUm) 3jw + I 
U(jw) = (5 - W2) + 2jw 

y = [1 3] x 



www.manaraa.com

State variable representation 249 

y = [1 0] z 

[ -1+2j 0] [(3-j)l2] 
5. W = 0 -1-2j W + (3+j)12 u 

y = [1 1] W 

y = [-1 3] a 

We remark that representations 3-6 all have the same input-output 
relationship, as can be verified, e.g. by computing (as in section 
10.4.3) 

M -1 U(s)=C(sI-A) B 

This emphasizes the non-unique character of state variable 
representations. 

10.4.2 Multi-input-multi-output (MIMO) linear systems 

Compared with SISO systems, provided the systems involved are 
linear, MIMO systems are just a little more difficult. 

The near trivial case is one in which the systems are uncoupled. 
Suppose, for example, that we have systems modelled by 

i= 1 , ... ,k 
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where the individual system models were developed as in section 
10.4.1. Then defining the concatenated vectors 

x = [~~l u =[~~l y =[:~l 
and the block -diagonal matrices 

Al 0 0 0 Bl 0 0 0 
0 A2 0 0 0 B2 0 0 

A= 0 0 A3 0 B= 0 0 B3 0 

0 0 0 Ak 0 0 0 Bk 

Cl 0 0 0 Dl 0 0 0 
0 C2 0 0 0 D2 0 0 

C= 0 0 C3 0 D= 0 0 D3 0 

0 0 0 Ck 0 0 0 Dk 

yields the usual general form 

x=Ax+Bu 

y =Cx+Du 

When systems are connected in cascade, so that the output of one is 
the input to the next, as in Fig. 10.5, then the situation is only slightly 
more complicated. 
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Figure 10.5 Systems in cascade. 

In the two-element cascade shown in Fig. 10.5, the two subsystems Sl 
and S2 might have the state-space representations 

Xl = Alxl + Blu 

Yl = Clxl + DIU 

and, using the indicated naming of elements, 

X2 = A2x2 + B2Yl 

Y2 = C2x2 + D2Yl 

Then one possible state-space description of the entire system, with 
input U and output y, is 

Example 

Consider a motor in cascade with a compensator, satisfying 

v+ av = KaCit + ~u) 
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respectively. For the motor, define the state [Xl X2]T = [e e]T 

the input as v and the output y = Xl = e. Then a state system 
representation is 

y=[l O]x 

For the compensator control law, let X3 = state, with input u and 
output v. Then the (I-dimensional) state representation is 

v = X3 + Kau 

Combining these yields, with system input u and output e, 

We note that Xl and X2 retain 'natural' interpretations as shaft 
angle and rotation rate, but that the rules of state representation 
(namely, no derivatives of the input) mean that X3 represents an 
integral portion of the voltage v rather than all of v. 
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State-space conversion of multi variable transfer functions 

The example on page 248 demonstrated state-space representations of 
SISO transfer functions, and we saw these were not unique. One of 
the potential state-space representations for a matrix transfer function 
G(s) can be defmed as follows. Let Gi(S) denote the ith column of an 
n x m transfer function G(s), so that if Ui(S) is the scalar transform of 
the scalar control variable Ui(t), we have 

m 
G(s) = L Gi(s) Ub) 

i=1 

Represent Gi(s) in terms of an n-vector of polynomials Ni(s) and a 
scalar polynomial di(S), where dj(s) is the least common denominator 
of the m denominators in Gi(s). Thus 

where 

n,-1 

dj(s) = snj + L dijSj 
j=O 

[ 
.n-l 1 'Oj,10 + 'Oj,llS + .•• + 'OJ,}nj-l:o," , 

Nj(s) = n-l 
Ui,nO +Ui,nl s + ••. + U i,nnj-l S ' 

Defining 

o 1 0 0 0 
o 0 1 0 0 

Ai= 

-dj,O -di,1 -di,2 ...... -di,ni-l 



www.manaraa.com

254 Continuous-time system representations 

o 
o 

o 
1 

[ 
'Uj,lO 'Uj,11 ••. 'Uj,lnj_l] 

Cl = . . . . 
'Uj,110 'Uj,ll1 ••. 'Uj,nnj-l 

we have that one state-space representation of the system is given by 

Al 0 0 0 Bl 0 0 0 
0 A2 0 0 0 B2 0 0 

A= B= 

0 0 o ... Am 0 0 o ... Bm 

C=[C 1 C2 C n ] 

In this, if M = 'L~Inj , then A is an M x M matrix, B is M x m, and 
C is n x M. This representation is of a type called controllable 
(Chapter 22), but may not be observable (Chapter 24); a 
representation which is both controllable and observable is called a 
minimal realization, and there exist methods, some of which are in 
CACSD programs, for finding such representations if the ensuing 
theoretical analysis requires them. 

10.4.3 Relationship to Laplace transforms 

Having seen a derivation of a state-space representation (the modal 
form) from a Laplace transform representation, it should be no 
surprise to find that the reverse can also be done. We need only use 
notation carefully and realize that 
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to see that 

x = Ax + Bu 

y = Cx + Du 

has transfonn 

.2'(Xl(t» 

2'(X2(t) ) 

= 
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sX(s) - x(O) = AX(s) + BU(s) 

Y(s) = CX(s) + DU(s) 

and hence has solution 

Y(s) = [C(sI-A)-IB + D]U(s) 

In the common case for which D = 0, expansion of this is useful in 
that we see, from Cramer's Rule for matrix inversion, that 

Y( ) _ C cof(sI-A)B 
s - det(sI - A) 

where cof(·) is the matrix of cofactors and de to is the detenninant. 
The former is a matrix of polynomials, while the latter is a 
polynomial. From the definitions involved, the zeros of the latter are 
the eigenvalues of the matrix A and also the poles of the system 
represented by the state-space mode. 
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10.4.4 Changes of variable - similarity transforms 

It should be clear from section 10.4.1 that state-space representations 
are not unique. The state variables are sometimes chosen for physical 
significance and sometimes for analytical convenience, and 
occasionally a representation will be both significant and convenient. 

The change of representation of a linear constant coefficient system, 
if we perform one, is called a similarity transformation. To perform 
one, suppose we have a system described by 

x = Ax + Bu 

y = Cx + Du 

We change the representation, which could also be considered a 
change of variable or of linear system basis or of coordinate axes, by 
defining a new state vector XT, related to the previous state vector x 
by an invertible n x n matrix T, as in 

XT =Tx 

Then clearly we have the state equations for XT given by 

XT = TAT-1XT + TBu 

Y = CT-1XT + Du 

To see that the transfer function from u(t) to yet) is unchanged, we 
may directly compute 

sXT(s) = T AT-I XT(s) + TBu(s) 

yes) = CII XT(s) + Du(s) 

This has solution 

yes) = [Cil(sI-TAT-I)-ITB + D]U(s) 

= [C(sI-A)-IB + D]U(s) 
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Canonical forms 

The state-space fonnulations also have canonical fonns, just as there 
were several standard fonus for the transfer functions and one special 
form (the Bode fonu) for frequency response functions. These fonus 
can be reached by similarity transfonuations on systems such as 

x = Ax + Bu 

y =Cx+ Du 

and involve special fonus of the A matrix plus one or both of B and 
C. The actual transfonuations are in the Appendix B. 

The observable canonical fonus have 

or 

The controllable canonical fonus have 

or 

C=[lOO .. ·O] 

C=[OOO .. ·l] 

B= 

o 
o 

o 
1 
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In either case, for n x n matrix A, I is (n-l) x (n-l) identity, 0 is 
an n-l vector of zeros, and a is an n-vector of coefficients from the A 
matrix's characteristic equation. Existence of the transformation 
depends upon observability, resp. controllability, of the (A;C) and 
(A;B) matrix pairs (Chapters 22 and 24). 

Another canonical form uses Jordan blocks, and is a generalized 
modal decomposition. A typical form, and its importance as a form, 
is that for MIMO systems it yields 

[ 

Jeo 0 
o Je 

A= 0 0 

o 0 

o 0] [Beo] o 0 Be 
Jo 0 B= 0 

o J 0 

C = [Ceo 0 Co 0] 

where the J are Jordan blocks, and the Bi and Ci are suitably non­
trivial. The significance of this is the interpretation, in which the 
system is interpreted as decomposed into controllable and observable 
(CO subscript), controllable but not observable (C), observable but 
not controllable (0), and neither controllable nor observable (no 
subscript) subsystems (Chapters 22 and 24). An alternative 
decomposition showing the same is 

Ao 0 AI,3 0 BeQ 

A2,1 Ae A2,3 A2,4 Be 
A= 0 0 Ao 0 B= 0 

0 0 A4,3 A __ 0 

C = [Ceo 0 Co 0] 

These are useful in decomposing systems, of course, but also in 
finding representations which are minimal (in size of state vector) and 
having a given input-output transfer function. 
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10.4.5 Some state-space descriptions for non-linear 
systems 

For non-linear systems, generation of a state-space description can be 
difficult. One relatively simple case arises when all derivatives are 
ordinary, the inputs are not differentiated, and the highest derivative 
can be isolated easily. Consider for example a system described by 

dny _/(dn- Iy , dn-2y, ... , dy, y, u) 
dtn - dtn-l dtn-2 dt 

Using the definitions 

dy 
Xl = Y X2 = dt 

dn-Iy 
Xn = dtn-l (10.13) 

we immediately have the representation in tenns of first derivatives as 

Xn =/(xn, Xn-l, ... , Xl, u) 

y=[l 0 0 O]x 

or 

x = j (x, u) and y = Cx 

For systems which seem to exhibit explicit dependence on 
derivatives of the control variables, the above does not work directly. 
This is because the required fonn, even for non-linear systems, is 

x = I(x, U, t) y = g(x, U, t) 

Here it is to be noted that the input variables u are not explicitly 
differentiated. 
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A sometimes helpful interpretation in these circumstances is to note 
whether the input variable is a command variable and should have the 
highest derivative noted as the actual control quantity. If so, then the 
definition of extra state variables may obviate the apparent difficulty. 

For example, consider 

and use the definitions of (10.13) plus the definitions 

WI = u 
du 

W2 - dt 

plus consider the second derivative of u as the control variable, calling 
it 00. Then we have 

WI = W2 W2 = 00 

Xn-I = Xn 

y = [1 0 0 .. ·0] x 

and x, w are easily concatenated into a single vector if desired. 

Example 

For the translational dynamics of the rocket model in Chapter 9, we 
may define the state vector x by 

Xl = X = horizontal distance 

X2 = X = horizontal velocity 

X3 = Y = vertical distance 
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X4 = Y = vertical velocity 

Xs = mass 

UI = pitch angle 

U2 = motor on/off command (1 for on, 0 for off) 

G = gravitational constant 

T h = engine thrust 

M = propellant mass flow rate 

Then a state model is given by 

10.4.6 Finding the system response to input using state­
space and transition matrices 

There are several choices for finding the system response to a given 
input. Aside from numerical and simulation methods, the details 
depend upon the system representation. 

• Numerical methods and simulations such as SIMNON, whether 
analog or digital computer based, tend to work with state 
descriptions, i.e. sets of first-order differential equations. 

• For differential equation representations, the usual methods of 
solution of differential equations may be used (or attempted). 
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• For transfer functions, the methods of Laplace transforms are 
applied. 

• For linear state-space models, the methods are those of 
differential equations but the details are probably unfamiliar to 
the reader and are presented here. 

We consider the model structure 

x = A(t) x + B(t)u 

y = C(t)x + D(t) u 

with initial conditions 

x(to) = Xo 

(10.14) 

To obtain a general solution, we first find what is in effect the free 
or unforced solution and then derive the particular solution. More 
precisely, we define the transition matrix 8(t2, tl) as the solution of 
the matrix differential equation 

d0(t, to) _ A( ) 8( ) dt - t t, to 0(to, to) = I 

It is readily shown that the transition matrix, which is unique by the 
properties of solutions of linear ordinary differential equations, has 
among its properties the following. 

I. Transition property: 

8(t2, to) = 8(t2, tl) 8(tl, to) 

2. Inversion property: 
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3. Detenninant property: 

4. Separation property: 

8(t1.to) = 8(tl,0)8-1 (to, 0) 

= 8(tl) 8-1 (to) 

Note the alternative notation allowed by the separation property. 
U sing the transition matrix, the general solution of the state 

equations can be written 

t 

x(t) = 8(t,to)x(to) + J 8(t,'t)B('t)u('t)d't 
to 

(10.15) 

This may either be checked by direct differentiation (using the 
fundamental theorem of calculus, the chain rule, and the Leibnitz Rule 
for differentiation of the integral) or derived using the method of 
variation of parameters. 

From the definition of the transition matrix, it is clear that if the 
matrix A is a constant, then 

8(t1, to) = 8(t1 + 't, to + 't) = 8(t1 - to, 0) 

for all 'to For such systems, the single independent variable notation 
defined by 8(t1, to) == 8(tl, to), 8 (t) == 8(t,0) etc. is particularly 
appropriate and will be used frequently in the sequel. 

In the non-time-varying case for which A is constant, the transition 
matrix solves 

d~y) = A 8(t) 8(0) = I 
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Among the methods for finding the matrix 0(t) in the latter case 
are Laplace transform methods, matrix transformation methods, and 
numerical methods. Laplace transform methods solve 

0(t) =2'-1 { (sI - A)-I} 

which is in fact straightforward because, using Cramer's Rule, the 
resolvent matrix (sI - A)-l is rational for each element. 

The matrix methods rely upon the matrix interpretation of the first­
order differential system (10.14). Thus the solution is by analogy 
with scalars given by 

0(t) = eAt 

By definition, when matrices are exponents, 

00 (At)i 
0(t) = L " 

i=O l. 

Using similarity transforms of A, if A has distinct eigenvalues Ak, 
k=1,2, ... ,n (when A is n x n), then there is a matrix T (the matrix 
whose columns are the eigenvectors of A) such that 

A = diag (A}, A2, ... ,An) = T-I AT 

Using this fact, we compute 

0(t) = r (TA ~-lt)i = T [ r (,\:)i] T-I = TeAtT-I 
i=O l. i=O l. 

But since At = diag (Alt, A2t, ... , Ant) 
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eAt = ;. (At)i = ;. diag (A1t)i , (A2 t )i , ... , (Ant)iJ 
£..., £.. .,., " 

i=O l. i=O l. l. l. 

d' (Alt A2t Ant) = lag e , e , .. ,' e 

Hence we have shown that 

The third class of methods includes numerical integration and 
power series expansion of eAT. We show the second of these, as in 
Franklin, Powell, and Workman (1990). It amounts to a truncated 
power series expansion for eAT. For some K, define '¥ as 

A T (A T)2 (A T{-l 
'¥ = I + 2! + 3! + ... + K! 

and compute it as 

Then take 

eAT = <I>(T, 0) <== I + AT'¥ 

The above techniques fall into two classes: numerical and symbolic. 
The choice will partly depend upon the needs of the problem. All 
three approaches can be used also to find the forced solution (10.15), 
although the input o(t) must be structured appropriately if closed­
form type methods are to be applied. 
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10.5 NOISE AND DISTURBANCES 

For continuous systems, the models of noise can be either in state­
space or in transfer functions, but will follow the notion mentioned in 
section 9.4.6 of white noise driving a linear system. In such cases we 
have for scalars 

H(s) = n-l 

sn + L CXjSj 

i=O 

(Dn + CXn-I Dn-l + ... + cxo) w(t) = 11 (t) 

v(t) = (PmDm + ... + PI D + Po)w(t) 

STl(ro) = R 

Su(ro) = IH(jro)12R 

where H(s) is the transfer function of the linear system and R is the 
level (variance) of the white noise; D denotes the differentiation 
operation, and the above avoids differentiation of white noise even 
though for modelling purposes only this makes little difference. One 
possible state-space model is 

0 1 0 0 0 
0 0 1 0 0 0 

x(t) = x(t) + 11(t) 

-<Xo -al -an-l 1 

v(t) = [ Po PI ... Pm 0 . .. o ] x(t) 

and the same result is obtained. 
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Models of systems with disturbances and noise 

A typical representation of a feedback system with measurement noise 
and output disturbances is shown in Fig. 10.6. 

O(s) 

R(s) + Y(s) 

M(s) 
N(s) 

Figure 10.6 Typical closed-loop system block diagram. 

Here G(s) represents the plant transfer function, C(s) the controller 
transfer function, F(s) the sensor transfer function, and Yes), R(s), 
D(s), N(s), E(s), U(s), M(s) are the respective transforms of the 
output signal, the input reference signal, the disturbance, the 
(measurement) noise, the error signal, the command signal and the 
measurement signal. Then transform algebra yields easily 

E(s) = R(s) - F(s) (N (s) + Y (s» 

yes) = D(s) + G(s) U(s) 

U(s) = C(s) E(s) 

and hence relationships such as 

E(s) = (I + F(s)G(s)C(s)t1 (R(s) - F(s)N(s) - F(s)D(s» 

yes) = (I + G(s)C(s)F(S»-l (G(s)C(s)R(s) + D(s») 

- G(s) C(s) F(s) N(s) 
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where the possibility of multi-input-multi-output transfer functions 
has been allowed. 

The disturbances may be modelled as noise (as above) or as signals 
such as steps or ramps, e.g. D(s) = els or 'Ols2. Alternatively, D(s) is 
in robust control theory dermed along the lines of D(s) E g where 

g= {D(s): IID(jro) lip < l} 

where p typically is either 2 or 00 (see norms in Appendix B or 
Chapter 33). 

Measurement noise N (s) is ordinarily modelled as noise, but 
occasionally more like a disturbance in order to represent severe 
measurement device breakdown. 

The usual state-space studies consider only the noise form explicitly, 
with the linear system model often such as 

x = Ax + Bu + rv 
y = Cx+w 

with input u, output y, state x, and noises v and w. The noises are 
assumed to have properties 

g'[v] = 0 

g'[w] = 0 

g'[x(O)] = Xo 

g'[ vet) vT('t)] = Q'O(t-"C) 

g'[ wet) wT( "C)] = R'O(t-"C) 

g'[(x(O)-xo)(x(O)-xO)T] = S 

In this, w is clearly intended to represent measurement noise, but 
the structure is such that if the model is extended so that part of the 
state vector is used for colouration of the input noise v, then random 
model errors and disturbances can be represented through v. 

Model errors are usually taken in terms of either additive or 
multiplicative errors in matrices in the representations. Specifically, 
for transfer function matrices G(s) in which the nominal or standard 
model is Go(s), the usual approach is to take either multiplicative 
errors as applying to the output 
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G(s) = (I + ~(s))Go(s) 

or to the input 

G(s) = Go(s)(I + ~(s» 

or as additive errors 

G(s) = Go(s) + ~(s) 

If ~(s) contains only a few variable parameters, then the uncertainty 
is called structured. In much of the recent theoretical development, 
the only specification on ~(s) is of the form 

1I~(j(O) II < L«(O) 

for a specified matrix norm and scalar function L. One particular 
norm used has been the oo-nOrm 

1I~(j(O)1I = supll~(j(O)1I <L = constant 
00 0) 

Notice that for scalars, the norm becomes the magnitude of the 
complex number, and the oo-norm is the maximum value of that 
magnitude over all frequencies. 

In linear state-space models, the above ideas appear also. Here the 
basic model 

x = Ax + Bu 

y =Cx 

has its matrices, particularly the A matrix, allowed to vary. An 
unstructured variation is one for which 

A = Ao + oA lIoAIl <a 
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while a structured uncertainty tends to be of the form 

p 
A = Ao + L 9j Aj -1::; 9j ::; 1 

i=l 

and a random variation has 

p 
A = Ao + L wjAj 

i=l 

where the Wj are scalar noise processes. 
Structured uncertainties tend to allow at least the possibility of 

parameter estimation and hence adaptive control (Chapter 31) in 
controlling the systems. Unstructured variations force us to consider 
worst case scenarios and hence conservative designs; these are the 
main topic of robust control theories (Chapter 33). 

10.6 COMPUTER PROGRAMS 

Most computer packages should be able to handle computations of the 
solutions of the models for given inputs. Some, such as SIMNON, do 
this by simulation. Packages such as MA 1LAB® will allow conversions 
of representations from transfer functions to state-space and back; 
sometimes this is done using canonical forms, since then the 
coefficients can be written out with little computation. 

10.7 FURTHER INFORMATION 

Longer discussions of the information in this chapter are found in 
books such as Dorf (1989), Phillips and Harbor (1991), and Kuo 
(1987). Wiberg (1971) is fairly thorough concerning the state-space 
transformations. Multivariable cases are in Maciejowski (1989). 
Noise is treated in the signal analysis literature and is introduced in 
Appendix C. 
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Sampled-data system 
representations 
This chapter parallels Chapter 10 for discrete-time systems. Because 
difference equations are undoubtedly less familiar to students than 
differential equation methods, we also take a brief look at the 
characteristics of difference equation time responses. 

11.1 SYNOPSIS 

The digital computer works in a sampled-data manner, and hence sees 
the continuous real world through a picket fence, i.e. only at 
particular instants. This sampling is usually done at regular intervals 
T (typically a few hundredths of a second to a few seconds). As a 
result, computer control works with sequences of data samples and 
commands. The model descriptions are often in terms of difference 
equations, such as 

y(k1) + aly(kT-T)+ ... + an_2y(kT-nT+2T)+ an_Iy(kT-nT+T) 

+ any(kT -nT) = bou(kT)+ blU(kT -T)+ ... + bmu(kT -mT) 

k = 0,1,2, ... (11.1) 

with the alternative representation using the shift operator defined by 
qix(kT) = x(kT +iT) to give 

(1 + al q-l + a2q-2 + ... + an q-n) y(kT) 

= (bo + b l q-l + ... + bm q-m) u(kT) (11.2) 

The z-transform, which could be considered a discrete analogue of 
the Laplace transform, proves useful here, giving a discrete-time 
transfer function 
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TIU bo + b l Z-I + b2Z-2 + ... + b m z-m 
U(z) = 1 + aIz-1 + a2z-2 + ... + anz-n 

from which the frequency response can be calculated as 

TIUI U(z) z = e jroT 

Alternative forms of the rational function are of course possible. 
Models such as (11.1-2) also have state-space models of the form 

x(k+ 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) + Du(k) 

which have standard canonical forms very similar to those for 
continuous-time system descriptions (Chapter 10), including 
controllable, observable, and Jordan forms. For example, an 
observable canonical form is given by 

-al 100 0 bl-albo 

-a2 0 1 0 b2-a2bo 
-a3 o 0 1 0 

b3- a3bO 
x(k) = x(k-l) + 

-an-I 000 1 
-an 000 0 bn-anbo 

y(k) = [1 0 0 0 ... 0] x(k) + bo u(k) 

11.2 TIME RESPONSE OF DIFFERENCE EQUATIONS 

Throughout this book, discrete-time systems - either closed- or open­
loop - are described by relations of the form 
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y(k) = -aIy(k-I) - a2y(k-2) - ... - any(k-n) + bou(k) 

+ bI u(k-I) + ... + bm u(k-m) (11.3) 

where y(k) is the output at sample number k, i.e. the output at time 
kT, u(k) is the input at sample number k, i.e. the input at time kT, and 
aI, a2, ... , an and bo, b}, ... , bm are known coefficients. There are 
many variations: 

1. the coefficients are unknown; 
2. there are multiple inputs, some of them noisy; 
3. the coefficients are not constants; 
4. the y(k) and u(k) terms do not appear linearly; and/or 
5. the representation is in a different form, e.g. matrix form. 

However, the above is basic and therefore worth a considerable 
amount of study concerning the nature of the systems it represents. 
Equation (11.3) is called a linear, constant coefficient, causal 
difference equation. 

Consider a system model (as above, but with bo=I, bj=O, i=l, 2, 
... , m) 

y(k) = -aIy(k-1)-a2y(k-2)-a3y(k-3)-·· ·-any(k-n)+u(k) 

Provided an is not zero, this is an nth order difference equation and 
its state-space representation will be an n-dimensional system. The 
solutions for a unit pulse at k = 0, i.e. for u(O) = 1 and u(k) = 0 when 
k '* 0, are given using the roots A.i, i = 1, ... , n of the characteristic 
equation of the system: 

(11.4) 

With these, the pulse response solutions y(k), k'?O satisfy 

(11.5) 

where the Ci are chosen so that yeO) = 1, and y( -i) = 0, i = 1,2, ... , n-l. 
Because the fundamental theorem of algebra informs us that indeed 
there are n such roots and that, if the coefficients ai are real then the 
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Ai are either real or in complex conjugate pairs, we know immediately 
that the solution will have the form of sums of terms of the forms 
ci(ri)k and c/rj)k cos(~jk + 9j). 

The handling of more complicated inputs is straightforward because 
of superposition and the observation that a function u(k) starting at 
time step 0 can be represented as the sum of scaled offset pulses, i.e. 

00 

u(k) = IAf>(k-i) 
i=O 

(11.6) 

where by definition the pulse satisfies f>(O) = 1, o(j) = 0 for j :¢: 0 and 
is the Kronecker f>-function. 

Then it is easy to see that if we define Yj(k) as the response to o(k­
i), i=O, 1, .. . , so that 

then the response y(k) to an input such as (11.6) is given by 

00 

y(k) = IAYi(k) 
i=O 

(11.7) 

This argument is more easily and more commonly made using the 
pulse response h(k), i.e. the response of the system to a pulse at step O. 
In this case, h(k) = yoCk). Then the linearity and shift properties of 
the z transform imply that 

Yi(k) = Yo(k-i) = h(k-i) 

so that finally (11.7) becomes the convolution sum 

00 

(11 .8) 
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00 

= LU(j) h(k - j) 
j=o 

(11.9) 

Ordinarily, the system is causal, meaning that the output cannot 
anticipate an input. Causality is interpreted mathematically as h(j) = 0, 
for j < 0 and the effect on (11.9) is 

k 
y(k) = Lu(j)h(k-j) 

j=O 

A change of index variable (replacing i with k - j) lets us write 
(11.8) and (11.9) in general as 

k 
y(k) = L dk_jh(j) 

j=-oo 

k 
= L u(k-j)h(j) 

j=-oo 

or, if the system is causal, 

k 
y(k) = L u(k-j)h(j) 

j=O 

The point of this, besides the justification of the general solution, is 
to lead to the observation that the system operation will always be 
characterized by the superposition of terms involving the sums of 
powers of the roots of the characteristic equation (11.5). These are 
called the characteristic roots, the poles, or the eigenvalues of 
the system. 

Control laws are chosen to affect the system responses. To see how 
we can affect this behaviour, consider (11.3) and suppose we choose to 
do a simple feedback, i.e. to measure the output at each step k and set 
the controller value u(k+ 1) proportional to it. (The k+ 1 is to allow 
computation time between measurement and command.) Then 
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u(k) = Gy(k-1) + ue(k) 

where Ue is an external signal, and the closed-loop system is now 
described by 

y(k) = -(al-boG)y(k-1) - (a2-bl G)y(k-2) - ... 

- (am+l-bmG)y(k-m-1) - ... - any(k-n) 

+ boue(k) + bl ue(k-l) + ... + bm ue(k-m) 

where it has been assumed that m < n. From this it can be observed 
that the characteristic equation (11.4) will become 

+ ... + (am+ 1 - bm G) ')..n-m-l + am+2 ')..n-m-2 

+ ... + an-I').. + an = 0 

This may of course be expected to have characteristic values much 
different from those of the original system. The combination of art 
with science for selecting the feedback gain G is one of the problems 
we will address in the theory sections. 

The above represents response which may in principle be found for 
any input u(k) sequence. One particular input of considerable interest 
to us is the sinusoidal input 

u(k)= A sin (k~ + 9) (11.10) 

in which typically ~ = roT because the input is in fact samples taken 
every T seconds of a signal of frequency ro. By Euler's rules that 

• ejx - e-jx 
smx = 2j 

ejx - e-jx 
cosx = 2 
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and the linearity of the response, we see that the crucial element of the 
input is e,jx. Thus let u(k) = Aei$k and assume that 

1. any transients have died out and the system is in steady state; 
2. the system is stable so that the output is due solely to the input; 

and 
3. the output is of the form y(k) = Bei$k where B may be a complex 

number. 

Under these assumptions, we look to see if there is a B such that 
condition 3 holds. Substituting in (11.3) gives 

Be j$k = - aIBei$(k-l) - a2Bej$(k-2) - ... - an Bd$(k-n) 

+ boAei$k + bi Aej$(k-I) + ... + bmAei$(k-m) 

Eliminating the common factor ei$k and rearranging gives the result 
that y(k) = Bei$k indeed holds provided that 

The complex value BIA depends on <1>, the phase step per time step, 
and is usually written as such, i.e. as F( <1» or F( roT). As such, it is 
called the frequency response of the system and is often written in 
terms of its phase and magnitude. 

F( roT) = I F( roT) I ejarc(F(ro1) 

Returning to the original problem with input (11.10) and using the 
linearity of the system, we find by little more than substitution that 

y(k) = IF(<I» I A sin (k<l> + e + arc(F(<I>))) 

where we have used the easily shown facts that I F( <1» I = I F( -<I» I and 
arc (F(<I») = - arc (F(-<I»). 

Because almost any periodic input is, by Fourier theory, 
representable by a sum of sinusoids, 
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00 

u(k) = L cp eXPUffipTk) 
p=-oo 

we know that in steady-state operation, a system described by (11.3) 
has an output 

00 

y(k) = L cpexPUffipTk) F(ffipT) 
p=-oo 

Thus it is clear that along with studying the transients inherent in 
the system due to the roots of the characteristic equation, the steady­
state as described by the frequency response F(ffiT) may also be of 
interest. We shall see this in future sections. 

11.3 TRANSFER FUNCTIONS 

Transfer functions, and in fact much of discrete-time system analysis, 
are based upon the z-transform (see Appendix A). For our purposes, 
we may define the z -transform of a sequence { ... ,y( -2), 
y(-I),y(O),y(1),y(2), ... } as 

00 

fez) =%(y(k» = Ly(i) z-i (11.11) 
j=-oo 

where z is a complex number. This is a linear transformation, with 
the commonly used shift property that 

x(k) = y(k-j) => X(z) = z-jy(z) 

Tables of transforms for common sequences, as in Appendix 1, are 
readily available. Thus, one easily finds, either from the definition or 
from tables, that 

y(i) = 1, i ~ 0 <=> 

y(i) = ai, i ~ 0 <=> 

z 
Y(z)=­z-l 

z 
Y(z)=-z-a 
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and so on, where again ¢:> indicates a transfonn pair. These have 
similar appearance to Laplace transfonns, and can be manipulated in 
much the same way. 

11.3.1 Basics of use 

The solution of difference equations such as (11.3) is possible with z­
transfonns. Taking the z-transfonn, using zero initial conditions, and 
defining fez) =2'({y(k)}) and U(z) =2'({u(k)}) we fmd this becomes 

fez) = -al z-1 fez) - a2z-2 fez) - ... - an z-n fez) 

+ bo U(z) + b1 z-1 U(z) + ... + bm z-m U(z) 

Hence we find the input-output relationship of (11.3) to be 
representable by the transfonn relationship fez) = H(z) U(z) in which 
the expression 

H(z) 
bo + b 1z-1 + b2Z-2 + ... + b m z-m 
1 + a 1 z-1 + a 2 Z-2 + . .. + an z-n (11.12) 

is called the discrete time transfer function. This has the same types 
of applications as the continuous time transfer functions in the Laplace 
transfonn variable s, and most of the applications are analogous: 
solution of difference equations, manipulation of system 
representations, frequency response calculations. 

The expression in (11.12) is called a direct fonn of the transfer 
function. Because such fonns appear in classical control law designs, 
it is often important numerically that they be rearranged. Commonly 
used are the cascade (or series) form and the parallel form. Just as in 
the continuous time cases of Chapter 10, these are given by H(z) = 
H1(z) H2(Z) ... Hk(Z) where 

i= 1,2, ... ,k 

and 
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respectively. Expanded fraction forms are also possible, and we will 
meet the Cauer form in Chapter 30. Mixed forms, such as sums of 
cascade forms, are of course also possible and sometimes useful. 

For a particular input {u(k)} for which the z-transform is rational 
in z, Y(z) is then rational and (in principle) easily inverted. Usually 
the inputs of interest are the pulse, step, and sometimes ramp input 
functions, in which U(z) is 1, (1-z-1)-1, and Tz-l(I-z-1)-2, 
respectively. Another interesting input is sinusoidal, which we 
consider below. The usual solution method is simply to find the 
expression Y(z) = G(z) U(z) and invert it, using tables as with the 
Laplace transform; alternatives include finding numerical solutions by 
either long division of the transform functions (in which case {y(kD} 
is given by the coefficients of z-k in the quotient) or by numerical 
solution of the difference equation corresponding to the transfer 
function. 

The forms such as in (11.12) are easily combined both additively 
and multiplicatively to yield transfer functions of composite systems. 
The manipulations are basically algebraic, although block diagram 
algebra, presented in some texts (e.g. DiStefano et ai., 1976), can give 
guidance as to manipulations needed. 

R(z) 
+ E(z) U(z) 

Gp(z) . C(z) '-------,/ Y(z) 

M(z) 
F(z) 

Figure 11.1 A closed-loop system z-transform model without noise or 
disturbances. 

The most common example is for a simple feedback control loop 
such as in Fig. 11.1, where C (z) is the compensator/controller/ 
computer transfer function, G (z) the plant or process transfer 
function, and F(z) the feedback transfer function (of a measurement 
device, perhaps). Y(z) is the z-transform of the output quantity, U(z) 
the transform of the control signal, E(z) the transform of the error 
signal, M(z) the transform of the measurement signal, and R(z) the 
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transfonn of the input reference signal. We wish to know the transfer 
function of the system from reference to output. 

The algebra of the situation gives, for the various signals, 

fez) = G(z) U(z) U(z) = C(z)E(z) 

E(z) = R(z) - M(z) M(z) = F(z) fez) 

By simple algebra, we find that eliminating the intennediate signals 
E(z), U(z), and M(z) gives 

fez) = G(z) C(z)[R(z) - F(z) f(z)] 

This easily rearranges to yield 

G(z) C(z) 
fez) = 1+ G(z) C(z)F(z) R(z) 

and from this we may read the system closed-loop transfer function as 

M G(z)C(z) 
R(z) = 1+ G(z)C(z)F(z) 

Much more complex systems may be manipulated in the same way, 
so that the advantage over direct attack on the difference equations is 
obvious. 

Example 

A motor under computer control may be modelled (see Chapter 12) to 
have z-transfonn model 

G(z) 
(T + te-T/'t - t) z + (t - te-T/t - Te-T/t) 

z2 - (1 + e-T/t ) z + e-T/t 

where T is the sampling period and t is a time lag parameter 
characteristic of the motor's speed of response. We multiply through 
by z-2, which gives 
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G (z) _ ---'(cT_+-'----...:'t...:.e_-T_I'_t---,'tCL)...:.z_-_1 ...:..+--'(>....:'t_----.:..'t e-=--_T-=/'t~----=T...:.e_-_T I ....... 't ),--,z=--_2 
- 1 - (1 + e-T/'t) z-l + e-T/'t z-2 

Thus if Y(z) is the transform of the output y(k) and U(z) the 
transform of the input u(k), we have 

(1-(1 + e-T/t ) Z-l + e-T/t z-2)y(Z) 

= (T + 'te-T/t - 't) z-l + ('t - 'te-T/t - Te-T/t )z-2) U(z) 

Distributing y(z) and U(z), interpreting z-ny(z) as y(k-n), etc., 
and a small amount of algebra allow us to write the difference 
equation model of the motor as 

y(k) = (1 + e-T/t )y(k-l) - e-T/t y(k-2) 

+ (T + 'te-T/t - 't) u(k-l) + ('t - 'te-T/t - Te-T/t) u(k-2) 

Clearly the steps may be taken in the opposite direction, from 
difference equation to transfer function. The difference equation 
model is easily simulated, even on a programmable calculator. For 
example, u(o) = 1, u(k) =0, k=l=O, and y(k) =0, k < 1, allows calculation 
of the unit pulse response. 

11.3.2 Multivariable transfer functions 

The sampled data transfer function situation for systems with m inputs 
and n outputs parallels that for continuous time systems presented in 
section 10.2.2. Thus, for difference equation sets such as 

nj m mj 

LP'i,k Yi(l-k) = 2. 2.Pi,j,kUj(l-k) i = 1,2, ... ,n 
k=O j=l k=O 

with transfer function representations 
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m 

= L Gij{Z) UJCz) 
j=l 

i=I,2, ... ,n 

i= 1,2, ... ,n 

We use the more convenient matrix form notation 

Y1(z) GI,I(Z) GI,2(Z) G1,m(z) 
Y2(Z) G2,I(Z) G2,2(Z) G2,m(Z) 

Y(z) = = 

Yn(z) Gn,I(Z) Gndz) Gn,m(z) 

= G(z) V(z) 

U1(z) 
U2(Z) 

Um(z) 

Since the operators are all linear, this representation can be 
manipulated almost as if they were scalars, just as was done for the 
continuous time case. We summarize the operations here under the 
assumption that matrix dimensions are consistent. 

Series: 

Y(z) = G(z) W(z) and W(z) = H(z) V(z) 

~ Y(z) = G(z)H(z)V(z) 

(but not H(z)G(z) V(z) - matrix mUltiplication is not commutative.) 

Parallel: where 

W(z) = H(z) V(z) and Y(z) = G(z) V(z) 
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~ V(z) = W(z) + Y(z) ~ V(z) = [H(z) + G(z)]U(z) 

Feedback connection: 

Y(z) = G(z)E(z) E(z) = U(z) - M(z) M(z) = H(z)Y(z) 

~ Y(z) = [I + G(z)H(z)]-IG(z)U(z) 

and 

Y(z) = G(z) [I + H(z) G(z)]-I U(z) 

In the basic representation, the matrix G(z) is n x m and so not 
necessarily square. 

Canonical form: Smith-McMillan form 

As in the continuous time case (section 10.2), the transfer function 
G(z) has a Smith-McMillan form M(z) defined by 

M(z) = (Mb(Z) ~) 

M(z) = diag {'!..ilil, ~, ... , vJill. } 
OI(Z) 02(Z) o,(z) 

where r is the normal rank (i.e. the rank for almost all z) of G(z), 
VI(Z) and OI(Z) are co-prime, i.e. they have no common factors and 

Vi(Z) divides Vi+I(Z) } '_ 
1-1,2, ... ,r-l 

Oi+I(Z) divides Oi(Z) 

This is clearly the same as for the continuous case with a different 
argument, and since the manipulations do not depend upon the 
interpretation of the argument, the computation of a Smith-McMillan 
form follows the same path as in section 10.2.2. 
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The alternative form for a rational transfer function matrix called 
the matrix fraction description is also available using non-unique 
matrices of polynomials, N(z) and D(z), to create representations such 
as G(z) = N(z) D-l(z) for the right matrix-fraction description, and 
G(z) = fj-l(z) N(z) for the left matrix-fraction form. These may be 
derived using the Smith-McMillan form, just as in the continuous time 
case section 10.2.2. 

11.4 FREQUENCY RESPONSE 

For the system frequency response, we assume we have a model such 
as (11.1-2) and that the input is u(nT) = eironT. As this has the 
z-transform 

{eironT} ~ 1 ~ T 1 - eJro z-

it is clear that the system output will be 

(11.13) 

[ 
H(eiroT) [H(z) (z-Zj) ] I Z = Zj 1 

=%-1 1-e+jroTz-I + ~ (l-z-IZj) (l-ejroTzj l) 

where the sum is over the poles Zj of H(z), taken here notationally as 
distinct but easily generalized, and the expansion is a partial fraction 
expansion of the function in (11.13). On taking the inverse transform, 
the terms from the summation will, provided the system is stable (a 
topic investigated in the theory chapters, especially Chapters 13-14), 
eventually decay so that for large k, 

y(kD = H(eiroT) eirokT 

The complex number H (ejroT) then represents the frequency 
response of the system. 
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We should particularly notice that H(ejwT) is periodic in roT, 
repeating for roT = 2krc for all integer k. A typical response is shown 
in Fig. 11.2. 

(a) (b) 

100r-~~~-~---........, 
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11. 
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Figure 11.2 Frequency response of a sampled data system. (a) and (b) 
show gain and phase vs. frequency ro* sample period T. (c) and (d) show 
the same information plotted against log (roT). What is striking is that the 
frequency response is a periodic function. 

10 

In the multivariable case, again as in continuous time, we evaluate 
the matrix transfer function. Thus the frequency response is G(dwT), 
and the matrix gain is bounded by the largest and smallest singular 
values: 
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where u(t) is any input vector with components at frequency ro and 
sampling period T, and yet) is the corresponding output vector. 

11.5 STATE·SPACE REPRESENTATIONS 

11.5.1 Introduction 

In this section we explore the use of simple state-space representations, 
particularly those for linear constant coefficient systems. We are 
concerned with representations of the form 

x(k+ 1) = A(k)x(k) + B(k) u(k) 

y(k) = C(k)x(k) + D(k) u(k) (11.14) 

where A is n x n, B is n x m, C is p x n, D is p x m, and x is the 
n-dimensional state vector, u is the m-dimensional input or control 
vector, and y is the p-dimensional output or measurement vector. For 
many of our examples, m = 1 and p = 1 and the system is said to be an 
n-dimensional SISO system. 

A very useful alternative time-domain representation to (11.1) and 
(11.3), i.e. to 

n L 
y(k) = - L aiy(k-i) + L biU(k-i) (11.15) 

i=l i:{) 

is given by the matrix form of (11.14) where in this case x is an 
n-vector, B is an n x 1 matrix (sometimes denoted as a vector b), C 
is a 1 x n matrix (notation cT) , D is 1 x 1 (notation d and a scalar), 
and A is an n x n matrix. The vector x is the state vector of the 
system, y and u are the scalar output and input respectively, and A, B, 
C, D (or notationally A, b, cT, and d) are constants. We should stress 
the dimensional relationships: 

1. if there is one control variable, then m = 1; 
2. if there are n steps of delay (and n ~ L), then n is the length of 

the state vector; 
3. if y is a scalar output, then p = 1; and 
4. if bo = 0, then the 1 x 1 matrix D( =d)= O. 
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The matrices are not unique for a given input-output relationship 
(11.15). The two types of relationships are equivalent, of course, but 
will be seen in the sequel to be useful or convenient for different types 
of studies. 

In this section we simply look at some of the state-space 
representations equivalent to (11.15). For this, it is convenient to 
define the shift operator q by 

qk x(j) = x(j + k) k = integer 

Using this notation, which is almost like the z-transform, (11.15) 
becomes 

n L 
y(k) = -L ajq-jy(k) + L bjq-iu(k) 

i=I i::Q 

We stress that at this point this is only used for notational 
convenience and motivating clarity; we do not yet use any special 
properties of the expression. 

11.5.2 Special forms 

The special forms with which we commonly deal include several very 
special ones (where the matrices have zeros and ones in certain places) 
called canonical forms) which (because almost any linear constant 
coefficient system can be placed into a canonical form) can be treated 
with some quite powerful tools. 

For a highly instructive case, we choose b i = 1 and bi = 0, i:f:. 1, so 
that (11.1) becomes 

n 
y(k) = L ajq-iy(k) + u(k-l) 

i=I 

Then defining state variables Xi by 

xl(k) = y(k) x2(k) = y(k-l) xnCk) = y(k-n+ 1) 
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we can easily show 

so that 

n 
xl(k) = y(k) = -L a i y(k-i) + u(k-l) 

i=1 

y(k) = xI(k) 

or in matrix form 

-al -a2 -a3 -an 1 

1 0 0 0 0 

0 1 0 0 0 

x(k +1) = 0 0 1 0 x(k)+ 0 u(k) 

0 1 0 0 0 

0 0 0 0 1 0 0 

y(k) = [1 0 0 .. . O]x(k) 

To generalize this to cases where b l :t 0, i ~ 0, is straightforward 
when we observe that superposition still applies, e.g. that if the input 
sequence is delayed by q then so is the output sequence. Thus, if 
{y(k)} is the response to ruCk-I)}, then {b2y(k-1) + bjy(k-j+1)} 
is the response to {b2U(k-2) + bju(k-j)}. More generally, the 
response of (11.11) is represented, for bo:t 0, by 
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-al -a2 -a3 -an 1 

1 0 0 0 0 
0 1 0 0 0 

x(k + 1) = 0 0 1 0 x(k)+ 0 u(k) 

0 1 0 0 0 

0 0 0 0 1 0 0 

y(k) = [bl - a1bo b2 -a2bO bn -anbO]x(k)+bou(k) (11.16) 

This is a common, canonical form and is called the phase 
canonical form, the controllable canonical form, or the first 
canonical form. 

An alternate matrix form may be written by grouping the delays. 
Then (11.1) becomes 

y(k) = bou(k) + (b l u(k-l) - aly(k-l) + (b2u(k-2) 

-a2y(k-2) + (b3U(k-3) - ... + (bnu(k-n) 

-any(k-n)) ... ))) 

U sing the shift operator q makes the next step seem more obvious. 
Using it, we write 

y(k) = bo u(k) + q-l (bl u(k) - al y(k) + q-l (b2 u(k) 

-a2y(k) + q-l( ... q-l(bnu(k)-any(k» ... ))) 

Now define 

xn(k) = q-l (bn u(k) - any(k)) 

= bnu(k-l) - any(k-l) 

xn-l(k) = bn- l u(k-l) - an-l y(k-l) + xn(k-l) 
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x2(k) =b2u(k-1)-a2y(k-l)+X3(k-l) 

xl(k) =blU(k-l)-aly(k-1)+X2(k-l) 

y(k) = bou(k) + xl(k) 

Substituting the last of these for y(k -1) and rearranging gives 

xl(k) = -alxl(k-l) + x2(k-l) + (bl-albo)u(k-l) 

x2(k) = -Cl2Xl(k-l) + x3(k-l) + (b2 -a2 bo)u(k-l) 

xn(k) = -an-lxl(k-l) + (bn - anbo)u(k-l) 

y(k) = xl(k) + bou(k) 

or in matrix form 

-al 100 0 bl-albo 
-a2 010 b2-a2bo 
-a3 o 0 1 0 

b3-a3bO 
x(k) = x(k-l) + 

-an-l 000 1 
-an 0 o 0 0 bn-anbo 

y (k) = [ 1 0 0 0 ... o ] x(k) + bo u(k) 

u(k-l) 

(11.17) 

This is the second, or observable, canonical form. Like the first 
form, it can be written down directly from the original difference 
equation. 

Example 

The motor under computer control in the example of section 11.3.1 
had 

G(z) = (T + te-T/'t - t)z + (t - te-T/'t - Te-T/'t) 
Z2 - (1 + e-T/'t)z + e-T/'t 
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One possible state-space model of this is 

[w,(k+ 1)] [1 + e-T/'t ~-T/t] [w,(k)] [1] 
w(k+ 1) = w2(k+ 1) = 1 0 w2(k) + 0 u(k) 

y(k) = [T + 'te-T/t - 't 

Other forms are of course possible. We stress that the inputs and 
outputs, u(k) and y(k) respectively, are fixed by the system definition, 
as is their relationship. The model's internal variables, wI(k) and 
w2(k), mayor may not be samples of physical variables describing the 
motor. 

11. 5.3 Combinations of state representations 

Many control systems are configured with serial connections of 
components, as in Fig. 11.3. 

-oj Controller H Amplffier H Motor r-
Figure 11.3 Serial (or cascade) connection of components for modelling. 

Often the individual components have well-known models and the 
system is to be modelled while retaining information about the 
components. This is easily done with state-space notation by suitable 
concatenation of the vectors and matrices. Hence if 

n, ml 

y(k) = - L aiy(k-i) + L bie(k-i) 
i=l i=l 

n2 m2 

w(k) = - L cjw(k-j) + L djy(k-j) 
j=l j=l 
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then using the first canonic form of each gives the obvious 
representation 

with 

xI(k) = Al xI(k-1) + BI e(k-1) 

y(k) = CIXI(k) 

x2(k) =A2X2(k-1) +B2y(k-1) 

w(k) = C2X2(k) 

so that, eliminating y(k), 

[ AI 0] [BI] x(k) = .... ... ...... x(k-1) + ... e(k - l) 

B2CI A2 0 

w(k) = [0 C2] x(k) 

Expanded, these matrices yield the following fonn: 

-al -~ ... -an_l -an 0 0 o 0 
I 0 0 0 0 0 o 0 

1 

o 

00 1000 00 0 
x(k) = -ht--~--b-ml--bo-+---CI---C-2 -.. -. --C-n_-I---Cn x(k -1) + 0 e(k -1) 

00 0010 00 0 

o 0 o 0 0 0 1 0 o 
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A special case arises when the input is more delayed than the output 
in the difference equation, i.e. when in 

n L 
y(k) = -:L aiy(k-i) + :L biU(k-i) 

i=l i:{) 

we have L > n. This case has some analogies to having higher order 
derivatives on the input than on the output in a differential equation, 
and for that reason modellers often seek one of the representations we 
have already seen. In fact, it is easy in a computer to store the back 
values {u(k-l),u(k-2), ... ,u(k-L)}, so it is sometimes convenient to 
have a state representation for this. This is easily done if we defme 

wICk) = u(k-l) w2(k) = u(k-2) ... wL(k) = u(k-L) 

i.e. wiCk) = Wi-l (i=2,3, ... ,L). Using matrix notation, this is 

000 0 1 
1 o 0 0 0 

0 
w(k+ 1) = 0 1 0 0 w(k) + u(k) (11.18) 

0 0 
o 0 0 1 0 0 

Shown below is one of possible 'fixes'. Starting with a variation on 
the form (11.16), but using (11.18) as part of the driving function, we 
can work with the concatenated vectors 

[ W(k)] 
z(k) = x(k) 

and the definitions 
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0 1 0 0 

0 0 1 0 

0 0 0 1 
A= 

0 0 0 0 

-an -an-I -an-2 

B=[ bo bI bL-I bL ] 

0 0 0 0 

1 0 0 0 

0 1 0 0 
W= 

0 0 

0 0 0 1 0 

to obtain the representation 

1 

Z(k)~l~ JZ(k-J)+ ~ u(k-J) 

o 

0 

0 

1 

-a2 -a1 

y(k)=[O 0 0 ... 0 10 0 0 ... l]z(k)+bou(k) 

295 

The dimension of the state is n+L. Even if L ~ n, we know that we 
can use a state of dimension n - as in all of our representations so far. 
This wastes resources (space in computer memory and execution time) 
and explains the search for more efficient representations as found in 
the literature. 

Representation of multi variable systems follows immediately from 
the above. For example, one representation of an n X m matrix 
transfer function G(z) assumes Gi(z) denotes the ith column so that if 
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Uj(Z) is the scalar transform of the scalar control variable {uj(nT)}, 
we have 

m 
Y(z) = L Gj(z) Ub) 

j=l 

Now we represent Gj(z) in terms of an n-vector of polynomials 
Nj(z) and a scalar polynomial dj(z), where dj(z) is the least common 
denominator of the m denominators in Gb), so that 

and the denominator has the form 

nj-l 

dj(z) = znj + L dj,jzj 
j={) 

[

Vj:lO + V~'ll z + .... + Vi:lni-l zni-l] 

N ·(z) =. . . . I • • • • 

Vi,nO + Vj,nl Z + ... + Vi,nnj-l znj-l 

Letting the matrices Ai, Bj, Ci be defined by 

0 1 0 0 0 
0 0 1 0 0 

A j = 

-di,O -dj,l -di,2 -dj,ni-l 

0 Vi,lO 
0 

Vi, 11 Vi, 1 ni-l 

B j = Cj = 
0 
1 Vj,nO Vj,nl Vi,nni-l 
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we have that one state-space representation of the system is given by 

A= 

o 
o 

o 0 0··· Am 

B= 

o 
o 

o 0 0 ... Bm 

In this, if M = Lf,!lni, then A is an M x M matrix, B is M x m, and 
C is n x M. This may not be the best possible representation, 
depending upon the application. 

11.5.4 Applications 

The use of matrices lends a certain elegance to the representation, but 
it has more important ramifications than simply easing the notation 
problem since solution is, in principle, straightforward. Observe that 
for a system with x(O) = Xo given and 

x(k) = Ax(k-l) + Bu(k-I) 

y(k) = Cx(k) 

the solution is 

k-l 
x(k) = Akxo + L AiBu(k-i-l) 

i=O 
(11.19) 

with y(k) following immediately. In fact, this generalizes quite nicely 
and if matrix methods are used the computations can be simplified. 

For the time-varying representation 
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x(k+ 1) = A(k)x(k) + B(k)u(k) 

y(k) = C(k) x(k) + D(k) u(k) 

it is convenient to defme the transition matrix 8(k,j) by 

8(k,j) = A(k-1)8(k-l,j) 8(j,j) = 0 k > j 

and write the solution as 

k 
x(k) = 8(k,j)x(j) + L 0(k,i+l) B(i)u(i) 

i=j 

When A and B are constants, then 

8(k,j) = Ak-j 

and solutions as in (11.19) result. 
Note that this discrete time tranSItIOn matrix has the limited 

transition property 8(k,j) = 8(k, i) 8(i,j), k ~ i ~j, but would not have 
other transition matrix properties (see section 10.4.6) unless the A(k) 
matrices are invertible (which they usually are if A models a physical 
continuous time system). 

11.5.5 Change of variable and similarity transformations 

The choice of state variables must not affect the input-output 
relationships of the system - otherwise our designs would be 
representation dependent - and it is convenient to choose states which 
are 'meaningful' to us. 

Consider 

x(k) = Ax(k-l) + Bu(k-l) 

y(k) = Cx(k) 

with x(O) = Xo given, and try the similarity transform w(k) = Px(k). 
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w(k+1) = PAP-1w(k) + PBu(k) 

y(k) = CP-l w(k) 

For any k, we can solve to find 

k 
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w(k) = (PAP-l)kw(O) + L (PAP-l)i-l PBu(k-i) 
i=l 

which with w(O) = Px(O) gives 

k 
w(k) = PAkx(O) + PL Ai-lBu(k-i) 

i=l 

= Px(k) 

and gives output 

y(k) = CP-l w(k) = CP-l Px(k) = Cx(k) 

Thus y has the same dependence on u as in the original representation. 

11.5.6 The standard canonical forms 

One important implication of the above is that we may use canonical 
forms for the system representation when this is convenient, as by 
doing so we are not affecting the system behaviour. The important 
canonical forms are the controllable or phase variable form (11.16), 
the observable form (11.17), and the Jordan form (analogous to 10.6) 
which often becomes a diagonal form. These may be obtained in 
general using the methods of Appendix B, which are in fact matrix 
transformations independent of the model involved. 
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11.5.7 The z-transform of state equations 

The z-transfonn of state equations follows simply enough in principle 
from the operations of the scalar z on vectors and matrices, i.e. the 
fact (defmition) that 

Using this fact and the shift property on the state equations 

x(k+ 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) + Du(k) 

yields 

z X(z) - z x(O) = AX(z) + BU(z) 

Y(z) = CX(z) + DU(z) 

which rearranges to give a solution 

X(z) = [zI - A]-1 [z x(O) + BU(z)] 

Y(z) = {C [zI-A]-IB + D} U(z) + z C [zI-A]-IX(O) 

This can give an alternative and useful demonstration of the 
similarity transfonn argument of section 11.5.5. We note that the 
original system has z-transfonn relationship 

Y(z) = C(zI-A)-1 BU(z) + zC (zI-A)-1 Xo 

while the changed coordinate system has 

Y(z) = CP-l (zI-PAP-l)-1 PBU(z) 

+ zCP-l (zI - P AP-l )-1 PXo 
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= CP-l (P(zl-A)P-l)-l PBU(z) 

+ ZCP-l (P(zl - A)P-l)-l PXO 

= C(zl-A)-lBU(z) + zC(zl-A)-lxO 

11.5.8 Transfer function to state-space conversions 

We have already seen many examples of transfer function to state­
space transformations (section 11.5.2) and the multivariable case 
(section 11.5.3). The coefficients from transfer functions can easily 
be read into the observable and controllable canonical forms, so 
algoritlunic conversion is possible. 

11.6 REPRESENTING NOISE, DISTURBANCES, AND 
ERRORS 

11. 6.1 Modelling of noise and disturbances 

For discrete time systems, as with continuous time systems, the models 
of noise can be in either state-space or transfer functions, but will 
follow the notion (see section 9.4.6) of white noise driving a linear 
system and parallels the discussion of section 10.5. The mathematics 
are somewhat easier for discrete time systems because the noise is 
taken as a sequence of random numbers. In such cases we have for 
scalars 

n m 

v(k) = - L ai1J(k-i) + L ~jll(k-j) 
i=l j=O 

with input noise uncorrelated 
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.%'[l1(k) 11 (j)]= R 3(k-j) 

Sll(eico1) = R 

SvCeico1) = 1 H(eico1) 12 R 

where H(z) is the transfer function of the linear system and R is the 
level (variance) of the white noise. One possible state-space model is 

o 1 0 

o 0 1 0 
o 
o 

o 
o 

x(k+l) = x(k) + l1(k) 

-aD -al -an-I 1 

v(k) = [0 ... 0 Pm ... PI] x(k) 

and the same result is obtained. 
A typical representation of a feedback system with measurement 

noise and output disturbances was shown in Fig. 10.6, and the 
discrete-time case in Fig. 11.4 is the exact analog, as are the 
definitions of the transfer functions and variable transforms. 

O(z) 

R(z) 
+ + 

G (z) \---1-.( Y(z) 

M(z) 
F(z) N(z) 

Figure 11.4 Typical z-transfonn system representation. See Fig.1O.6. 
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Thus G (z) represents the plant transfer function, C (z) is the 
controller transfer function, F(z) represents the measurement device, 
and Y (z), R(z), D(z), N (z), E(z), V (z), M (z) are the respective 
transforms of the output signal, the input reference signal, the 
disturbance, the (measurement) noise, the error signal, the command 
signal and the measurement signal. Then transform algebra yields 
easily 

E(z) = R(z) - F(z)(N(z) + Y(z» 

Y(z) = D(z) + G(z) V(z) 

V(z) = C(z) E(z) 

and hence relationships such as 

E(z) = (I + F(z) G(z)C(z»-1 (R(z) - F(z)N(z) - F(z)D(z» 

Y(z) = (I + G(z) C(z) F(z»-1 G(z) C(z)R(z) 

+ (I + G(z)C(z)F(z»-ID(z) 

- (I + G(Z)C(Z)F(Z»-1 G(z) C(z)F(z)N(z) 

where the possibility of MIMO transfer functions has been allowed. 
The disturbances may be modelled as noise (as above) or as signals 

such as steps or ramps, e.g. 

e 
D(z) = l - z-1 or 

BTz-l 
D(z) (l-z-1)2 

Alternatively, D(z) is in robust control theory defined along the lines 
ofD(z)E9 

9 = {D(z) : IID(ejcoT )lIp<l} 

where p typically is either 2 or 00 as in Appendix B. 
Measurement noise N (z) is ordinarily modelled as noise, but 

occasionally more like a disturbance in order to represent severe 
measurement device breakdown. 
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State-space studies usually consider only the noise form explicitly, 
with the linear system model often such as 

x(k+ 1) = Ax(k) + BU(k) + rv(k) 

y(k) = Cx(k) + w(k) 

with input u, output y, state x, and noises v and w with 

W[v] = 0 

W[w] = 0 

W[x(O)] = Xo 

W[v(k)vT(j)] = Qo(k-j) 

W[w(k)wT (j)] = Ro(k-j) 

W[ (x(O) - xo) (x(O) - xo)T] = S 

As in the continuous time case, w is intended to represent 
measurement noise, but the structure is such that if the model is 
extended so that part of the state vector is used for' coloration' of the 
input noise v, then random model errors and disturbances can be 
represented through v. 

11.6.2 ~odel errors 

Model errors are usually taken in terms of either additive or 
multiplicative errors in matrices in the representations, and the results 
are just like those of section 10.5 except that the z-transform appears 
in place of the Laplace transform and the state-space difference 
equations appear in place of the state differential equations. 

11.7 COMPUTER PROGRAMS 

Virtually the same programs used in Chapter 10 can be used for many 
of the calculations for sampled data system analysis. 

11.8 FURTHER INFOR~ATION 

Although almost all of this chapter could be considered analogous to 
Chapter 10 with a change of polynomial variable, we have somewhat 
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belaboured the point because of some students' lack of familiarity with 
discrete time models, difference equations, and z-transforms. Most of 
the information in this chapter is presented in standard textbooks. For 
examples, longer discussions are found in books such as Franklin, 
Powell, and Workman (1990), Kuo (1980), and Ogata (1987). Noise 
modelling is in various engineering communications and random 
processes texts, such as Papoulis (1977), and multivariable 
representations are in Maciejowski (1989). 
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Conversions of 
time to discrete 
models 

continuous 
time 

To a computer, a plant looks like a discrete time system even though 
usually it is well defined for continuous time. In addition, the 
computer issues its commands at discrete times even if the original 
control law design was based on differential equations. For these 
reasons, it is necessary to be able to convert continuous time 
representations to equivalent discrete time representations. 

12.1 SYNOPSIS 

There are two ways to approach discrete time control: 

• find a continuous time controller and approximate it, or 
• design a sampled data controller using a discrete time model of 

the plant. 

The conditions under which the approximation method applies are 
indicated in Fig. 12.1. 

If a control law (e.g. a PID law) has already been designed then it 
may be satisfactory to convert it for use in the digital computer. In 
the typical situation, a differential equation or its transfer function is 
known for the law and the digital computer expression is to 
approximate it. For example, if the control law has transfer function 
Cacs), the sampled data transfer function Cd(z) is formed in one of the 
following ways. 

1. Substitution: 

Cd(Z) = cacs) Is=ftz) = CaCf(z» 
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PLANT 

CIACTUATORI-:---_~1 ~~S~~ ~ :--, ------
· . I ............................................................ . · . · . 

: WCOMPUTER SYSTEM : I 
III I ... . .............. ; .................... .. T _______________________ ~ 

Figure 12.1 Simple system configuration. Digital aspects can be 
considered by either taking the digital equivalent of the plant system (dotted 
outline) or by deriving the computer system (dashed outline) from a 
continuous time controller. 

where the choices for fez) must be rational in z and common 
choices include 

(a) 

(b) 

z - 1 
f( z) =----y;-

2 z - 1 
f(z)=--­

T z + 1 

2. Pole-zero mapping: If Ca(s) has poles at bi, i = 1,2, ... ,n and 
zeros at aj,j = 1,2, ... ,m, then Cd(Z) is taken as rational with 

I b'T • - 1 2 d aT . - 1 2 G . poesatel,l-, , ... ,nan zerosateJ,j-, , ... ,m. am 
adjustment may be necessary. 

3. Cd(Z) may be chosen so that the controller's output is invariant at 
the command times kT when the input is a chosen function, 
typically an impulse or a step. 

When the plant is to be modelled such that only outputs at discrete 
times are necessary and the inputs are to be piecewise constants, then 
although the methods above are occasionally used, it would seem 
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proper that for linear time invariant systems the choice be restricted. 
When the original model is a transfer function H a(s), the most 
appropriate model is the impulse invariant transformation 

When the continuous time model is a state-space model such as 

x(t) = Ax(t) + Bu(t) 

yet) = Cx(t) 

a straightforward argument gives the sampled data version 

x(kT+T) = eATx(kT) + [feA(T-,jd<] Bu(kT) 

y(kT) = Cx(kT) 

12.2 CONVERSIONS OF CONTINUOUS TIME CONTROL 
LAWS 

Often a plant has been operating quite satisfactorily with analog 
controllers but replacement with digital fonns is desired to allow logic 
decisions, communications with central computers, unit conversions 
for data logging, etc. In these circumstances, the engineer has to 
replace the analog control element with a digital element as in Fig. 
12.2, and there are several ways of achieving this. 

PID controllers can be converted using time domain 
approximations, for example, 

t 

u(t) = Kpe(t) + Ki J e(t) dt + Kd d~~) 
-00 
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becomes 

k 
ud(kT) = Kpe(kT) + KiT .L eUT) + ;'d (e(kT)-e(kT -T») 

)=-00 

u(t) = ud(kT) kT~t<kT+T (12.1) 

where the actual calculation may be rearranged for convenience. The 
second equation of (12.1) is actually implemented by the hardware of 
the buffer and DAC, i.e. the zero-order hold (ZOH). 

e(l) -..;;1 .... -11 Controller t--~>~ u(t) 

e(l) -X 
T 

D 
Digital 
Controller 

@--7 U(t) 

T 

Figure 12.2 Desired replacement of an analog controller by a digital 
controller with ZOH. 

Alternative methods are well known in the digital signal processing 
literature and are usually discussed in relation to the conversion of 
filter designs; the problem is inherently different from that of 
modelling the controlled system, for which we use impulse invariant 
designs below. There we need a good model for a physical situation, 
with the model applying only at sample instants. Here we are looking 
for useful approximations for one type of algorithm to be replaced by 
another. Let us review some of the alternatives. 

The problem is essentially one of converting a continuous-time 
control law characterized by a transfer function 

where usually n ~ m and an :f. o. The object is to find a digital 
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computer control law , characterized by its transfer function 

do z n + d 1 Z n-l + ... + d n 
Gd(Z) = zn + Cl zn-l + ... + Cn 

which in some way approximates GaCs). The methods break into three 
classes. 

1. Often a substitution of f(z) for s is made and a heuristic argument 
is used for the conversion. 

2. Coefficients are found such that for a given input ret), the two 
systems have approximately the same outputs at the sample 
instants. Hence, if 

u(t) = g-1 [GaCs)R(s)] 

with R(s) = g[r(t)], and 

ud(kn = .z-1 [Gd(z)R(z)] 

with R(z) = .z {r(kn}, then it is desired that 

ud(kT) ::= u(kT) 

3. Coefficients di and Cj are found such that the frequency responses 
of the two systems are approximately the same, i.e. if the input 
signal is sinusoidal in both the continuous- and discrete-time 
cases, then the outputs should also be sinusoidal and should be 
similar in both magnitude and phase at the sample instants. This 
translates to a desire that 

We consider some of the possibilities below. 
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12.2.1 Substitutions and their heuristics 

The heuristic method is often quite appealing and will work with fast 
enough sampling on some systems. A typical argument observes that, 
when the sampling period is T, 

dx(t) I '" x(kT) - x(k T - T) 
dt ~nT T 

and also that 

kT kT-T 

f x(t)dt '" f x(t)dt + T x(kT-T) 
-<>0 -<>0 

or alternatively, if I(kD denotes the integral at time sample kT 

I(kT) = I(kT - T) + Tx(kT) 

Furthermore, because the Laplace transform operator s corresponds 
to differentiation (and S-1 to integration), whereas the z-transform 
operator corresponds to a forward shift, the above approximations 
lead to 

s= 
1 - z-1 

T 

as a reasonable substitution for conversion purposes. 

(12.2) 

Another heuristic argument notes that the original transfer function 
has poles at Pi, i=1,2, ... ,n and zeros at qj, j=1,2, ... ,m. One mapping 
from the stable area of the Laplace transform (the left-half plane) to 
the stable area of the z-transform (within the unit circle) is 

z = esT (12.3) 

Using this to map the poles Pi and zeros qj of the continuous time 
transfer function to corresponding poles and zeros of the sampled data 
transfer function, gives 
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where usually K is selected such that Gd(l) = GaCO). An alternate 
version of this has 

where N(z) = (z + 1)m} (z)m2 and m l+m2 = n - m ~ 0 are terms to 
represent poles at 00. This pole-zero mapping technique has had 
variable success. 

A third substitution can be derived in several ways, but results in 
the bilinear or Tustin transformation. Notice that (12.3) also gives 
the form 

sT = lnz 

Series expansion yields 

z-l 1 z-1 1 z-1 [ ( )3 ( )5 ] 
lnz = 2 z + 1 + "3 z + 1 +"5 z + 1 + ... (12.4) 

Hence truncation gives the approximation 

2 z - 1 2 1 - z-1 s------- T z + 1 - T 1 + z-1 
(12.5) 

which is used for the substitution. We remark that this substitution 
also maps the left-hand real plane of s into the unit circle in the z 
plane. Alternatively, it can be derived as a trapezoidal integration 
approximation to lis interpreted as an integration operator. 

12.2.2 Invariant transformations 

Invariant transformations are those in which a selected continuous 
time function, when sampled, gives the same samples as a discrete time 
system. For example, it might be desired that a discrete time system 
have the same step response as the step response of the continuous time 
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system to which it is an approximation. In general, we select Gd(Z) as 
'equivalent' to Ga(s) by forcing, for reference signal ret) with Laplace 
transform R(s) and z transform of its samples R(z), that 

Gd(z) R(z) = 2: [samples of2'-l(Ga(s)R(s»] 

== 2:eq [GaCs)R(s)] 

Where 2: eq is a notation for the transformation indicated (Appendix 
A). Notice that different inputs may lead to different system 
approximations. 

The invariant response criterion is necessary for the study of 
control systems design. Occasionally impulse invariance is desired for 
control law conversion, so that R (s) = I and R (z) = l. In this 
circumstance, we have Gd(z) selected so that 

Among the alternatives is step invariance, in which 

G ( ) _ ~ cy [GiS)] 
d z - Z -Leq S 

This same result is given if the square pulse input 

u(t) = { ~ O$.t<T 
otherwise 

(12.6) 

is used. This represents the ZOH model of computer output with 
buffer and DAC (see Chapter 9) and yields R(z) = 1 and R(s) = 
(l-e-Ts)/s so that 

[ ~] Giz) = 2:eq (1 - e-Ts ) s 

= ~.:z: [~] Z eq S 
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12.2.3 Frequency response 

Sometimes control law designs are made using frequency responses, so 
we can use this as a criterion for the conversion. Heuristic methods 
seldom come with guarantees about the response. In the impulse 
invariant case of (12.6) signal processing texts (such as Rabiner and 
Gold, 1975) show that 

so that for T sufficiently small and -1t < roT < 1t, 

(By T 'sufficiently' small, we need GaUro + jk(21t/T» ,., 0 for k:;:. 0.) 
The bilinear (or Tustin) transformation (12.5) yields 

Direct substitution shows that the frequency response is 

so that for small (OT 

as desired. No guarantees about the pulse response are given by this 
approach, but the frequency response is quite good for rapid 
sampling. 

Example 

To show the effects of the three techniques, a typical analog transfer 
function is converted: the lag or lead network form 
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s - + 1 a 
G(s)=-­s - + 1 b 

converts as 

b 1 + Ta - z-l 
G1(z) =­al+Tb-z-1 

using the heuristic substitution (12.2). Using the bilinear substitution 
(12.4) yields 

b (2+aT)-z-1(2-aT) 
G2(z) = ~ (2 + bT) - z-1(2 - bT) 

while making the transfer function step-response/square pulse 
invariant gives 

~ - z-l [e-bT - 1 + ~ ] 
G3(z) = ----='-------=-

1 - e-bTz-1 

The results of these substitutions are compared, for differing values 
of sample period T, in Fig. 12.3. Numerical values used were a = 50 
and b = 10, and sampling periods T were 0.1 s and 0.01 s. 

It is interesting to remark that all of the step responses appear 
reasonably close to that of the continuous time system, although only 
G3(Z) is exactly correct at the sample instants. On the other hand, a 
lag network is supposedly designed for its frequency response 
properties, and here the T = 0.01 case, particularly the bilinear 
transformation, appears close to the original gain while the T = 0.1 
case is noticeably distorted. 
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Figure 12.3 Examples of responses from various controller 
approximations. In all figures, G 1 is _. , G2 is - - ,G3 is,,·, and the 
original analog element is the solid line. (a) - (c) are respectively step, 
impulse, and frequency responses for sample period T = 0.1 s; (d) - (0 are 
the same for T = 0.01 s. 
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12.3 RELATION OF DISCRETE TO CONTINUOUS 
TRANSFER FUNCTIONS FOR SAMPLING OF 
CONTINUOUS TIME SYSTEMS 

The problem with the above methods is that, while satisfactory for 
conversions of existing laws, they are inexact in various ways as 
representations of the computer's view of the plant. The hardware in 
a simple feedback system (Fig. 12.4), in effect, has samplers placed as 
in Fig. 12.5. 

r(t) ~ 
Digital 

f-- Process/Plant computer y(t) 

Sensor 

Figure 12.4 Simple feedback controller with analog signal differencing. 

. T 
r(t) --o-~ 

4 l 

Digital I~i ! 
computer I~ ~-j Process/Plantl-----,----J- y(t) 

L_I Sensor I ~ 1 
Figure 12.5 Elaboration of Fig. 12.4 with sampler and output ZOH. 

The sampling of the error signal at the computer's input is obvious. 
The output sampler and ZOH are a model of the output buffer and 
DAC. The Laplace transform model of the buffer-DAC hardware is 

1 - e-Ts 
ZO H (s) = --'-----'s '--
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Using this model and taking transforms (recognizing that the 
computer's operation has no identifiable continuous time variable) 
yields a model such as given in Fig. 12.6. 

R(s) 
E(s) ~ 

D(z) 
kU(S) 

ZOH(,) I~T Yls) /<. 'f-1 , 
T T 

M(s) 
F(s) 

Figure 12.6 Transform model of Fig. 12.5. 

In fact, this mixture of Laplace and z-transforms does not lend itself 
to analysis, particularly when the delay term e-Ts in the ZOH is also 
considered. Thus it is necessary to work with one or the other of the 
transforms, and the one of choice is usually the z-transform. All 
Laplace transforms must be 'converted' to their sampled values. 
Then, because the z-transform is additive but not multiplicative, i.e. 

%eq {2'(x(t)) +2'(y(t))} =%eq {2{x(t))} +%eq {..21:y(t))} 

%eq {2'(x(t))} 2'{ (y(t))} ;c %eq {2{x(t))} * %eq {2'(y(t))} 

we must convert with care: segments between samplers must be 
converted in a block, not factor by factor. 

We consider the system in more detail. If we are interested in the 
time history of the output yet) for a given set of computer control 
'pulses', we can find that the input to the ZOH-plant is 

u(t) = L u(kT) oct - kT) 
k 

U(s) = L u(kT) e-kTs 
k 

The plant is a cascade of the zero-order hold 
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ZOH(s) = 1 - e-Ts 
s 

with the plant transfer function Gp(s). Hence 

... [ §&Q] Gpo(z) = %eq (1 - e-Ts ) s 

[§&Q] = (1 - z-I)%eq S 

From this we argue that 

[ G (s) ] 
fez) = (1- z-I)%eq 7 U(z) 

In the configuration of Fig. 12.6 the situation for feedback analysis 
is made more complicated. We observe that 

e(kT) = samples (r(t) - met»~ 

= r(kT) - m(kT) 

E(z) = R(z) - M(z) 

[ [ Gp(s) F(s) ] ] 
m(kT) = %-1 (1 - z-I)%eq S U(z) 

[ Gp(s)F(s) ] 
M(z) = (1 - z-I)%eq s U(z) 

U(z) = 1)(z)E(z) 

where usually 1)(z) is to be chosen, as it is the computer algorithm. 
Algebra then allows us to determine that 
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E(z) = R(z) 

[ Gp(S~F(S) ] 1 + D(z) (1 - z-l)..2"eq 

which gives the system transfer function 

[ G (s) ] M (1 - z-l)..2"eq 7 D(z) 

R(z) = [ Gp(s)F(s) ] 
1+D(z)(1-z-1)..2"eq s 

The alternative symbols 

G*(z) = (1 - z-l)..2"eq[ G;(S) ] 

[ Gp(Ss)F(S) ] 
GF*(z) = (1 - z-l)..2"eq 

allow this to be written as 

M D(z)G*(z) 
R(z) = 1 + D(z)GF*(z) 

and the special case of perfect sensor (F(s) = 1) becomes 

M D(z)G*(z) 
R(z) = 1 + D(z)G*(z) 

Example 

A motor with transfer function 

1 
Gp(S) = sets + 1) 
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with a perfect sensor of shaft angle has (using tables) 

G*(z) - 't ->(_a_-_l_+_e_-_<x.<.-) z_-_1_+_(",-1_-_e-_<X-40)_z-_2 
P - (1 - z-l) (1 - e-<X z-l) 

where a == T/'t. D(z) can be various choices, including the simplest of 
proportional control with D(z) = K with gain K to be detennined 
(using, for example, root locus methods as in Chapter 18). The 
closed-loop transfer function in this case is 

K't«a-l+e-a)z-l + (l-e-a- ae-a)z-2) 
(l-z-l)(l-e-az-l) + K't«a-l+e-a)z-l + (l-e-a-ae-a)z-2) 

and K is to be chosen to give 'good' performance (see Chapter 13). 

12.4 DISCRETE TIME SAMPLING OF CONTINUOUS 
SYSTEMS IN ST A TE-SP ACE 

Working in the time domain with continuous time state-space models 
is, in principle, straightforward. In this section we first show the 
fonn needed and then show how the computations can be perfonned. 

Consider the continuous time model 

x = Gx+Hu 

y = Jx (12.7) 

We recall from Chapter 10 the n x n transition matrix E>(t, 't), 
which is the solution of 

dE>(t, 't) = GO( ) 
dt OJ t, 't E>( 't, 't) = I 

Using the transition matrix, the solution to a differential equation of 
fonn (12.7) with initial condition x(to) = Xo is 
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t 

x(t) = 0(t, to) Xo + J e (t, 't) Hu( 't) d't 
to 

To discretize the above, we note that when the matrices are not 
time-varying then S is stationary. This means that 

Set, 't) = S(t-'t, 0) = S(t-h, 't-h) 

U sing this and the fact that time intervals of interest are of length T, 
if u(t) = constant = u(kT) for kT ~ t <kT + T, we have 

T 

x(kT + T) = SeT, 0) x(kT) + J S (T, 't) d't HU(kT) 

which, with the definitions 

A = S(T,O) 

T 

B = J S(T,'t)d'tH 
o 

C=J 

gives the standard form 

x(k+ 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) 

o 

Chapter 10 suggests several ways of calculating the transition 
matrix S, including numerical integration, using matrix 
transformations, using numerical series, and Laplace transforms. 

The matrix similarity transforms yield, for G = MAM-l, and 
having distinct eigenvalues Ai. i = I, 2, ... , n, that 
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The Laplace transfonns yield 

A = ,22-1 { (sl - G)-1 } 

B = 2'-1{ (sl -sG)-I} H 

A numerical method is 

_ GT (GT)2 (GT)k 
'I' - 1 + 2 + 6 + ... + (k + I)! 

A = 1 + GT", 

B = T",H 

where we emphasize the series for 'I' is finite, with typical value of k 
of about 10-12. 

An alternative and approximate method works through transform 
approximation. In particular, we have from (12.7) that 

t+T 
x(t + T) = f (Gx(t) + Hu(t))dt 

to 

t+T 

= x(t) + f (Gx(t) + Hu(t))dt 
t 

"" x(t) + (Gx(t) + Hu(t» T 

= (I + TG)x(t) + THu(t) 

or using a trapezoidal rather than an Euler integration approximation 
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T 
x(t + n :::: x(t) + "2 (G [x (t + T) + x(t)] + H [u(t + T) + U(t)]) 

T [T T ] ::::(I-"2G)-l (I + "2G)X(t) + "2H[u(t + T) + u(t)] 

This can of course lead to adequate, albeit not theoretically elegant, 
approximations. 

A newly suggested transformation is the o-operator (Goodwin et 
al., 1992) given by 

dt 
Ox(t) = {

cl!ffi. 

x(t + Ti -x(t) 

and having effects such as 

eAT = 1 + AT 

z - 1 
s=-T-

T=O 

T=tO 

This is claimed to be particularly appropriate for small sampling 
periods T. 

12.5 BETWEEN-SAMPLE BEHAVIOUR 

The behaviour of the system between samples depends upon the 
system. Inversion of %eq, for example, to give a Laplace transform 
and hence a continuous time function is invalid simply because the 
continuous function yielding a given set of samples is not unique; the 
method may yield one of the possible time functions. Analysis is 
possible, however, provided that the original system is well known 
and the input to it is defined for all time. 

The situation for state space is particularly straightforward. Here 
we use transition matrices as in 
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t 

x(t) = ~(t, kT) x(kT) f ~ (t, 't) d't Bu(kT) 
kT 

y(t) = Cx(t) + Du(kT) 

With transfonns, the situation is more complicated, as one must use 
the modified z-transfonn, which is beyond the scope of this book. Its 
concept is straightforward, as it involves a ZOH(s) in cascade with the 
plant Gp(s), but with the response to an impulse sampled at kT + oT, 
k = 0, 1, ... and ° ~ 0 < 1. Thus we have 

[ Gp(s) ] 
y(t) = 2'-1 (1 - e-Ts ) -s-

as usual, but 

Choosing 0 "* ° gives us the value of the output between sample 
instants kT, k = 0, 1, 2, .... For example, the modified z-transform 
equivalent of the motor example of section 12.3 can be shown to be 

T oa - 1 (z - l)e-oa 
Gp* (z, 0) = ( 1) + 't + 't ( _rv) zz- z zz-e .... 

One notes that G;;(z) is not given simply by i~Gp (z,o), and 
detailed examination of the definition of the modified transfonn shows 
why: the nature of the sensitivity of the first sample to its exact 
location in time. 

12.6 COMPUTER SUPPORT 

It is relatively straightforward to implement several of the methods of 
this chapter for computation on a personal computer. Commercial 
programs such as MA TLAB® and Ctrl-C® are programmable 
allowing fonnula-type conversions and transition matrix calculations, 
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and they can certainly compute and plot impulse, step, and frequency 
responses. Simulation programs also are instructive. 

12.7 SUMMARY AND FURTHER READING 

The issue of conversion of continuous time transfer functions to 
sampled data transfer functions is a standard one in the digital signal 
processing literature, such as the classic Rabiner and Gold (1975) and 
most other basic textbooks. Application of these methods to 
conversion of control laws is to an extent ad hoc, but usually 
successful. 

Plant representation for the purposes of digital control law design is 
usually addressed, more or less well, in textbooks on digital control 
systems. The situation with constant coefficient state-space 
representation is apparently settled, but the advice with respect to 
transfer functions varies. Textbooks discussing the topic include Kuo 
(1980) and Franklin, Powell and Workman (1990). 

The modified z-transform is not standard in elementary textbooks, 
but some do address it. Among those who do are Kuo (1980) and 
Ogata (1987), and the former has a table applying to a few such cases. 

A discussion of some of the issues and a different candidate 
substitution are presented by Goodwin et al. (1992). 
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System performance 
indicators 

Closed-loop systems are expected to give 'good' performance. In this 
chapter we introduce some of the properties used to measure 
performance. 

13.1 SYNOPSIS 

Design of any system requires a specification, implicitly or explicitly, 
of the desired performance. 

1. The fundamental requirement of a controlled system is that it be 
stable, and so that is the first item we review. Two important 
defmitions are BIBO stability and Lyapunov stability. 

2. There are number of classical servomechanism step response 
characteristics which are used as performance indicators and 
specifications. We define these characteristics, such as percent 
overshoot and rise time, and discuss their relationships in section 
13.3. Included are the notions of bandwidth and frequency 
response. 

3. Single performance indices such as minimum time to traverse a 
trajectory are very useful for some system specifications such as 
space vehicles and robot arm motion. These are ultimately 
different in nature from the classical servomechanism indicators; 
some are also readily amenable to mathematical optimal control 
techniques. These indices are the subject of section 13.4. 

4. Many design techniques require that the controlled system have 
special properties called structural properties. The most 
important of these are controllability and observability, which 
have matrix tests and are given in section 13.5 along with the 
notions of sensitivity and robustness. 
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13.2 STABILITY 

The property of stability is fundamental to good systems and so the 
pursuit of control laws which assure stable operation is the sine qua 
non of the control engineer's art: without stablity the rest of the 
problem is irrelevant. Being stable means the system does not 
oscillate or diverge from desired operating conditions under any 
reasonable conditions, but the exact encoding of this notion in tenns 
suitable for the analysis of systems has led to many mathematical 
definitions. In this section we concentrate on two notions: bounded­
input-bounded-output (BIBO) stability and Lyapunov stability. 
Methods for testing stability of constant coefficient systems are met in 
Chapters 14-16. 

13.2.1 Definitions 

Definition 1 A system with input sequence {u(t)} and output sequence 
{y(t)}, where either or both may be vectors, is said to be BIB 0 
stable if, for any bounded input, the output is bounded. Thus if all 
elements of the input sequence satisfy lIu(t)1I ~ U < 00, then in a BIBO 
system lIy(t)" ~ Y < 00, where the II . II denotes a scalar function (Le. a 
metric or norm, see section B.13) measuring the size of the argument 
and U and Yare scalars. 

We remark that an integrator is not BIBO stable, since 

t 

J xCt) d't ~ 00 as t~oo 
o 

even for the simple bounded input x(t) = 1. 
We notice that this definition refers to a stable system, and hence, 

for several reasons, is apt to be misleading. For example, an aircraft 
may have both easily maintained and stable flight configurations and 
unmaintainable configurations (such as a stall, for instance); it is 
difficult to call the system stable, but straightforward to call certain 
flight regimes stable or unstable. For such cases, an alternative point 
of view refers only to stable operating conditions, rather than stable 
systems. We start here by assuming that the inputs are known 
(perhaps they are test inputs of a certain type) so that 
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x(k) = fd(x(k-l); k) (13.1) 

or in continuous time 

i=fc(x,t) 

is an adequate state-space description of the system. Then we define 
an equilibrium operating condition or eqUilibrium point. 

Definition 2 An equilibrium state of a system (13.1) is a vector Xe 
such that Xe = fd(xe; k) for all k (or xe = 0 = fc(xe; t) in continuous 
time). 

Using this, the notion of stability is related to an equilibrium state 
or point. 

Definition 3 An equilibrium state Xe of (13.1) is said to be stable in 
the sense of Lyapunov (stable i.s.L.) or Lyapunov stable if, for any 
given 0> 0 there is an e > 0 (which may depend upon 0) such that for 
any disturbance d, II d II < e, for which the initial conditions x(P) = Xe + d 
apply, then the solution x(k), k ~p, has the property IIx(k)-xell :s; o. 
The relevant property in continuous time is that if IIx(to)-xeli < e, 
then a stable equilibrium has II x(t) - Xe II :s; 0 for all t ~ to. 

If, eventually, the error becomes almost zero we have the notion of 
asymptotic stability of the eqUilibrium state. 

Definition 4 An equilibrium state Xe is asymptotically stable in the 
sense of Lyapunov if it is stable i.s.L. and in addition, 

II x(k) - Xe II ~ 0 as k ~ 00 

or 

II x(t) - Xe II ~ 0 as t ~ 00 

Finally, because the i.s.L. stability is defined only in terms of 
infinitesimals, we need terminology to describe the situation' if the 
disturbances are allowed to be 'large'. 

Definition 5 An equilibrium state Xe is globally (asymptotically) 
stable i.s.L., or (asymptotically) 3table in the large, if it is 



www.manaraa.com

332 System performance indicators 

(asymptotically) stable i.s.L. and E and 8 are unbounded (except that 
E ~ 8). 

The notions of Lyapunov stability are shown in Fig. 13.1. 

----~-----------------r-X1 

Figure 13.1 The ideas of Lyapunov stability. Trajectory A stays within 
radius 8 of the equilibrium point and is stable Ls.L., while B diverges from 
the disc and is unstable. 

13.2.2 Relative stability 

Since a BIBO unstable system will eventually have unbounded output 
for bounded input, and many unstable systems will have a growing 
oscillation for a pulse input, and since we find experimentally that 
such unstable behaviour is often close in parameter values to stable 
behaviour, we sometimes look for measures of 'nearness to going 
unstable'. Typically, slow sluggish responses are associated with 
imperturbability, whereas rapid, perhaps oscillatory, responses are 
associated with being susceptible to instability in the face of equipment 
parameter variations. Figure 13.2 shows responses illustrating these 
features. 

The notions are related to having poles/eigenvalues close to the 
stability boundaries (i.e. to the imaginary axis for continuous time 
systems and to the unit circle for sampled data systems), but the usual 
measures of relative stability are gain and phase margins (defined in 
the next section) and are encountered when using frequency domain 
techniques (Chapters 15 and 20). Indicators of response 
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Figure 13.2 Illustrating rapid but oscillatory step response and sluggish 
response. Choice is often an engineering trade-off. 

characteristics are the pole locations for linear time invariant systems; 
these are discussed in Chapter 19. 

13.3 CLASSICAL RESPONSE PERFORMANCE 
INDICATORS 

From the classical point of view there are two problems to solve: 
achieving satisfactory response to commands and ignoring 
disturbances - and there are two approaches to handling them. 

Good response means that the error between desired and actual 
output in steady state is small (preferably zero) and that the transient 
response in attaining that small error is rapid and suitable in form. 
The transient response is usually characterized in terms of several 
parameters of the system's response to a unit step in its input, as in 
Fig. 13.3. 

The details of the parameter definitions vary, but a common set is 
as follows: the initial value is taken as 0, and the final value is taken as 
Yf which is assumed constant. 

1. tr , the rise time, is the time to rise from 10% of Yf to 90% of Yf 
(the 10-90% rise time). 

2. The percent overshoot (PO) is the percentage by which the peak 
value Mpk of the time response exceeds Yf, so that 
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Figure 13.3 Showing response characteristics to input step applied at time 
0: delay time td, 10-90% rise time t r, time constant 't, 0% settling time t50 
peak: time tpk, overshoot Mpk, and steady-state value Yf (implying steady­
state error 1 - Yf). 

PO = (Mpk - Yf) x 100% 
Yf 

3. Settling time ts is the time for the system output to settle to within 
a fraction ± 0 of the final value, so that yet), t > ts, lies between 
Yr-o and yt+o. Often 0 is taken as 5% or 2% of either Yf or of 
the input value, which is 1.0 in the case of the unit step. 

4 . Peak time tpk is the time after the input step is applied that the 
peak value Mpk is attained. 

5. Steady-state error ess is the error between the desired value 
(usually 1.0 for the unit step) and the actual value (Yf) of the 
output once the error becomes essentially constant (assuming it 
does). 

6. Delay time td is the time from application of an input to start of 
response by the system. To gain a consistent definition, 
sometimes td is taken as the time from application of input to 10% 
(say) of final value. 

7 . Time constant 't is the parameter associated with the response 
envelope (1 - e-tl-t ) Yf of the error; in the absence of oscillations, 
it is the time after .the start of the response to reach 63% of the 
final value. 
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Some indicators are defined in terms of the open- or closed-loop 
frequency responses, as in Figs 13.4 and 13.5. 
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Figure 13.4 Definition notion for 3dB bandwidth COB. 
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Figure 13.5 Demonstrating gain crossover frequency OOge, phase 
crossover frequency COpe, gain margin GM, and phase margin <l>m on 
frequency response plots. 
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8. Bandwidth (OB is the frequency (for a system such as most control 
systems, i.e. low-pass) at which the magnitude of the frequency 
response has fallen to ! (or - 3 dB down) of the steady value. It 
indicates the speed of the system's response to input: larger 
bandwidth is associated with faster response. 

9. Phase margin ~m and gain margin GM are defined for the open­
loop response of a system and indicate the relative stability (or 
closeness to instability) and the damping of the response of the 
system. More of either is roughly associated with a more 
sluggish response. Phase margin is the phase above -1t of the 
transfer function when the magnitude is 1 (= 0 dB). Gain margin 
is the additional gain needed to reach unit magnitude when the 
phase is -1t. The frequencies at which the margins are measured 
are the gain and phase crossover frequencies (Oge and (Ope, 

respectively. These are shown in Fig. 13.5. 

The control engineer's task is to design for 'good' dynamic and 
steady-state response in spite of parameter variations while 'ignoring' 
noise and load disturbances. The above parameters are indicators of 
suitable performance. Typical specifications are: 

GM = 6-10 dB 

PO < 15% 

~m= 35-50° 

ess <O.l% 

There are many ways of attempting the achievement of the above 
control system properties. Approaches range from ad hoc and 
heuristic to sophisticated and mathematically' optimum'. 

The above have been defined relative to desired outputs. The same 
numbers concerning dynamic response affect disturbed outputs, but in 
those cases the desired response is still zero error relative to desired 
input: it is preferred that the output not reflect disturbances, but, if it 
does so, the return to normal should be 'rapid'. 

13.4 MODERN PERFORMANCE INDICATORS 

The various response indicator parameters above are ultimately 
determined by engineering trade-offs by the engineer who tunes the 
control system, often using a control law of pre-specified type, such as 
a PID law. A quite different approach is to define a single function 
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which is optimized mathematically. The resulting 'optimal' control 
mayor may not be 'good', depending upon a number of factors, not 
least of which is the appropriateness of the indicator function. 

13.4.1 Weighted error approaches 

One older approach with much intuitive appeal considers the error 
between desired and actual response and attempts to minimize some 
chosen function of this error. The error e(t) between actual and 
desired responses is shown in Fig. 13.6(a); the aim is to keep the error 
as 'small' as possible. Positive and negative errors might cancel each 
other, so a possible function uses the absolute value (i.e. ignoring the 
sign), e.g. 

T 

IAE = integral absolute error = J le('t)ld't 
o 

which would appear to give small errors on average if the controller 
can be chosen to make this - or its summation equivalent in discrete 
time control - take its minimum value. 

(a) (b) 

2 2 

"5 
% w 
0 ~ 1 
(ij u.i 
~ !!2 

1 u.i :5 ~ 0-

S g 0 
~ w 

/ 
/ 

/ .-._-------:t..-.- IAE 
.-'1 

.1/ 
I..! •• ••••••••••••••••• •••• •••••••••••••• 

.} ISE 

"in 
Q) 

0 

0 
·1 

0 Time 10 0 
Time 

Figure 13.6 (a) Desired and actual step responses; (b) error in step 
response and the accumulation with time of ISE, IT AE, and IAE 
performance criteria. These can be used as minimization criteria in 
optimizing performance. 
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Unfortunately absolute values can be difficult to work with 
mathematically. Furthermore, one might wish for the cost function to 
penalize occasional large errors much more than common small ones. 
One solution to both of these problems is to use the function 

T 

ISE = integral squared error = J e2('t) d't 
o 

A further refinement is to penalize errors which occur late in time 
more than early transients. Explicit dependence of the functions on 
time can be implemented easily with the following forms: 

T 

IT AE = integral time absolute error = J I e( 't) I 't d't 
o 
T 

ITSE = integral time squared error = J e2( 't) 't d't 
o 

Figure 13.6(b) shows some of these measures for the step response 
of Fig. 13.6(a). 

There are many variations on the above which might have heuristic 
justification. An important one is to use the ISE form but let T 
become large; this is a regulator problem of an almost classic type, 
but for mathematical naturalness it needs division by T to remain 
bounded. This yields the form 

1 T 
MSE = mean square error = Tlim T J e2( 't) d't 

~oo 0 

which has been found useful, e.g. when disturbances have the 
characteristics of random noise. 

13.4.2 Modern control theory and optimal control 

Optimal control theory approaches the problem of determining the 
best control in a quite different manner from the above. Usually it is 
presented in a state-space framework, and a fairly general formulation 
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of the problem in differential equation form follows. 
Suppose a system with vector control commands U and state x is 

described by 

x=f(x,u,t) x(O) = Xo given (13.2) 

Then find a control law u(x, t) if possible, or a control history u(t) , 
such that the scalar functional 

J(u) = f g(x('t),u,'t)d't 

takes on a minimum value and the relationship (13.2) holds. Typically 
a boundary relationship x(D = Xf must also be met as a constraint on 
the control. 

The most common forms of J(u) are the minimum time control, in 
which 

T 

J(u) = f d't = T 
o 

is to be minimized, usually subject to the additional control constraint 
such as a bound on a metric lIu(t)1I ::; U, and the quadratic problem in 
which the form 

J(u) = xT(D S x(T) + 

T 

f (xT( 't) Q('t) x('t) + uT( 't) R('t) u( 't)} d't 
o 

(13.3) 

is to be minimized, where the matrices Q and S are positive 
semidefinite and R is positive defmite (section B.5). 

A common minimum time control problem is that of finding a 
control law for the attitude control thrusters of a space satellite such 
that the satellite is rotated from an initial state xo to a final orientation 
Xf in minimum time while satisfying the laws of dynamics, where the 
latter are modelled by a function (13.2). The quadratic functional 
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may be viewed as a mathematical generalization of the ISE function of 
the previous section. 

Although the minimum time criterion may seem obvious, the 
quadratic form (13.3) is less so and is worthy of comment. We first 
note that using matrices simply extends the ideas of scalars. Then we 
consider a scalar form of (13.3). This is 

T 

J(u) = J (qx2(t) + ru2(t»dt 
o 

q ~ 0, r> 0 

If x(t) is an error, then clearly this expression is penalizing error and 
control input, with relative weightings r and q. Using these 
parameters, we are able to trade-off control input for small error and 
vice versa. In many instances, u2 is proportional to power (as in 
voltage2 or current2) and its integral then is proportional to energy. 
The version 

T 

J(u)= J u2(t)dt 
o 

is then a minimum control energy problem. 
The optimal control formulation is in principle general, and many 

other problem statements may be set up. One, for example, is the 
minimum fuel problem, in which 

T 

J(u) = J I u(t) Idt 
o 

It is so named because the control is often proportional to the fuel 
used, for example, in an aerospace situation. 

Comments 

Modern control theory is a mathematician's approach to control 
problems. The engineer must still develop an appropriate criterion, 
and it is noteworthy that the mathematical criteria do not include 
monetary cost. Furthermore, the fit of the solvable problems to the 
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actual situations can be difficult. One should recall that the optimal 
control theory has its greatest successes in aerospace problems, where 
minimum time (for an airplane to climb to altitude) and minimum fuel 
(for a satellite to change orbit) are relevant and important. 

On the other hand, fitting Q and R matrices to real problems is 
often an elusive goal when one desires only that rise time and 
overshoot be nicely traded off. 

13.5 OTHER INDICATORS OF STRUCTURE AND 
PERFORMANCE 

Other properties of the system, also important to designers, which we 
will address are the 'structural' properties of state-space descriptions, 
i.e. those properties associated with the nature of the interactions 
rather than the exact numbers. 

13.5.1 Controllability and observability 

Two properties of the linear state-space system descriptions, often 
needed in proofs about existence of certain types of controllers, etc., 
are controllability and observability. Loosely stated, these are 
respectively indicators of whether the model can be driven to a 
precisely specified state in finite time and whether complete 
knowledge of the state can be extracted from a finite set of 
measurements, but it should be recognized that they are ultimately 
technical terms. Their primary use is in tests to show whether some 
design techniques we will meet later, especially pole placement in 
Chapter 23 and state estimation in Chapter 25, can be expected to be 
applicable. 

The definitions of the terms - we remark that they are considered 
together because they are duals of each other in the linear algebraic 
sense - help clarify their roles and also why they are technical terms. 

Definition A system is said to be controllable if any initial state 
x(to) at any initial time to can be moved to any other desired state Xf, 

X(tf) = Xc, in a finite time interval 't = tc - to by applying an admissible 
control function u(t), to ~ t ~ tc . 

Definition A system is said to be observable if any initial state x(to) 
can be determined after a finite time interval t - to from a 
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measurement history Y(t) = {y('t),to :5 't < t} and the control variable 
history U(t) = {u('t),to :5 't < t}. Furthermore, given the usual 
uniqueness of solution arguments, x(t), t ~ to, can also be determined. 

It is quite possible to have states which are controllable but not 
observable, observable but not controllable, both controllable and 
observable, or neither controllable nor observable. This 
decomposition can in fact be made explicit, as we will see in a 
Chapters 23 and 25. 

Now let us emphasize what the terminology allows. A pen recorder 
may well be such that any pen position and speed can be attained, but 
the acceleration is not also specifiable; such a system, while not 
controllable in the definition sense, may be quite adequate and be easy 
to design control laws for. Similarly, the fact that a radar target's roll 
rate cannot be extracted from the radar tracking data - making the 
system not observable - does not necessarily make for a poor radar. 
Systems which are observable/controllable may be easier to design for 
because more design theorems apply, but systems which are not 
observable/controllable are not necessarily inadequate. 

The above have been only the main definitions. Variations are 
sometimes met in more advanced theory. Among these are output 
controllability, controllability and observability of particular states, 
and the concept of state reachability. For linear time invariant 
systems the distinctions are usually not important. Tests for 
controllability are given in Chapter 22, while those for observability 
are in Chapter 24. 

13.5.2 Sensitivity 

Sensitivity of a quantity is defined as the fractional change in that 
quantity per fraction change in an independent quantity. Ideally, we 
seek highly sensitive reaction to input and low sensitivity to 
disturbances and parameter errors. 

The usual definition of the sensitivity of T with respect to changes 
in G concerns the ratio of the fractional change in each and is of the 
form 

~ = lim (Il.T)/T 
T - £\0.-+0 (Il.G)/G 

which can also be written when the limits exist as 
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,.G _ d(lnT/lnG) 
;)r - dG 

GdT 
=T dG 

Elaboration is given, for example, by DiStefano et al. (1976). 
The above notions have recently become prominent again because 

of the development of robust control theory. One of the standard 
control system configurations is shown in Fig. 13.7. 

O(q) 

R(q Y(q) 

N(q) 

Figure 13.7 System block diagram model showing disturbances affecting 
the plant, noise affecting the feedback signal, with a possible controller 
configuration. 

Straightforward algebra of the transforms shows that 

Y(q) = [I + G(q) K(q)]-l D(q) - [I + G(q) K(q)]-l G(q) K(q) N(q) 

+ [I + G(q) K(q)]-l G(q) K(q) P(q) R(q) (13.4) 

Then 

Seq) = [I + G(q)K(q)]-l 

is called the sensitivity function and 

T(q) = [I + G(q) K(q)]-l G(q) K(q) 
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is called the closed-loop transfer function. Also, 

F(q) = I + G(q) K(q) 

is called the return difference and P(q) is the prefilter. Using 
these, (13.4) becomes 

Y(q) = S(q)D(q) - T(q)N(q) + T(q) P(q) R(q) (13.5) 

We may note that from the definitions 

Seq) + T(q) = I 

But it is clear from (13.5) that we want both Seq) and T(q) to be 
'small' (which for matrices means that their respective metrics - see 
Appendix B.13 - are near zero) so that the disturbances and noise 
have little effect on the output. (If T(q) is small but we choose P(q) = 
T-l (q), then Y(q) = R(q), which is desired.) Usually we are then 
involved in a trade-off; one common such trade-off assumes that 
disturbances are low frequency events and noise is at high frequency, 
so that Seq) and T(q) can be small at the appropriate frequencies. 

These are consistent with the classical definitions, of course. For 
scalar systems, for example, it is easy to show that the input transfer 
function with P(q) = 1 is 

G(q)K(q) 
T(q) = 1 + G(q)K(q) 

while the disturbance transfer function is 

1 
Seq) = 1 + G(q)K(q) 

Then going through the formalism of the definitions, we find that 
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fr = 1 +K(~) G(q) 

- G(q)K(q) 
11 = 1 + G(q)K(q) 

Thus we might choose K large to make Seq) small and T(q) :::: l. 
However, each 1 % error in G may then make for a small change in 
T(q) (which is what feedback control is partly about), but also a-I % 
change in Seq) (which is already small). 

In SISO systems, the frequency response ideas are straightforward. 
In MIMO or multivariable systems, the notions need more refinement. 
This is particularly so in defining the meaning of 'small' and 'large' 
when often not all elements of the matrices Sand T behave the same 
way, and it leads to seemingly esoteric mathematics simply to express 
the ideas. These issues are partly addressed in section B.13 and 
Chapters 15 and 33. 

13.5.3 Robustness 

Related to sensitivity is the idea of robustness. 'Robust' is generally 
taken to mean 'the system still works satisfactorily if a large modelling 
error has been made in doing the design or if a large disturbance 
occurs ' . The mathematical treatment of this concept, as opposed to the 
heuristic treatment, requires explicit statements of the nature of the 
errors and the performance requirements, and the approach treats the 
robust control problem as the problem of analysing and designing 
accurate control systems for plants which may contain significant 
uncertainties. These uncertainties must be defined as to type and size, 
and the notion of good performance must be specified. The 
uncertainties are described as follows. 

For the state-space model such as 

x(k+ 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) 

uncertainties are modelled relative to a nominal value Ao as in 
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A = Ao+ 8A 

or 

A = Ao(I +~) 

which are additive and multiplicative uncertainties, respectively. If 
they are constrained using matrix norms (section B.13) in a form such 
as II 8A II ~ I a or II ~ II ~ 1m , the uncertainties are said to be 
unstructured. If the individual elements of 8A or ~ are constrained, 
as in 

where Ai is known and -1 ~ Ui ~ 1, or 

where w is a vector noise process, then the uncertainties are 
respectively called structured and stochastic. 

For the transfer matrix model G(q), uncertainty may be modelled 
relative to a nominal model Go(q) as in 

G(q) = (I + !l(q) ) Go(q) 

where 1I!l(ro) II < Im(ro), or 

G(q) = Go(q)(I + ~(q) ) 

where 1I~(ro)1I < lm(ro), or 

G(q) = Go(q) + 8G(q) 

where 118G(ro)II < la(ro). 

The first two models are input and output multiplicative errors, 
respectively, and the third is an additive error. As shown, the 
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uncertainties are unstructured; if only certain elements of 11 and 8G 
are variable, then the uncertainties have structure. 

The sources of uncertainty are potentially many and varied: 
unmodelled dynamics (perhaps high frequency dynamics), neglected 
non-linearities, and parameter variations due to factors such as 
temperature and age. 

A robustly stable system is then one which is stable for all 
uncertainties of the allowed type. A system shows robust performance 
if it meets specified levels of performance for all allowed 
uncertainties. 

13.5.4 System type 

In characterizing a feedback system, some linear systems will be stable 
plus have the ability to track a polynomial of up to order n-l with 
zero steady-state, i.e. post-transient, error and a polynomial of order 
n with a finite non-zero error - briefly the system is of type n. Thus 
a type 1 system, the most important for many applications, will have 
zero steady-state response to a step input (order 0 polynomial) and 
finite error in response to a ramp (constant velocity, or order 1 
polynomial) input. We will meet system type in more detail in 
Chapter 17. 

13.5.5 Reachability 

The idea of reachability is essentially that of controllability as 
presented here. It came about in part because of more restricted 
definitions of controllability, in particular a definition which called a 
system controllable if the state Xf = 0 could be obtained in finite time 
using some control; in this case, the term reachable was used for a 
state other than the origin which could be obtained in finite time and 
for a system in which all states are reachable. 

13.6 SUMMARY AND FURTHER READING 

This chapter has been concerned primarily with defining the terms 
associated with desirable properties of systems: stability, performance 
indicators and indices, structural properties. In classical analysis and 
design, the essence of a system's response characteristics is due to its 
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pole (or eigenvalue) locations, provided that fixed gains are used. 
Hence the history of classical control system design is one of obtaining 
'good' response by using feedback and choosing gains so that the poles 
are appropriately placed. 

The typical requirements on the system are that it be stable, that the 
step response exhibit acceptable overshoot and damping, and that the 
steady-state errors be ' small'. These problems have been classically 
attacked in three different manners: 

1. by suggesting a form for the control law, e.g. proportional, and 
then placing its parameters using trial and error tuning methods; 

2. by suggesting a form for the control law and then choosing its 
parameters after examining the locus of the pole locations as the 
parameters vary; 

3. by examining the system's frequency response and then using 
compensators and choosing parameters to obtain a desired type of 
frequency response. 

We meet all of these in Chapters 14-20. 
In modem control systems design, the work is primarily with state­

space models. Pole locations are obtained with a fairly general 
structure (i.e. with state feedback combined with, if necessary, a state 
observer, giving in effect a high order and specialized compensator) 
and many elegant results are available. An alternative is optimal 
control, in which the control law is a mathematical result rather than a 
designer input. Modem control approaches dominate Chapters 22-33. 
Design involves 

• specification of performance index, 
• solution for the form of the required control law, and 
• manipulation of the parameters of the index to obtain 'good' 

response characteristics. 

Most of the topics covered here are in standard theory textbooks, 
such as Kuo (1980), Franklin et al. (1990), Dorf (1989), Phillips and 
Harbor (1991), Ogata (1987), etc. One text concerned with modem 
sensitivity approaches and matrix norms is Maciejowski (1989). 

This book also discusses most of the topics. Thus BIBO stability is 
covered in Chapters 14-15, and Lyapunov stability in Chapter 16. 
Applications of classical performance criteria will be seen in Chapters 
17 and 20, while optimal control is the subject of Chapters 26-27. 
Controllability is discussed in Chapter 22 and observability in 
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Chapter 24. Much of this material has also been presented in a similar 
manner in Astrom and Wittenmark (1990). The robustness ideas and 
some of the classical multivariable ideas are covered in Chapters 15 
and 33, and those include references in addition to the above 
Maciejowski (1989). 
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BIBO stability and simple 
tests 

BIBO stability of constant coefficient linear systems, whether 
described by differential or difference equations, is determined by the 
pole locations of the closed-loop systems. These poles are, by 
definition, the roots of the denominator polynomial in transfer 
function representations and of the characteristic equation of the A 
matrix in state-space representations. The poles must lie in the left­
half plane for continuous time systems and within the unit circle for 
discrete time systems. The straightforward way of checking this is to 
compute the poles. An alternative that is easy and can lead to other 
insights is to process the coefficients of the denominator polynomial of 
the transfer function, which is the same as the determinant of the state­
space dynamics matrix. This chapter demonstrates those tests and 
shows how they may be used in three different ways. 

1. To check whether a system is stable, the test is applied to the 
characteristic polynomial describing the system in question. 

2. To find the range of a parameter - often a gain K - such that the 
system is stable, the system denominator polynomial is used with 
K as an unknown. The array then leads to a set of inequalities 
which will define the stability-ensuring values of K. 

3. To check speed of response, we check whether the poles are well 
away from the stability line (Re(s) = 0 for continuous time and 
I z I = I for discrete time). 

Applications 2 and 3 can be combined to give parameter values 
yielding fast response. 

14.1 SYNOPSIS 

For BIBO stability of a linear system, the integral of its impulse 
response (or the sum of its response pulses in the sampled data case) 
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must be finite. When the system is described by constant coefficients, 
this requirement leads to the fact that the transfer function poles must 
lie in the left-half of the s plane or within the unit circle in the z plane, 
as appropriate. For testing, one may either: 

• compute the poles; or 
• infer the pole locations by examining the characteristic 

polynomial, in which case the determination of whether the roots 
of a polynomial of degree n, such as 

lie in the left-half plane or inside the unit circle can be performed 
by processing an array derived from the coefficients. The first 
criteria are checked by Routh testing and the second are evaluated 
using Jury testing. 

Although the tests give only a yes-no type answer concerning 
stability, when unknown parameters are part of the arrays, the values 
of those parameters which yield stability can be determined. 
Furthermore, changes of variable allow the tests to be used to test 
against selected half planes other than the left-half plane and selected 
circles of radius other than unity. 

14.2 BIBO STABILITY TESTS FOR LINEAR SYSTEMS 

For a linear constant coefficient differential equation, the modelling 
sections have shown that, in the absence of initial conditions, the 
output Laplace transform is 

yes) = H(s) U(s) (14.1) 

and the inverse transform for causal systems is 

t t 

yet) = J h(t-'t) u('t) d't = J h('t) u(t-'t)d't (14.2) 
o 0 
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If the input u(t) is bounded, so that I u(t) I :::; U < 00, then 

t t 

ly(t)I:::; fh('t)d't U:::; f Ih('t)ld'tU 
o 0 

and hence the output yet) is bounded if the impulse response h(t) is 
bounded and converges to O. If h(t) is unbounded, then clearly an 
input u(t) can be found such that yet) is unbounded. 

Theorem The linear system described by (14.1)-(14.2) is BIBO 
stable iff the input response h(t) is integrally bounded: 

00 

f I h( 't) I d't < 00 

o 

Now, H(s) is the transform of the impulse response; expanding H(s) 
in partial fractions gives 

k mi a .. 
H(s) = ~ ~ (s - '~ .)i 

1=1 J=1 I 

where the Ai are the (complex) poles of H(s), aij are (complex) 
coefficients, and mi is the multiplicity of pole Ai. Inverting this gives 

k mi 

h(t) = L L aijtj-1exp(Ait)) 
i=1 j=1 

We then can compute 

00 00 I k mi f Ih('t)ldt= f L L aijrJ-1 exp(Ait ) dt 
o 0 i=1 j=1 

k mi 00 

:::; L L f I aij tj- 1 exp(Ait) I dt 
i=1 j=1 0 
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This will be bounded and its tenus will approach 0 asymptotically if 
the real part of Ai < 0 for all i = 1,2, ... , k. 

Theorem A system modelled by an ordinary differential equation 
with constant coefficients is BIBO stable iff, for all poles Ai of the 
transfer function, Re(AD < 0, i.e. if all system poles lie in the left-half 
of the s plane. 

Similar arguments for difference equations give 

k mi 

h(nD = L L aij (nDj-l (Ai)n 
i=l j=l 

and the definition below. 

Theorem A system modelled by a difference equation with constant 
coefficients is BIBO stable if, for all poles Ai of the transfer 
function, I Ai I < I, i.e. iff all system poles lie within the unit circle in 
the z plane. 

Alternative demonstrations can be done using state-space models. 
For difference equations with constant coefficients, we have the model 

x(k+ 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) + DuCk) 

with solution 

y(k) = Cx(k) + Du(k) 

k-l 
= CAkx(O) + L CAk-i-lBu(i) + Du(k) 

i=O 

If a similarity transform to Jordan form is done, so that A=TJT-l, 
and if we assume (for convenience) that the eigenvalues of A are 
distinct, so that J = diag(AI, A2, ... , An), then this becomes 
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y(k) = CT diag (A1, A.~, ... , A~) T-l x(O) + Du(k) 

k-l (k-i-l k-i-l k-i-l) + :LCTdiag Al ,A2 , ... ,An T-IBu(i) 
i=O 

Clearly, to have I y(k) I bounded as k becomes large, if I u(j) I is 
bounded for all j, then it is necessary and sufficient that I Ad < 1 for 
all i = 1,2, ... , n. Since the eigenvalues of the A matrix are the system 
poles, this is an alternative proof of the statement above. 

The parallel of the above for the continuous time state-space model 
uses the transition matrix eAt, the similarity transformation 

A = diag(AI ,A2 , ... , An) = T-l AT 

and the fact that eAt = TeAtT-l with eAt = diag(eAlt,eA2t, ... ,eAnt) to 
argue that BIBO stability is equivalent to Re(Ai) < 0 for all 
i=1,2, ... ,n. 

It is clear that a candidate system may be investigated by simply 
computing the pole locations. Many computer programs have little 
difficulty (except for numerical problems) in doing this. An 
alternative which allows some design work is to work on the 
characteristic polynomial without factoring it, as in in the next 
sections. 

14.3 LEFT-HALF PLANE TESTS FOR CONTINUOUS 
TIME SYSTEMS 

For continuous time systems described by linear constant coefficient 
ordinary differential equations, we are dealing with transfer functions 
H(s) which are rational in s, i.e. are the ratio of polynomials in s 

hosm + hI sm-l + h2Sm- 2 + ... + h m H(s) - --=-----.-=-------,..::..--------'~ 
- sn + alSn- 1 + a2sn- 2 + ... + an-IS + an 

and where by assumption one usually has m ~ n. If the system has a 
state-space description 
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x = Ax + Bu 

y = ex 

we are interested in the polynomial 

det (sI - A) = sn + al sn-l + a2sn-2 + ... + an-l s + an 

Whether all of the roots of this polynomial lie in the open left-half 
plane can be determined by examining the coefficients. This can be 
done with a Routh test. 

For the usual test, consider the polynomial 

D(s) = aosn + al sn-l + ... + an-l Sl + an 

Then form the (2+[n/2]) column, n+ 1 row array 

sn ao a2 a4 a6 0 
sn-l 

al a3 as a7 0 

S 
n-2 

Co CI C2 C3 0 
sn-3 do dl d2 d3 0 

s eo el 0 
sO fo ° 

where each row after the second is formed from the two above it 
using a simple determinant pattern, e.g. 

l
ao a2i+2 1 
al a2i+3 

Ci = 
al 

i=O,I,2, ... , 
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and continuing 

_I al aZi+3 1 

Co Ci+l di =-~------=--'--=--­
al 

i=O, 1,2, ... , 

etc. Using this array, and in particular its first column, we may 
consider the location of the system poles, Le. of the zeros of the 
polynomial used to generate the array. 

1. If 
(a) all of the coefficients ai, i = 0, 1,2, .. . ,n, are positive, and 
(b) there are no sign changes in the first column of the above 

array 
then the polynomial D(P) has no right-half plane zeros. 

2. If l(a) holds but there are sign changes, then 
(a) if the elements of the first column are all non-zero, then the 

number of zeros in the right-half plane is equal to the 
number of sign changes in the first column, but 

(b) if a first column element is zero and the remainder of that 
row is also zero, an auxiliary row is generated and the test 
continued - the use of an auxiliary computation implies that 
either there is a pair of poles lying on the boundary (Le. the 
imaginary axis) or two poles placed symmetrically about the 
origin on the real axis; the former case will have no sign 
changes associated with it, while the latter will have one such 
change - while 

(c) if a first column element is zero and the remainder of the 
row is not all zeros, the zero is replaced by a small positive 
element E and the test is continued, with E ~ 0 and signs 
examined as in step 1. 

The auxiliary row is formed from the row immediately above it. 
This is done as the derivative of the auxiliary equation formed from 
the coefficients of the row above, so that if the row with index k is all 
zeros, we form the auxiliary row starting with sk as follows. 

Sk+l fin hI IV]. ~ 

i (k + l)ho (k -1)hl (k - 3)1V]. (k - 5)~ 
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In this case the auxiliary equation is 

hOSk+I + hI Sk-I + h2sk-3 + ... = 0 

Example 

1. Consider the polynomial 

D(s) = 1.425s3 + 4.825s2 + 1.675s + 0.075 

The coefficients are all seen to be positive, so the roots might all 
be in the left-half plane. We form the Routh array. 

S3 1.425 1.675 

s2 4.825 0.075 

s 5.5965 0 

1 0.0870 

Since all first column elements are positive, they have the same 
sign. Hence all roots of D(s) lie in the left-half plane. If D(s) is 
the denominator of a closed-loop transfer function of a 
continuous time system, then that system is stable - all of its poles 
have negative real parts. 

2. Now consider D(s) = s3 + s2 + s + 1. The array starts as 

S3 1 1 

s2 1 1 

s 0 0 

1 ? 

The sl row is replaced by the auxiliary, i.e. the derivative of 
s2 + 1, to form 
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There are three roots of the polynomial, as it is third order. It 
has no right-half plane roots because the first-column signs do 
not change, and it has two roots which satisfy the (second-order) 
auxiliary equation, which in this example means two imaginary 
roots. 

14.4 DISCRETE TIME SYSTEMS 

When the system is described by linear constant coefficient difference 
equations, the region for testing becomes the unit circle, but the 
approach is essentially similar to that above. These systems have 
difference equation models 

n m 
y(k) = - L ajy(k-i) + L bju(k-i) 

i=l i=O 

or transfer function models 

M bo + bIZ- I + b2Z-2 + ... + bmz-m 

U(z) = 1 + aIrI + a2z-2 + ... + anZ-n 

or state-space models 

x(k+ 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) + Du(k) 

where the latter has characteristic polynomial 

det(zI-A) = zn + aIzn- I + a2zn-2 + ... + an 
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For this there are several tests, plus a transformation which allows 
use of the Routh test. 

14.4.1 The Jury-Schur-Cohn test: Raible form 

Suppose a system has characteristic equation 

D(z) = ° = aozn + al zn-l + a2zn-2 + ... + an-l z + an (14.3) 

where we assume that ao > 0. Then form the array 

a 
an an_l an_2 al ao a=.-!!.. n 

ao 
n-l ao n-l al n-l a2 n-l 

an-l 

n-l 
n-l n-l n-l n-l a - an-l an-l an-2 an-3 ao n-l - n-l 

ao 

where for k=n,n-l, ... , 1 and i=O, l, ... ,k-l 

naj = aj i=O,l, ... ,n 

It can be observed that the first two rows are the coefficients in 
forward and reverse order, the third is obtained by subtracting the 
second multiplied by an from the first, the fourth is the third in 
reverse order, the fifth is the result of subtracting the fourth 
multiplied by an-l from the third, the fifth is the fourth in reverse 
order, etc. 
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By Jury's theorem (Astrom and Witten mark, 1990), if ao> 0, then 
the characteristic equation has all of its roots inside the unit circle if 
kao > 0, k=O, 1, ... ,n-l. Furthermore, if a kao :t 0 for all k in that 
range, the number of roots outside the unit circle equals the number 
of negati ve kao. 

Example 

We consider the stability of the system described in part by 

0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 

x(k+ 1) = 0 0 0 0 1 x(k) + Bu(k) 

-9 3 -7 -1 
1 256 16 64 2 

Its characteristic equation is the polynomial 

D() 5 4 I 3 l 2 l ~ z = z - z + 2" z + 64 z - 16 Z + 256 

and it is this which is analysed. The resulting array is 

1 -1 0.5 0.1094 -0.1875 
0.0352 -0.1875 0.1094 0.5 -1 

0.9988 -0.9934 0.4962 0.0918 -0.1523 
- 0.1523 0.0918 0.4962 -0.9934 0.9988 

1.0220 -1.0074 0.4205 -0.0597 
- 0.0597 0.4205 -1.0074 1.0220 

1.0185 -0.9828 0.3616 
0.3616 -0.9828 1.0185 

0.8980 -0.6363 
-0.6363 0.8980 

0.4471 

0.0352 
1 

<X5 = 0.0352 

<X4 = -0.1525 

<X3 = -0.0584 

<X2 = 0.3526 

<Xl = -0.7086 
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As all of the iao , that is, all of the leading elements of the odd 
numbered rows, are positive, the roots of the system are all within the 
unit circle. (In fact, separate computation shows that the roots are at 

- 1 1 3 (- . -10 5) Z = +-, -, -, exp +Jcos . 
244 

which are indeed within the unit circle.) 

14.4.2 Jury test: Jury form 

The above is the Raible tabulation for the Jury test. An alternative 
form of the same test on (14.3) uses the array below, in which the 
coefficients come in row pairs, with the second row of each pair 
derived from the pair above it by forming a determinant of the first 
column and the column next to the right of the coefficient in question; 
the odd row above this new row is the new row in the reverse 
direction. 

an an-l an-2 al Go 
Go al a2 an-l an 

bn- I bn-2 bn- 3 b I bo 
bo bI b2 bn-2 bn-l 

Cn-2 Cn-3 Cn-4 Cl Co 
Co Cl C2 Cn-3 Cn-2 

P3 P2 PI PO 
Po PI P2 P3 

where 
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bk __ I aaon an-I-k \ 
ak+1 

== anak+1 - aOan-{k+l) k==O,I,2, ... ,n-l 

qk = P3Pk+1 - POP3-{k+l) k==O,I,2 

Then the criterion is that the system is stable if all of the following 
hold: 

2. D(1»O 

3. D(-l)*(-l)n > 0 

4. Ibn-II>lbol 

14.4.3 Refinements 

If we wish to determine whether roots lie exactly on the unit circle 
(and hence lead to constant amplitude oscillations), we may refine the 
test. We notice first that the Raible form is indeterminate as to 
number when a test coefficient kao == O. Furthermore, the array 
cannot be continued (because the corresponding a will be undefined). 
To get around this, we can test whether roots are inside the circle of 
radius (1 +£) for small positive and negative £; see also section 14.5 
below. In principle, we replace z by (1 +£)z' and check how many 
roots are outside the circle defined by II z' II = 1, i.e. outside II z II = 
(1 +£). In operation, we replace the coefficients aj with (1 +£)n-iaj 
and approximate this (because £ is 'small') by (1 + (n-i)£)aj. The test 
array is then built with £ carried as a symbol. Since we would seldom 
be so unlucky as to have the test array now be indeterminate, we could 
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look at the number of coefficients which are negative for E < 0 and 
for E > 0: the number which are negative in both instances are the 
number outside the original unit circle, and the difference between the 
number in the two instances is the number on the original unit circle. 
Examples are given by Kuo (1980), among others. 

14.4.4 Routh test of w-transformed equation 

The above are two variations of a direct test for poles inside the unit 
circle. A third possibility is to transform the discrete time transfer 
function into a form to which the Routh test is applicable. The 
particular change used is the bilinear form, which sets z to 

l+w 
z=-­

l-w 
(14.4) 

because it maps the left-half of the w-plane (i.e. Re(w) < 0) into the 
unit circle (II z II < 1) and the right-half plane into II z II > 1, with the 
imaginary axis into II z II = 1. The inverse transformation is also 
bilinear, using the substitution 

z-l 
w=-­

z+l 
(14.5) 

This is frequently called the w-transform, although it is rarely used 
as a true transform; sometimes the factor 21T appears multiplying the 
right-hand side in (14.5), with a corresponding change in (14.4) and 
then the expression is similar to that used for the Tustin 
transformation in Chapter 12. When applied to an expression such as 

D(z) = aozn + al zn-l + ... + an 

(14.4) yields 

Dw(w) = {ao(1+w)n +al(1-w)(1+w)n-1 + ... 

+ an-l (1_w)n-1 (1 +w) + an (1-w)n}/(1-w)n (14.6) 



www.manaraa.com

Relative stability 365 

We are interested in the number of unstable zeros of D(z), which is 
the number of unstable zeros of D w( w), where the former is the 
number of zeros outside the unit circle and the latter is the number of 
zeros in the right-half plane. Rearranging the numerator of (14.6) 
yields the polynomial of interest, i.e. 

D"(w) = bown + bI wn- I + ... + bn-I w + bn 

It is this polynomial which is tested using the Routh test of section 
14.3. 

14.5 RELATIVE STABILITY 

The tests in this section are, at their core, yes/no tests: a system of 
equations does or does not have its poles inside the unit circle or in the 
left-half plane, as appropriate. It is quite possible, however, to 
modify the procedures slightly so as to test: 

• whether the poles are inside a circle other than the unit circle in 
the case of Jury tests; or 

• whether the poles are to the left of a line other than s = 0 in the 
case of Routh tests. 

In the first case, the Jury test can be performed on the polynomial 
D(zr) = D(z/r). If D'(zr) = D(rzr) has all roots inside Zr = 1, then D(z) 
has all roots inside z = r. Hence the method is to replace z by rZr in 
D(z) and test whether Zr is inside the unit circle. 

In the second case, we see that the Routh test can be performed on 
the polynomial D'(p) = D(p+a). If D'(p) has all zeros in the left-half 
plane (i.e. with Re(p) < 0), then D(s) has all zeros to the left of s = a, 
(i.e. with Re(s) < a). The method is to replace s by p +a and test 
whether all zeros of D'(p) lie in the left-half plane. 

The procedure is straightforward: perform the indicated 
substitution to obtain new coefficients of the polynomial and then 
apply the Jury or Routh test as appropriate to the system. 

Example 

Suppose that a unity feedback system of standard form has 
compensator C(s) = K, an unknown parameter, feedback instrument 
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transfer function F(s) = 1, and plant transfer function 

0.075 
G(s) = 1.425s3 + 4.825s2 + 1.675s + 0.075 

We wish to determine whether the poles decay at least as fast as e-t 

for K = 10. First we find the closed-loop transfer function as 

KG(s) 
R(s) = 1 + KG(s) 

0.075K = --------------~~-----------------
1.425s3 + 4 .825s2 + 1.675s + 0.075 + 0.075K 

For all transients to decay at least as rapidly as e-t, the poles must 
lie to the left of s = -1 + jro, i.e. the roots of the denominator 
polynomial must have real part less than -1. We know that the 
denominator polynomial is 

D(s) = 1.425s3 + 4.825s2 + 1.675s + 0.825 

because we have chosen K = 10. We substitute p-1 for s, since then 
Re(p) < 0 ~ Re(s) < -1. 

D(p-l) = 1.425p3 + 0.55p2 - 3.70p + 2.55 

We see immediately, because the coefficients are not all positive, 
that Re(p) < 0 is not possible. Hence, the transients cannot decay 
faster than e-t for K = 10. 

Other transformations allow other regions to be tested. For example, 
the replacement z = r (Zt+ a), where a is a real number, applied with 
a Jury-type test allows us to determine whether Zt is inside a circle of 
radius r centred at (a, 0) in the complex plane. 
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14.6 DESIGN FOR STABILITY 

As mentioned several times, the tests themselves give only checks on 
stability and tell nothing about how to make an unstable system stable. 
Clever use, however, allows a certain amount of design to be done. 
This has two steps, which are in fact independent. First the designer 
introduces one or more parameters, perhaps the implementation 
parameters of some controller, into the system transfer function. 
Then the tests are set up and the resulting algebra examined to 
determine which values of the parameters, if any, will result in poles 
inside the region of interest (e.g. unit circle for stability, radius r 
circle for transient speed of decay). The procedure is straightforward 
provided the algebra can be solved. This last is a severe restriction 
with problems of appreciable size. 

Example 1 

For the example problem of the previous section, we now wish to 
determine the range of K for which the system is stable. Stability is 
indicated if the poles, i.e. the roots of the denominator polynomial, 
are in the left-half plane. To determine this, we apply the Routh test. 

First we see that for all the coefficients to be positive we must have 
K> -1. Then we set up the array as follows: 

S3 

s 

1.425 

4.825 

5.5965 - 0.075K 

0.675 

0.075 (l +K) 

o 

1 0.0155 (1 +K) (5.5965-0 .075K) 

For the first column to have no sign changes, we need all elements 
positive. From this it follows that the system is stable for 
K < (5 .5965/0.075 =) 74.62 and then, with the s term positive, the sO 
row requires K > -1 (which we already knew from the coefficient 
test). Thus, the system is stable provided that -1 < K < 74.62. 
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Example 2 

Consider the system described by 

x(k+ 1) = [~ ~~] x(k) + [~] u(k) 

for which a control law 

u(k) = [K 0] x(k) 

is to be designed. Then we evaluate the resulting characteristic 
equation, which is 

D(z) = 0 = Z2 + 0.5z + K 

Then ao = 1 > 0 and we may apply the basic test. The array is 

1 
K 

0.5 
0.5 

1-[(2 0.5(1-K) 
(1-K)12 1-K2 

K 
1 

(1-K)(1 + K) - (1- K)/4(1 + K) 

Our conditions are that 

1-[(2)0 

1 - K2 - (1-K)/4(1 + K) > 0 

0.1 = 0.5/(1 + K) 

The first condition is satisfied if -1 <K < 1. The second requires, 
provided the first holds, that 

4(1 +K)(l-[(2) - (1-K) > 0 
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or 

(1- K)(1 + 2K)(3 + 2K) > 0 

which needs -0.5 < K < 1. Combining these, the system for which the 
above is the characteristic equation is stable iff -0.5 < K < 1. 

As an alternative, the Jury form requires 

1. IKI<1 
2. D(l) = 1.5 + K> 0 
3. D(-I)=0.5+K>0 
4. Not applicable: n = 2 

This is clearly satisfied by -0.5 < K < 1. 
Finally, for a comparison of methods, we also use the modified 

Routh method for the same problem. Making the bilinear w­
substitution in D(z) yields 

Dw(w) = (l +w)2 + 0.5 (l-w)(1 +w) + K(1-w)2 

= (0.5+K)w2 + (2-2K) w + (1.5+K) 

The Routh array is 

w2 

W 

0.5+K 
2-2K 

1 1.5+K 

1.5+K 
o 

For no sign changes, all of the first column must have the same 
sign, yielding K>-0.5, K<l, K>-1.5, respectively, or -0.5<K<1, 
or else K < -0.5, K> 1, K < -1 .5, respectively, which is inconsistent. 
The result is seen to be the same as that given by the Jury test, but the 
substitution is tedious. 

14.7 COMPUTER ASSISTANCE 

The tests presented here are easily encoded for numerical evaluation, 
and students should find it easy to write such programs to determine 



www.manaraa.com

370 BIBD stability and simple tests 

the utility and characteristics of the array tests. For stability 
determination, most computer assisted design software will include 
root finders, so that poles may be calculated directly. For studies of 
parameter changes, root locus and root contour methods (Chapter 18) 
are also usually available. 

14.8 SUMMARY AND FURTHER READING 

The stability of linear constant coefficient systems is determined by 
the locations of their closed-loop poles. These may be computed 
directly, or the general regions of their locations may be inferred 
from Routh-type tests which process arrays developed from the 
characteristic equations. The tests are straightforward to perform, 
especially with a computer. They may be extended to test regions 
with circles other than the unit circle and half planes other than the 
negative half plane by simple algebraic transformations. They also 
have limited uses for finding regions, if they exist, for which 
parameters will yield desirable properties. An important fault is that, 
if the test fails, it gives little indication of what to do about the 
situation. 

Routh tests and Hurwitz variations date from the late 1800s; Jury's 
unit circle tests date from the 1950s. The tests are standards in most 
control systems textbooks. For examples, Routh tests and some 
variations appear in texts such as (Dorf, 1989) and (Phillips and 
Harbor, 1991). The basic Jury form is in most digital control system 
texts, including (Franklin et ai., 1990) and (Ogata, 1987), while the 
Raible form is included in (Kuo, 1980). 
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Nyquist stability theory 

One of the now classical methods of testing closed-loop stability as a 
function of plant model and of control loop structure is based upon 
complex variable theory, with the particular application due to 
Nyquist. The idea is subtle for beginners but is basically 
straightforward. It has been applied to basic stability testing, to 
certain non-linear systems, to multivariable systems, and to developing 
the concepts of relative stability. 

15.1 SYNOPSIS 

Nyquist theory treats a transfer function F(s) (or F(z)) as a mapping 
from the s (resp. z) plane to the complex plane. When the 
independent variable traverses a closed path, then the mapping will 
encircle the origin a number of times N equal to the net number of 
poles and zeros enclosed by the closed path. With a number of 
modifications and interpretations according to application, this simple 
idea can be used for a number of stability tests. The basic approach 
works as follows. 

1. The contour is taken as enclosing the unstable region of the 
independent variable plane. In discrete time systems the basic 
contour follows the curve eie, as e ranges from 0 to 21t, while in 
continuous time systems the contour forms a D-shaped figure 
with the vertical segment following the imaginary axis and the 
arc 'enclosing' the right-half plane. In particular the contour 
traverses s = jro for -R ~ro ~R and the semicircle Reje for 
1t12 'C. e'C. -1t12, with R -) 00; the traversal is clockwise and usually 
starts at the origin. 

2. The function F is taken as 1 +kG(q); then the function G(e) is 
plotted for e on the appropriate contour. 

3. For any chosen value of k, the number N of clockwise 
encirclements of -11k by the mapping is counted. 

4. The number P of poles of G(q) inside the contour is determined. 
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5. Then, the number Z of zeros of 1+ k G(q) inside the contour, and 
hence the number of unstable poles of the closed-loop system for 
which I +kG(q) = 0 is the characteristic equation, is given by 
Z=P+N. 

Extensions may be made relatively easily. For example, the notion 
of relative stability arises by considering, for a value of k for which 
the system is stable, the magnitude or phase change needed in G(q) for 
the system to become unstable. Multivariable problems involve 
simultaneous consideration of the various scalar input-output transfer 
functions, while certain static non-linearities in otherwise linear 
systems may be examined in terms of 'variable -11k points' . In 
principle, compensator design can also be done using the Nyquist 
plots. 

15.2 THE UNDERLYING BASIS - CAUCHY'S THEOREM 

The underlying theory is that of complex functions of complex 
variables, so we will consider here a variable q, taken later to be s or 
z as appropriate. Then the function F(q) defines a mapping from the 
q coordinate system to the F coordinates, where both systems have 
real and imaginary coordinates. A line between two points qO and ql 
in the q plane will map into a line between F(qo) and F(ql) in the F 
plane, as in Fig. 15.1, provided that FO is a 'nice' function; this 
means basically that it is an analytic function with continuous 
derivative along the line, which is a condition easily met by linear 
transfer functions at all but a small number of points. 

(a) (b) 

1m 1m 

Re 

Figure IS.1 Continuous mapping from one complex plane to another. 
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Furthermore, a closed contour from qo to ql and back to qo via q2 
will map a closed figure from F(qo) to F(ql) and back to F(qo) via 
F(q2), as in Fig. 15.2. The mapping may be one-to-one, as shown in 
the figure, but this is not always the case; a many-to-one function will 
result in the mapping's crossing itself. 

(a) (b) 

1m 1m 

Figure 15.2 Mapping of a closed contour from one complex plane to 
another. 

Now consider an arbitrary closed contour r in the q-plane. We use 
the following definitions. 

Enclosed A point P is enclosed by a contour r if P is encircled by r 
in either the clockwise or counter-clockwise direction. 

Encircled A point P is encircled n times in a clockwise direction by a 
contour r if, when a point S on the contour moves from a starting 
point qo around the contour and back to the starting point, an observer 
on P of S turns n times (net) in the clockwise direction while facing S. 
Thus a vector from P to S goes through -3600 n as S traverses r. The 
encirclement is in the counter-clockwise direction if the angle is 
+3600 n. The point is not encircled if the angle is 0°. 

Then, the following theorem may be stated: 

Theorem (Cauchy) Let a contour r encircle a region C of the 
q-plane in a clockwise direction so that r encloses P poles and Z zeros 
of a function F(q) which is analytic (basically, is 'nice') in C. Then 
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the origin of the F(q) plane is encircled N times in the clockwise 
direction by the mapping of r where N = Z - P. 

We remark that encirclement N times in the clockwise direction is 
the same as encirclement -N times in the counter-clockwise direction. 
A hypothetical case illustrating the theorem with Z = 1, P = 2, and 
N = -1 is shown in Fig. 15.3. 

(a) (b) 

1m 1m 

Figure 15.3 Mapping in which two poles and one zero of the function 
F(q) are encircled by the closed contour, leading to -1 encirclements of the 
origin. Illustrating the Cauchy Theorem. 

The following corollary involves a simple coordinate translation of 
the above. 

Corollary If the function F(q) is of the form F(q) = a + G(q), then 
the mapping G(q) of the contour r will encircle the point (-a) in the 
G(q) plane N times, where N = Z - P and Z and P are defined as 
above. 

15.3 APPLICATION TO DETERMINING STABILITY OF 
LINEAR CONTROL SYSTEMS - NYQUIST 
CONTOURS AND CURVES 

The application of the above involves the choice of functions FO to 
evaluate and of the contour r. For a system of form as in Fig. 15.4, 
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the closed-loop transfer function is given by 

Y(q) C(q)G(q) 
R(q) = 1 + C(q) G(q)H(q) 

R(q) ~ C(q) 
U(q) 

G(q) Y(q) 

H(q) 

Figure 15.4 A standard closed-loop system model, where q may be either 
s or z. 

The key to stability for such a system is the location of the closed­
loop poles, i.e. of the zeros of the denominator. For this reason, we 
take 

F(q) = 1 + C(q)H(q)G(q) 

and determine, using the Cauchy Theorem, how many zeros of this 
function lie in the right-half plane for continuous time representations 
or outside the unit circle in the discrete time case. 

Continuous time case 

1. Define the Nyquist contour r as the semidisc with centre at the 
origin, radius ~ 00, and enclosing the right-half plane. Thus, 
take the three-arc contour defined by 

(a) 
(b) 
(c) 

s = j<o 
S =Rd9 

S = -j<o 

<0 increases for 0 to R 
e decreases from 1t/2 to -1t/2 
<0 increases for -R to 0 

and let R become very large, i.e. R ~ 00 (Fig. 15.5(a)). 
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2. Evaluate C(s)H(s)G(s) along the contour, thus obtaining the 
Nyquist plot. 

3. Count the number P of enclosed (i.e. right-half plane) poles of 
the open-loop transfer function C(s)H(s)G(s) . 

4. Count the number N of clockwise encirclements of the point 
(-1,0) by the Nyquist plot. 

5. Then the number Z of unstable poles of the closed-loop system is 
given by Z = P + N. 

Special cases, such as poles lying on the imaginary axis, are 
accommodated using simple tricks in the definition of the Nyquist 
contour, in particular by bypassing the point by a semicircle of radius 
e with e ~ O. 

(a) (b) 

1m 1m 

"".- -',' ,/ :", 
I .. . ,/ \ 

I ,/R=1 . 1 

Ref 

Figure 15.5 The basic Nyquist contours: (a) for the continuous time 
system enclosing the right half plane; and (b) for the discrete time system, 
'enclosing' the region outside the unit disc. 

Discrete time case 

The Nyquist contour r is defined by the unit circle, i.e. by 

z = ei~ 

and this is taken as 'enclosing' the region of the z-plane for which 
II z II > 1 (Fig. 15.5(b». Variations of this definition exist for those 
who are uncomfortable with this enclosure of an unbounded region. 
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An important variation of this scheme has the denominator of the 
general form 

F(q) = 1 + KG(q) (15.1) 

Here, one can plot G(q) for the appropriate contour and consider 
encirclements of -11K for any K. By doing so, the range of values of 
K for which the closed-loop system is stable can be established. 

Examples 

Nyquist plots are demonstrated in Fig. 15.6 for the continuous time 
system 

G(s) = 4(s + 1) 

( 
s2 S J s -+0.8-+1 (0.3s2 +s-l) 

625 25 

and the discrete time system 

0.05z-1 

G(z) = (1 - 0.9z-1) (1 - 0.5z-1) 

In the first case, the contour is that of Fig. 15.5(a) modified in the 
vicinity of the origin to be peiB, - rcl2 < e < rcl2 to avoid having the 
contour pass through 0 and hence to keep the path r such that the 
function G(z) is analytic for all points on it. Since p is taken as small, 
G(pejB) will have large magnitude here. The Nyquist plot (Fig. 
15.6(a)) shows the regions of the real axis (and hence -11K in (15.1)) 
for which N, and hence Z, is constant; P is of course constant and 
equal to 1. 

The Nyquist plot of G(z) is determined from G(eHI) for 0 ~ <II < 2rc 
and is shown in Fig. 15.6(b). Indicated are the regions of 
encirclement of -1/ K and the resulting values of Z, the number of 
closed-loop unstable poles of the closed-loop system. Notice that one 
value of K for which Z changes is K = 57, while the other value is 
K=-I; the axis is crossed by the Nyquist plots at (-1157,0) and (1,0) 
respecti vely. 
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(b) 

e increasing from 7t to 27t 

-.-.~ 
"",' ". . '. 

\ 
N=O N= 1, Z=P+N=1' N=O 

Z=O Z=O 

-1 .. 
o 

~ 
a increasing from 0 to 7t 

Figure 15.6 Nyquist plots for text examples. (a) Close-up to show detail 
near the origin for the continuous system, showing regions of various N 
(and hence Z) values. Z = 0 only for -2.5 < -11K <-0.4. (b) Full Nyquist 
plot for discrete time system. Here the regions for which Z = 0 are those 
for which -11K < -0.0175 or -11K> 1. 

15.4 THE MULTIVARIABLE EXTENSION 

In the above, the system was SISO. The MIMO, or multivariable, 
extension, involves intricacies which we will not dwell upon. Some of 
the ideas which are important to later work, however, are presented 
here. 
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Rather than a scalar function, let G(q) be a matrix of dimension 
nxn and the system as in Fig. 15.7, where in particular the choice 
C(q) = K has been made. 

E(q) U(q) 

R(q) K G(q) I----.-:~- Y(q) 

Figure 15.7 Very simple multivariable system feedback configuration. K 
and G(q) are matrices, and R(q) and Y(q) are vectors. 

In general, K will be n x n , and we will attempt to establish system 
stability limits for various K. It is easily shown that 

Y(q) = [I + G(q) K]-l G(q)KR(q) 

It can also be shown that Y(q) is exponentially stable (for pulse 
input, and hence for all inputs), iff det [I + G(q) K] has no poles in the 
unstable region (right-half plane or outside the unit circle, as 
appropriate to the system). As the determinant is a scalar function, it 
is straightforward to treat it in the same manner as the function F(q) 
used in the scalar function Cauchy arguments. Thus in the usual 
manner, 

N = number of clockwise encirclements of origin by 
det [I + G(q) K] 

P = number of unstable poles of the Smith-McMillan form of 
G(q) (see Chapters 10 and 11), which is the number of 
unstable roots of p(q) when G(q) = N(q)/p(q) for N(q) a 
matrix of polynomials and p(q) is a scalar polynomial. 

Z = number of zeros of [I + G(q) K] enclosed by the Nyquist 
contour 

and the result is that 

N=Z-P 
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We could in principle draw the Nyquist plots for each matrix K of 
interest. This is not an attractive option, for obvious reasons: the 
ability to detennine a range of stable K is one of the attractions of the 
Nyquist SISO theory. To examine this problem partially we look first 
at the special case K = kI. Now we are interested in Nyquist plots 
associated with det [1+kG(q)]. Since a determinant of a matrix is 
equal to the product of that matrix's eigenvalues, we instead use the 
eigenvalues (perhaps more accurately called eigenvalue functions, 
since they will depend upon q) of [1+ kG (q)]. But the eigenvalues of 
[I + kA] are respectively equal to 1 + eigenvalues of [kA] which in 
turn equal 1 +k eigenvalues of [A]. Thus we first find n functions 
Aj(q) for which 

Then 

det [Aj(q) I + kG(q)] = ° i= 1,2, ... ,n 

det [I + kG(q)] = IT (1 + kAj(q» 
i 

and hence 

Ll arg det [I + kG(q)] = L Ll arg [1 + kAj(q)] 
i 

Thus we can count the number N by counting the number of 
clockwise encirclements of the origin by the n functions [1 + kAj(q)], 
of the point (-1,0) by the functions kAj( q), or the point (-11k, 0) by 
the functions Aj(q). We remark that the individual functions, because 
they are not necessarily rational, may not form closed curves as the 
Nyquist contour is traversed, but that the set of functions will be 
closed. 

The next case to consider has K = diag {kI, k2, ... , kn }. To examine 
it, we need more definitions and background. The key ideas, 
however, are those of Gershgorin bands and Nyquist arrays. The 
latter are the Nyquist plots of the elements gij(s) of G(s). The former 
are motivated by the following result. 

Theorem (Gershgorin) The eigenvalues of a complex n x n matrix 
Z = {Zij} lie in the union of the n circles Cj, where Cj = circle centred 
at Zjj with radius 
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A matrix G(q) for which the Gershgorin bands exclude the origin is 
said to be diagonally dominant, and a system with narrow bands is 
one which closely resembles a set of non-interacting SISO systems. 

In application, we plot the Nyquist array of a square G(q) by: 

1. plotting (separately) each gi/q) for q on the appropriate Nyquist 
contour; and 

2. on the plots gii(q), plotting for all (actually for sufficient) points 
qc E contour (e.g. qc = jOlc for selected Olc) the circles centred at 
gii(qc) with radius 

n 
L II gji(qc) II 
j#i 
j=l 

The union of the circles forms a band around the plot gii(q). 
Thus we have n Gershgorin bands, one for each element of the 
diagonal of the Nyquist array. 

Example 

A Gershgorin band is illustrated in Fig. 15.8 for the system defined by 

[ 

1.5 
s3 + 2s2 + 2s + 1 

G(s) = 1 

4s + 1 
: ] 

where the x denote elements irrelevant to the computation. 
Finally, we relate this to the diagonal K feedback gain using a result 

due to Rosenbrock. 
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Theorem (Rosenbrock, 1970) For G(q) square and K = diag {kl. k2, 
.. . , kn }, suppose 

Igjj(q) + i ·1 > t. Igij(qc) I 
I )¢l 

i=1,2, ... ,n 

j=l 

for all q on the Nyquist contour, and let the Gershgorin band 
associated with gjj encircle the point (-lIk j ,O) a net of N j times in the 
clockwise direction. Then the negative feedback system characterized 
by [I + G(q) K]-l has Z zeros enclosed by the Nyquist contour, where 

and P is the number of poles of G(q) enclosed by the contour. 

1m 
-- .. ---. .. 

...... 
" 

" 

\ 

\ 

......... \ ..... . 
..... \ 

· · · 

... Re 

· · · · · . · . · . · . 
/ ### 

Figure 15.8 Gershgorin circles for the text example. 
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Using the above, it is clear that the requirement is that 

for closed-loop stability. 
The above discussion has avoided several issues, including the 

necessity in the last case for the transfer function to be diagonally 
dominant and for the Gershgorin bands not to enclose the points in 
question. 

15.5 NON-LINEARITIES AND LIMIT CYCLES 

One of the interesting applications of Nyquist ideas is to simple, static 
non-linearities such as relays, saturation elements, etc. The basic idea 
is that the non-linearity is approximated to first-order by a linear term 
in which the gain depends upon the amplitude, but not the 
instantaneous value, of the input. In this section we look briefly at an 
example of the approach (called the describing function) and show 
the Nyquist ideas. 

G(s) 

Figure 15.9 Common non-linear system configuration for studies of non­
linear stability. N is a static non-linearity (such as a relay). 

More precisely, consider the autonomous system of Fig. 15.9. The 
object is to determine whether the system can sustain an unforced 
oscillation, or limit cycle. To this end, let e = E sin rot and assume 
that N can be modelled as 
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u = N(e) = Keq(E) e + idee) 

where Keq(E) is a gain dependent upon the parameter E and/d(e) 
contains higher harmonics of the input. Assuming G(s) is low-pass in 
nature, it may be reasonable to say that 

Then the question is whether the assumed oscillation e is sustained, i.e. 
whether 

e = -GUoo)N(e) = -GUoo) Keq(E)e 

An alternative way of saying this is that we must determine whether 

Ke:(E) + GUoo) = 0 

for some 00 and E. To see this, we can plot the two functions 

for all 00 

for all E 

and see whether they intersect. The first function is clearly a Nyquist 
plot; the second is a 'variable gain'. Hence, we see whether for some 
E the point -lIKeq(E) intersects, for some (0, G(joo). The 00 is of 
course the frequency of oscillation, and the critical E is the amplitude 
of oscillation; whether the oscillation is a stable one is determined by 
examining the stability of perturbed values of Keq. 

Example 

An ideal relay, with 

E sinoot > 0 
E sinoot < 0 

can be shown to have equivalent gain (or describing function) 
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4M 
Keq (E) = rrE 

Suppose the relay is switching a simple amplifier plus motor 
combination, with shaft angle the variable of interest. In this case, a 
typical transfer function will have the form 

10 
G(s) = s(s + l)(s + 10) 

The two plots, of G(s) for s E r, and -lIKeq(E) for varying E, are 
shown in Fig. 15 .10, with the regions of various number of 
encirclements of -11K values and their resulting Z values also shown. 

\ 
\ 

\ .\:"""" ..,,,,,;,, 
, 

" 
E increasing " 

<: • 

~=o,z=o 
-11K (E) Locus Critical Value for ·l/K 

eq 

~"." ;,a,,,;,,, 

Region for N = 1) '\ 

Z= 1 I 

_Of~')i 

~"" 

---

Figure 15.10 Text example system Nyquist plot showing images of both 
G(s) and of the non-linearity, as represented by -lIKaf..E). The values of Z 
indicate that E will decrease for large values and will increase for small 
values, suggesting that there is a possible steady oscillation at the frequency 
and magnitude defined by the intersection of the two curves. 

It is easy to show that the Nyquist plot crosses the negative real axis 
for 0> = --./10 with amplitude 1111. This will occur for Keq(E) = 11, 
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which means M IE = 1I1t/4. This point is therefore a potential 
oscillation point. Consider further if the amplitude E should decay 
slightly for any reason. Then Keq will increase and the point -IIKeq 
will move to the right, where it will be encircled twice by the G(s) 
plot and hence be unstable. This instability means the amplitude will 
increase toward the critical point. Similar arguments show that too 
large an amplitude will decay. Hence, the analysis indicates a possible 
stable oscillation at"';l0 rad/s with amplitude E = 4MI111t. 

15.6 NYQUIST PLOTS AND CLOSED-LOOP RESPONSE 

For particular closed-loop structures, it is possible by using graphical 
methods to extract from the Nyquist plot the closed-loop frequency 
response. This is done using a set of loci called M -circles and a 
second set called N-circles for magnitude and phase, respectively. 
These are used with the Nyquist plot in a manner which we shall 
indicate below. 

Consider any point w in the complex plane. We can compute the 
magnitude and phase of the complex number 

where 

w = Mei~ 
1 + w 

Writing x = Re(w) and y = 1m (w), so that w = x + jy, yields 

M2 _ x2 + y2 Ih 1{ Y } 
- (1 + x)2 + y2 'I' = tan- x2 + X + y2 (15.2) 

Alternatively, we can find all w yielding a particular value of M or 
of N. Consider first the loci for constant M. For M = 1, (15.2) easily 
yields the vertical line x=-! (and y arbitrary). For M ;t:I, the 
expression may be rearranged to yield 
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This is easily seen to be the equation of a circle centred at 

with radius 

Similarly, if N = tan ~, we can find the locus of all w which yield a 
given ~ from 

( 1)2 ( 1)2 (N2 + 1) x + 2 + Y - 2N = 4N2 

Here, the circles are centred at 

and have radius 

Now consider plotting GUw) in a complex coordinate system 
containing M - and N-circles as in Fig. 15.11. For the particular 
closed-loop system (unity feedback and G(s) representing the entire 
forward path transfer function, including selected gains), the closed­
loop transfer function is 

G(s) 
T(s) = 1 + G(s) 



www.manaraa.com

388 Nyquist stability theory 

and the frequency response is 

. G(jro) 
T(jro) = I + GUro) 

Then it is obvious that if for frequency rot. GUrot) intersects a 
particular M-circle Mt and a particular N-circle Nt. then it must be 
true that 

This shows that we can obtain the closed-loop transfer function 
graphically for this particular feedback control system structure. 
More important, perhaps, is the fact that the circles indicate the 
closed-loop characteristics and hence can be considered design 
constraints. This will partly be addressed in Chapter 20. 

,-
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Figure 15.11 A Nyquist plot of a function G(s) along with M-circles 
(M=1I3, 112,2/3,1,3/2,2,3) and N-circles (N=±1I2, ±1, ±2). 
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15.7 RELATIVE STABILITY 

For many purposes it is not only desirable to know that a system is 
stable, but how close it is to instability. For example, if components 
are far enough out of specification, a nominally satisfactory system 
may become unstable if we do not allow for the errors. Also, it turns 
out that systems 'close to unstable' often display a highly oscillatory 
response, while those which are 'highly stable' may be sluggish. Thus 
we like to have reasonable measures of 'closeness to instability'; these 
are usually called measures of relative stability. 

The measures associated with Nyquist plots and representations 
derived from them are gain margin and phase margin. These are best 
understood by referring to Fig. 15.12 where a typical portion of a 
Nyquist plot is shown. 

/' 

Radius = -1/K( 

1m 

.. , .. --- ....... 
" 

-1/KA= pOi~t·'?f Z change 
\ 

Re 

Figure 15.12 Illustrating phase margin <Pm and gain margin KAt K on a 
Nyquist plot. 

Presumably, the region to the left of the intersection of the curve 
G(q), q E r = Nyquist contour, with the negative real axis is known to 
be stable and we are considering the point (a, 0), a = -11k, in the stable 
region. The intersection of G(q) with the axis is at (b,O) and occurs 
for q = qb. If we were to increase the gain to ka = -lib, the system 
would be unstable (because 1 + kbG(qa) = 0). The gain margin is 
defined as the multiplicative increase needed from the candidate gain 
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before the system becomes unstable, i.e. the change in gain before the 
point (-11k, 0) is encircled enough times that Z> O. In this case 

Gm = ~a = ~ or Gm.db = 2010g (~a) 

Alternative representations, including those for which the gain has 
been included in G(q) so that we are considering encirclements of 
(-1,0) for stability, include 

Gm•db = - 20 log [ G(qb)] 

-1 
Gm = kG(qb) 

for k 'included' 

for explicit candidate k 

Gain margin has one interpretation as 'the amount gain should change 
before the system becomes unstable'; similarly, phase margin is 'the 
amount the phase of G(q) should change before the closed-loop system 
becomes unstable'. To define it, let qa be the value of q on the Nyquist 
contour r for which 

Then the phase margin <Pm is defined as 

<Pm = arg {G(qJ} + 1800 

Once again, the minor adjustment needed if G(q) incorporates all 
gains and (-1,0) is the test point is obvious. 

We remark that typical 'good' values of the margins are 

<Pm "" 40-500 

Gm "" 6-12dB 

Some texts define the margins using the above equations but 
allowing initially unstable systems to be considered. Thus a system 
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might have -30° of phase margin, indicating that phase must be 
decreased by 30° before stability is attained. 

15.8 DESIGN USING NYQUIST PLOTS 

The underlying nature of design using Nyquist plots is 
straightforward: one chooses compensation elements which reshape 
the Nyquist plot to yield desired properties. These compensation 
elements are typically cascades of basic elements of the form 

q 
- +1 a 

C(q)=K-t +1 

This has the effect of increasing the magnitude and phase of the 
open-loop transfer function C(q) G(q) at the frequency a (Le. at 
s ~ jro, ro = a, or at z ~ expUroT), roT = InaT) and decreasing 
them in the same manner at h. Design involves selecting the form of 
the elements and then their parameters. This is done using a different 
representation in Chapter 20. 

Example 

Figure 15.13 shows the Nyquist diagram for a plant such as a motor, 

I 
G(s) = s(0.2s + 1) 

It is seen that for K = 10, Gm = 00 and <Pm Z 40°. The same figure 
also shows the motor with the compensator 

C(s) = s 
60 + I 

for which the shape is different and the phase margin has increased to 
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75°. These numbers were established graphically; computation shows 
the respective phase margins are 38.6° and 77°. 

I 

<I> = 40° 
\ m 

I 
O. IS 

1m 
.. ~ ~ - ~ -, - - - - 0.1 ,.. 

\ . 
y ' 

,:' \. , 
:-1 /K = 0,1'. \. 
, '.' 

I 
-0.1 ,os 

o .~ -

" -

Re 

Figure 15.13 The original and compensated Nyquist plots for the text 
example. 

15.9 NYQUIST AND OTHER PLOTS 

The Nyquist plots are, except for loops 'at infinity', the frequency 
responses of the open-loop transfer functions given by G(jo» in the 
continuous time models and G(eiOlt) in sampled data models. We have 
seen that these plots indicate stability and relative stability, which 
suggests that they might be the basis of designing closed-loop systems, 
particularly when M- and N-circles are also considered. 

This is partly true, in that Nyquist theory arguably provides the 
theoretical underpinning of possible design methods. In actual design 
work, however, it turns out that other graphical representations are 
more convenient for some tasks. 

We recall that the Nyquist plot is of complex numbers in the 
complex plane as a frequency parameter «(0 or (0 T) varies. 
Alternatives to this representation include those of Bode and Nichols. 
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Bode In Bode plots, we make two plots: 

1. I C(q) IdB (= 20 log C(q» versus log <0, called the Bode magnitude 
plot; and 

2. arg C(q) versus log <0, called the Bode phase plot. 

Nichols In Nichols plots, we graph IC(q)ldB versus argC(q), as 
parameter <0 varies, i.e. a log magnitude versus phase plot, on a plot 
on to which the M- and N-circles have been mapped (and become 
distorted from circles). 

Because they are primarily design tools rather than stability testing 
methods, these are left to later chapters. In particular, Bode plots are 
discussed in Chapter 20. Nyquist, Bode, and log magnitude versus 
phase plots are shown together in Chapter to. 

15.10 COMPUTER AIDS 

Computer aids such as MATLAB® and Ctrl-C will generate the 
mapping of the contour r for finite points on the basic contour which 
are not poles of the open-loop transfer function. In addition, they 
may be programmed to provide Gershgorin bands. Hence, they 
generate the details of the plots but not necessarily the number N of 
encirclements. Within this limitation, they usually provide the 
Nyquist plots rapidly and easily, and can easily generate the Bode and 
log magnitude versus phase (for Nichols charts) plots. 

15.11 FURTHER READING 

Nyquist theory for SISO continuous time systems is found in many 
elementary textbooks. This, along with brief mentions of non-linear 
applications and sampled data systems are to be found, for example, in 
Phillips and Harbor (1991), while more extensive coverage of 
continuous time systems is in DiStefano, Stubberud and Williams 
(1976). Digital control texts usually build on the continuous time 
theory; examples are Franklin, Powell and Workman (1990) and 
Astrom and Wittenmark (1990). The multi variable extensions are 
presented by Maciejowski (1989). 
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The second or direct method of Lyapunov is entirely different from 
pole analysis in philosophy, nature and detail, although there are a few 
overlaps for linear time-invariant systems. 

The approach is based on consideration of a generalized energy 
content of the system in question. Suppose we can define a 
generalized energy such that (a) the energy is minimized at an 
equilibrium point and (b) when the state is not at the equilibrium 
point, the energy must decrease. Then if the system is disturbed from 
equilibrium, its energy must go up and then start decreasing. If it 
keeps decreasing, it must obviously go to its minimum. But the 
minimum energy configuration is the equilibrium point, and hence the 
state must approach the equilibrium point. Thus the equilibrium point 
must be stable. 

A more intuitive point of view for some people is to consider a 
mathematical description of the shape of the famous 'bowl' of 
explanations of stability used in elementary physics classes. In this 
viewpoint a stable 'marble' must always roll down the side of the 
bowl, and in doing so must necessarily return to the lowest point, 
which is the centre, or equilibrium point. 

The formalization of the above notions is the subject of the 
Lyapunov theory, and their application is a tool of some assistance to 
the control engineer. A major problem with using the approach is 
that we cannot always find an appropriate generalized energy. 

16.1 SYNOPSIS 

The core idea of Lyapunov methods is built around the Lyapunov 
function and state-space representation: the Lyapunov function is a 
scalar function V of the state vector x such that: 

1. Vex) ~ 0 for x in the region!Jl of interest. 
2: Vex) is rather like a measure of distance of x from an 

eqUilibrium point Xe and gets larger as x gets further from that 
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point (within.9f). 
3. For the equilibrium point considered, V(xCt» does not increase 

with time as the system operates (for stability i.s.L.) and in fact 
decreases as time goes on (for asymptotic stability i.s.L.). 

4. If for the equilibrium point considered and Vex) as in (1) and (2) 
above, V(x(t» increases with time, then the equilibrium point is 
unstable. 

In section 16.2 we meet the basic ideas expressing this for discrete 
time systems. Section 16.3 shows design applications, and then in 
section 16.4 we meet some of the results for continuous time systems. 

16.2 THE BASIC IDEAS OF L Y APUNOV'S DIRECT 
METHOD 

The definitions associated with Lyapunov stability were presented in 
Chapter 13. For operating with the definition, we are concerned with 
a system of equations which generate a state sequence {y(k)} 
according to dynamics 

y(k+ 1) = J(y(k);k) k=O,I, ... yeO) = Yo (16.1) 

where y is the n-vector describing the state. We study an equilibrium 
point Ye, a point such that 

Ye = J(Ye; k) for all k 

Let Vex) be a scalar function of the n-vector which is positive 
definite in a region.9f of the origin, i.e. 

Vex) > ° 
V(O) = 0 

xe.9f,x::tO 

Then if for the equilibrium point Ye of (16.1) we have 

V(y(k+ 1) - Ye) ~ V(y(k) - Ye) 

(16.2) 

(16.3) 
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for all k=O, 1,2, ... , and if (y(O) - Ye) E !fl, i.e. Yo belongs to a 
suitable region near Ye, it must be that the equilibrium point is stable 
i.s.L. To show the dynamics explicitly, we rewrite this as 

V(f(y(k);k) - Ye) ~ V(y(k) - Ye) 

In fact, the theorem states that the equilibrium point is stable i.s.L. 
if there exists a function V for which (16.2) and (16.3) hold. The 
underlying idea is represented in Fig. 16.1, which shows contours of a 
function Vex) near an equilibrium point Xe and a possible trajectory 
x(t) for which V(x(k)) is non-increasing. 

Figure 16.1 Contours of a Lyapunov function, with VI <V2<V3, and a 
stable i.s.L. trajectory evolving over time to smaller V values. 

Example 

Consider the scalar dynamics 

y(k+ 1) = ay(k) yeO) = Yo 

Let Vex) == x2, which obviously is positive definite. We notice that 
Ye = 0 is an equilibrium point of the dynamics. We also note that the 
pole of the system is at a, so the system is BIBO stable for lal < 1. 
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Calculating (16.3) for this example yields 

V(f(y(k);k» = (ay(k»2 = a2y(k)2 

= a2V(y(k» 

Thus we have stability i.s.L. of the equilibrium point 0 provided 
a2 ~ 1, and asymptotic stability i.s.L if a2 < 1. 

Application: Linear system stability 

We generalize the above scalar system to use matrices and vectors. 
Thus let 

x(k+ I) = Ax(k) 

and let Vex) be defined with the positive definite matrix P as 

Applying this as per the theorem, we find 

V(x(k+ 1» - V(x(k» = xT(k+ I)Px(k+ 1) - xT(k) Px(k) 

= xT(k) {ATPA - P} x(k) 

= - xT(k) Qx(k) 

where the definition of Q is obvious. Then the ongm is 
asymptotically stable i.s.L. if for any positive definite P there exists a 
positive definite Q for which 

_XTQ x ~ 0 

holds. In fact further theory tells us the origin x = 0 of 

x(k+ 1) = Ax(k) 
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is asymptotically stable i.s.L. if for any Q > 0 there exists some P > 0 
for which 

This is called a Lyapunov equation and the computation of a P 
given some Q (often taken as Q = I) and the checking of the result to 
see if P > 0 is best done using some of the computer aided control 
system design programs. 

Application: Non-linear system stability 

The method applies readily to non-linear systems, at least in principle. 
We see this in another example, which also introduces the notion of a 
region of stability. 

Example 

Consider the scalar system with dynamics 

y(k+ 1) = y(k)3 

which obviously has one equilibrium point at the origin, y = 0, and 
another at y = -1. To evaluate the stability of the former point, we 
consider the function 

V(y) = y2 

which is obviously non-negative and is zero only at the origin. The 
change in V is computed directly as 

~ V(k) = V(y(k+ 1) - V(y(k» 

= y(k+ 1)2 - y(k)2 

= y(k)6 - y(k)2 

= y(k)2 (y(k)4 -1) 
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This is non-positive for 

ly(k)1 ~ 1 

and hence the equilibrium point is stable, with region of stability 
9R = {y : I y I ~ I} . It is asymptotically stable for strict inequalities in 
the expressions for y. 

The equilibrium point at y=-1 may be shown to be unstable by 
using the fact mentioned in comment 1 at the end of this section and 
the function V(y) = (y+ 1)2. 

Application: Transient response estimation 

The Lyapunov technique can sometimes be used to estimate the speed 
of transient response. As usual, the idea is straightforward, but the 
application in general can be difficult. 

Let the equilibrium state Ye = 0 be known to be asymptotically 
stable Ls.L. Define 

K= max 
.x E 9t 

Then it follows that 

Vex) 
-/1 Vex) 

-1 
d V(x(k)) = V(x(k+ 1)) - V(x(k)) ~ K V(x(k)) 

and hence 

V(x(k+L)) ~ (1 - i Y V(x(k» 

This can be used to estimate, e.g. the number of steps L required to 
reach 1 % of an initial value. 

In the special case of a linear system, it can be shown that if 
Vex) = xTpx and d Vex) = - xTQx, then 
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xTpx 
K = m;x xT Qx = largest eigenvalue of Q-l P 

Comments 

The problem with all this is that for real systems it becomes virtually 
impossible to find functions V for which either stability or instability 
can be demonstrated with the resulting !1 V. 

There are a number of variations of the basic theorems. We 
mention only two. 

1. The equilibrium point is unstable if there exists a V(y) ~ 0 for 
which !1 V> O. 

2. The equilibrium point is asymptotically stable i.s.L. if (a) it is 
stable i.s.L. and (b) V> 0 and!1 V < 0 for y ::;: Yeo 

16.3 DESIGN USING L YAPUNOV'S DIRECT METHOD 

Certain types of design may be done using Lyapunov stability theory. 
We will meet in section 30.3.5 an example in the design of adaptive 
observers, in which an algorithm is made a stable estimator of a 
system's parameters, and in section 32.3.3 an example of convergence 
analysis for learning control. Most Lyapunov-based design is 
concerned with finding a class of controllers, often a set of parameters 
for a controller with specified structure, so that a system will be 
guaranteed stable. This can sometimes be modified so that the system 
is 'very stable', as we will see in examples in this section. 

We will restrict the discussion to linear systems, for as usual most 
results are for them. 

Consider the state-space n-vector system with state feedback matrix 
K to be chosen, i.e. let 

x(k+ 1) = Ax(k) + Bu(k) 

u(k) = Kx(k) 

so that we are to choose K in 

x(k+ 1) = [A + BK] x(k) 
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Choose the positive definite function (Appendix B5) Vex) as 

Then 

V(x(k+ 1» - V(x(k» = x(k+ l)TPx(k+ 1) - xT(k)Px(k) 

= x(k)T [A + BKF P [A + BK] x(k) - xT(k) Px(k) 

= - xT(k) Qx(k) 

where the definition of Q is obvious. Then the origin is stable i.s.L. 
provided Q ~ 0, i.e. that {P - [A +BK]T P [A+BK]} is positive 
semidefinite. Another way to put this is that the origin is a Lyapunov 
stable equilibrium point for a given K provided that, for some 
positive definite matrix P, the matrix Q defined from 

[A + BKF P [A + BK] - P =-Q (16.4) 

is positive semidefinite. 
We may proceed further than this: we may consider making the 

system optimum in the sense that the V function decreases as rapidly 
as possible. To do this, we want to choose K to minimize 

L1V(k) = -xT(k) Qx(k) 

which means we must in some sense maximize Q. 
Since the expression in (16.4) is quadratic, we must simply take a 

gradient equal to zero. This means that we need (Appendix B) for the 
optimum K, call it KO, that 

or 

KO = _(BTPB)-l BTPA 
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16.4 CONTINUOUS TIME SYSTEMS 

The theory for continuous time systems is analogous to the above. In 
particular consider systems described by 

X =j(x) x(O) = xo 

Here one seeks a scalar function V(x(t» such that 

V(x) ~ 0 X E 9R 

Then the point x = 0 is said to be stable Ls.L. provided that 

. 
V (x(t» :5 0 X E 9R 

Example 

For the linear system 

x = Ax 

y =Cx 

we consider the function 

V(x) = xTpx P ~ 0 

and find that the origin is stable Ls.L. provided that 

v (x) = xTPAx + xT ATpx = -xTQx :5 0 

or 

which is called the continuous time Lyapunov equation. 
Other examples as for the discrete time system models will also 

yield results similar to those cases. 
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16.5 LYAPUNOV'S FIRST METHOD 

There is also a first method of Lyapunov. This works with linear or 
linearized systems and is notable for its characterization of the 
equilibrium points as, e.g. nodes (for which the eigenvalues of the 
linear form are real), foci (for which they are complex) and vortices 
(for which they are imaginary). Nodes and foci can be either stable 
or unstable; a node with one stable and one unstable eigenvalue is 
called a saddle point. Usually pictured for two-dimensional systems, 
as in Fig. 16.2, these are helpful more for forming mental images of 
system behaviour than for theoretical insights. 

; (@) 
(c) 

,.~( '" ,/" V '>< ~ 
.~. " "-

(a) (d) 

x1 

Figure 16.2 Showing equilibrium points in the phase plane. The top row 
are stable, and the bottom are unstable: (a) focus; (b) node; (c) centre; and 
(d) saddle point. 

The form considered is 
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with the cases: 

l. Ai, i = 1, 2 real 
Both> 0 => unstable node 
Both < 0 => stable node 
Opposite signs => saddle point 

2. ReO-i) = 0, i = 1,2 => centre or vortex 
3. Ai = conjugate pair. 

Re(Aj} < 0 => stable focus 
Re(Aj) > 0 => unstable focus 

Computer assistance 405 

Use of the first method for non-linear systems simply involves 
linearizing about each equilibrium point in turn and computing the 
eigenvalues of the resulting linear system. This will indicate stability 
or lack thereof for a small region 9l about the equilibrium point 
provided the eigenvalues are not on the stability boundary. The 
method tells nothing about larger regions, a fault shared by all 
linearization approaches. 

16.6 COMPUTER ASSISTANCE 

Lyapunov theory tends to be application specific except for linear 
constant coefficient systems. For these, there has been considerable 
study of algorithms for the solution of the Lyapunov equations 

PA+ATP=-Q~O 

for continuous time systems and 

for discrete time systems. These arise in a variety of ways in the 
study of control systems, including modelling (minimal and balanced 
realizations, see e.g. Moore (1981)) and system noise covariance 
calculations. Systems such as MATLAB® have algorithms for solving 
these equations. 
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16.7 COMMENTS AND FURTHER READING 

The ideas of Lyapunov's direct method, sometimes called the 'second 
method', are straightforward. The difficulty comes in finding suitable 
functions Vex), for the fact that we cannot find such a function does 
not prove one does. not exist. Occasionally, it is possible to find a 
Vex) ~ 0 such that \;(x) ~ 0, in which case instability is demonstrated, 
but in many practical cases we either cannot find V (x) or 
cannot prove that it does not change sign; either way, we are left in a 
limbo with nothing proven. 

Lyapunov methods sometimes seem to be going out of fashion, as 
not all recent introductory level textbooks mention them (perhaps 
because of the difficulties mentioned above). Shinners (1992) 
discusses both the first and second methods. Other texts with some 
coverage are Kuo (1980) and Ogata (1987). The functions sometimes 
appear in the study of algorithm convergence in, for example, 
adaptive methods (Chapter 31), and this often seems one of the more 
common uses of the technique. 
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Steady-state response: 
error constants and system 
type 

The interest of the engineer is in two aspects of the system response: 
steady-state response and transient response. The former is the output 
as t -) 00, while the latter is the portion of the output which dies away 
after a short time. Provided that the system is asymptotically stable, 
the transients will indeed die out. This section is concerned with 
aspects of the steady-state error. 

17.1 SYNOPSIS 

In studying SISO control systems, the basic system block diagram is an 
interconnection of linear systems so that using their transfer functions 
leads to the form of Fig. 17.1. 

R(q) f--~ Y(q) 

Figure 17.1 Repeat of transfer function block diagram model of typical 
SISO system. 

For this it is easy to derive that, whether q is the Laplace transform 
variable s or the z transform variable z, 
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G(q) C(q) 
Y(q) = 1 + G(q) C(q)F(q) R(q) = H(q)R(q) 

while the error between input and measured output is given by 

1 + G(q) C(q) [F(q) - 1] 
E(q) = R(q) - F(q) Y(q) = 1 + G(q) C(q)F(q) R(q) 

For a stable system in which e(t) ~ constant = ess we have for Laplace 
transforms and continuous time systems 

ess = lim e(t) = limo sEes) 
t~oo s~ 

and for z-transforms and discrete time systems 

ess = lim e(nT) = lim (1 - z-I)E(z) 
nT~oo z~l 

Hence the steady-state errors are easy to find once an input is 
specified. This specification is usually done for step, ramp, and 
parabolic inputs, and it turns out that the errors are closely related to 
the system property called system type. 

A unity feedback system (i.e. one in which F(q) = 1) has type L if 
the open-loop transfer functions have the form 

or 

G(s) C(s) = ~~) 

N(z) 
G(z) C(z) = (z _ I)L 

where N(q) is a rational polynomial not containing factors of the 
indicated denominator form. A type L system has the property of 
producing zero error in following an input polynomial form of 
degree L-l, finite error when the polynomial has degree L, and 
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infinite error when the degree is greater than L as shown in Table 
17.1. 

Table 17.1 Properties of type-L systems 

L Kpos Kvel Kacc e(oo )1 step e(oo)lramp e(oo)lar 

0 finite 0 0 finite 00 00 

1 00 finite 0 0 finite 00 

2 00 00 finite 0 0 finite 
3 00 00 00 0 0 0 
>3 00 00 00 0 0 0 

In the following sections we discuss and justify this for continuous 
time and discrete time systems separately. 

17.2 DISCRETE TIME PROBLEMS 

We consider the system of Fig. 17.1 for the discrete time case and 
choose the unity feedback case F(z) = 1, corresponding to perfect 
measurement with no transients in the instrument. Evaluation of the 
error in terms of the input is straightforward. 

R(z) 
E(z) = 1 + C(z) G(z) 

At this point we use the fact that the steady-state limit of e(t) as 
t -700 is given by the z-transform theory as follows. 

lim e(t) = e( 00) = lim ~ E(z) 
t~oo z~ 1 Z 

- e - lim [~ R(z) ] 
- sS -z~l z l+C(z)G(z) 

Hence, given a system G(z), the final steady-state error ess will depend 
upon the input R(z) and on the compensator C(z). The typical input 
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chosen for consideration, because it amounts to a set point or constant 
reference value, is the step, r(t) = A, t ~ 0, ret) = 0, t < O. For this, 
we already know 

Az 
R(z)=-­z - 1 

and thus 

e( 00)1 step = lim A 
z~l 1 + C(z) G(z) 

Defining the position error constant Kpos by 

gives 

Kpos = liml C(z) G(z) 
z~ 

esslstep = 1 AK + pos 

Usually, we want ess to be 'small' and preferably zero, which means 
that Kpos must be 'large' . Since G(z) and C(z) are rational, this means 
that the denominator of the product should have a factor which tends 
to 0 as z ~ 1. If G(z) has no such factor, we may as part of our 
design introduce one, so that C(z) takes the form 

C( ) - Gcl(Z) 
Z -(z-l)L 

where Gel (z) is rational with no poles or zeros at z = I, and L is an 
integer greater than or equal to 1. We remark that the PID controller 
has z-transform transfer function (in the PI form with Kd = 0) 

U(z) (Ki + Kp)z - Kp 
E(z) = (z - 1) 
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and thus will have the correct fonn to yield zero steady-state error to 
a constant input, just as our heuristic arguments of Chapter 8 
suggested, provided that G(z) does not have a zero at z = 1. 

The other inputs for which error constants are sometimes computed 
are the ramp and parabola functions, representing constant velocity 
and acceleration respectively and constituting tests of the system's 
tracking ability. 

For the ramp input, ret) = At, t > 0, the z-transfonn is 

ATz 
R(z) = (z _ 1)2 

where T is the sampling interval, so that 

essl - lim [£.=..1 ATz ] 
ramp - z~l z (z - 1)2 [1 + C(z)G(z)] 

_ lim AT 
- z~l (z - 1) [1 + C(z)G(z)] 

_ lim AT 
- z~l (z - 1 ) C(z)G(z) 

Defining the velocity error constant 

z - 1 
Kvel = z~l-T- C(z) G(z) 

gives 

ess I ramp = ~el 

(17.1) 

(17.2) 

Finally, the acceleration function ret) = At U(t), with z-transform 
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R( ) _ AT2 Z(Z + 1) 
z - 2(z - 1)3 

results in the same manner in 

essl = ~ 
lXlf3b Kacc 

where the acceleration error constant Kacc is given by 

Kacc = ~ z~\ (z - 1)2 CCz) G(z) 

The error constants are indicators of the closed-loop system's ability 
to track inputs of a given shape. Although it is preferable that the 
error be zero, certainly a specification will have that ess be finite for a 
class of inputs, which immediately implies that the applicable error 
constant (Kpos or K vel , usually) be non-zero, possibly finite, and 
preferably infinite (i .e. unbounded). Let us look briefly at the 
implications of this. 

Example 

Suppose that it is specified that a unit ramp should be followed with no 
more that 2% (say) error with T = 0.01 s. Hence from (17.2) we 
need 

0.02> essl = Kl 
ramp vel 

so that Kvel > 50 is required. From (17.1) we then have 

. (z - 1) 
50 < Kvel = z~\ 0.01 e(z) G(z) 

From this it follows that G(z) CCz) must have at least one pole at z = 1. 
Further, the constraint is easily met if there is more than one such 
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pole. If there is only one such pole, so that 

C(z) G(z) = [C(z) Giz)]' 
z -

where [C(z)G(z)]' has no poles at z = 1, then we also need 

0.5 < [C(1)G(1)]' 

(17.3) 

We note that with the form (17.3), Kpos = 00 and Kacc = 0, i.e. a 
system able to track a ramp with finite error can follow steps with no 
error but will have unbounded errors for constant accelerations. We 
can continue this argument, requiring zero error for a ramp and 
finding C(z) G(z) needs at least two poles at z = 1, etc. Also, other 
inputs may be considered. To summarize, we define 

C( ) G( ) _ [C(z) G(z)]' 
z z - (z - 1)L (17.4) 

with the rational numerator having no poles or zeros at z = 1, as the 
form for a 'type-L' system. It is clear that if G(z) C(z) has the form 
of (17.4) then: 

1. for a step input, ess = 0 and Kpos = 00 provided L ~ 1 - for all 
L, ess is finite but usually non-zero; 

2. for a ramp input, ess = 0 and Kvel = 00 provided L ~ 2 - for 
L =1, ess is finite but usually non-zero and it is infinite for L = 0; 
and 

3. for a parabolic input, ess = 0 and Kacc = 00 provided L ~ 3 -
for L = 2, ess is finite but usually non-zero and it is unbounded 
for L < 2. 

Hence parameter L, called the system type, is a parameter which 
immediately indicates whether steady-state errors after asymptotically 
stable responses are zero, potentially finite, or always infinite. 

The above extends readily but unhelpfully to more complicated 
systems. The situation to beware of is of misleading analogies. 
Hence, one must be careful of simple extensions of the above section 
to a system as in Fig. 17.1 with F(z) :I: 1. Then although the pseudo-
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error e'(t) = r(t) - f(t)**y(t) satisfies the form used above, to wit, 

, R(z) 
E (z) = 1 + F(z) H(z) C(z) 

we must point out that the 'error' is no longer input minus output. In 
fact, if error is to have the usual meaning of r(t) - y(t), then 

E( ) - (1 + F(z) H(z) C(z) - H(z) C(z» R( ) 
z - 1 + F(z) H(z) C(z) z 

Here, although it is certainly possible to compute e( 00) for various 
R(z), the resulting implications for designing C(z) are not so clear as 
before except when F(1) = 1. 

Example 

Consider a small motor which is to be used in position control, so that 
the output shaft angle is to take on a commanded value. Further, 
assume that the shaft angle is measured by an attached potentiometer 
or shaft encoder, so that there is effectively no delay in reading the 
angle. How elaborate must the controller be? 

Discussion A simple motor model, including a zero-order hold for 
the computer output command/motor input amplifier command, is 
given by 

( (l-e-a - ae-a)) 
(a - 1 + e-a) Z + (a _ 1 + e-a) 

(z - 1) (z - e-a ) 

where a = T /t is the ratio of sampling period T to motor time 
constant t, and Kp is the system gain from input voltage to output 
angle. 

Clearly the motor system is type 1, so that zero error to a step 
command should be achievable with a proportional control law. On 
the other hand, if the motor is to track an input angle increasing at a 
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constant rate, the control law should be of type 1 or higher. A PI 
controller should handle the job. Small, difficult to remove, errors to 
constant inputs may show up in real systems for various reasons, 
however; among these reasons are stiction in the rotation and finite 
brush size and number which make the motor not quite linear in its 
responses. 

17.3 THE CONTINUOUS TIME CASE 

The arguments for continuous time use Laplace transform transfer 
functions and the appropriate limits, but are otherwise exactly parallel 
to those above. We quickly review them. 

It is straightforward to show that, for a system as in Fig. 17.1, the 
error quantity e(t) = yet) - ret) has transfer function relationship 

E(s) = (1 - H(s»R(s) 

_ I + (F(s) - l)G(s)C(s)R( ) 
- 1 +F(s)G(s)C(s) s 

In the unity feedback case, which is the one for which most results 
apply, F(s) = 1 and this becomes 

R(s) 
E(s) = 1 + G(s) C(s) 

and we may consider what happens in steady-state provided this is 
stable. 

Thus for a step input 

ret) = { ~ t ~ 0 
t < 0 

with transform R(s) = A/s, we have 

R(s)s 
ess = t~oo e(t) = s~O s E(s) = s~O 1 + G(s) C(s) 

_ lim A 
- S40 1 + G(s) C(s) 
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If we define the position error constant Kpos as 

Kpos = limo G(s)C(s) 
S~ 

then 

A 
ess = 1 + Kpos 

Similarly we may evaluate with ramp inputs 

r(t) = At U(t) <=> R(s) = As-2 

to find 

R(s)s _ lim A 
ess = s~o 1 + G(s)C(s) - s~o s + G(s)C(s)s 

_ lim A 
- s~o sG(s) C(s) 

With the velocity error constant Kvel defined as 

this is 

Kvel = limo sG(s) C(s) 
S~ 

A 
ess =-K 

vel 

for the position error due to an input with constant rate of change. 
Continuing, we find 

Kacc = lim s2G(s)C(s) 
s~o 
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with 

A 
ess = Kocc 

when the input is the ramp r(t) = A t2/2 U(t) <=> A s-3. It is clear that 
if G(s) C(s) has the form 

G(s) C(s) = N}t) 

for some rational N(s) for which s is not a factor of either numerator 
or denominator, then the parameter L immediately indicates whether 
steady-state errors of asymptotically stable responses are zero, 
potentially finite, or always infinite. This parameter is the system 
type for continuous time systems. 

The above results are for unity feedback systems. For F(s) '* 1, we 
have 

ess = lim e(t) = limo sE(s) 
t~oo s~ 

_ lim 1 + (F(s) - 1) G(s) C(s) sR(s) 
- s~o 1 + F(s) G(s) C(s) 

for which the error can be computed, but for which rules about 
system types and error constants are less reliable. 

17.4 COMPUTER AIDS 

System type is read off from the transfer function and is not amenable 
to, or requires, computer assistance. Steady-state errors can be 
established from the definitions and error constants or by simulation. 

17.5 SUMMARY OF PROPERTIES 

If we define L as the number of open-loop system poles at the origin 
in the continuous time case and at z = I in the sampled data case, then 
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18 
Root locus methods for 
analysis and design 

Root locus methods allow study of the changes in the roots of a 
polynomial as a parameter varies: their implicit but important message 
is that these roots vary in a regular manner as a parameter varies. 
Root locus methods are applied to the denominator polynomials of 
closed-loop transfer functions and hence indicate the movement of 
system poles as a parameter (typically a control compensator 
parameter such as a gain) varies. The techniques are independent of 
whether the system is discrete time or continuous time, but the criteria 
for good and bad poles depend upon that fact (Chapter 19). 

Although the root locus plots are easily generated by computers and 
in fact become very tedious to create manually for systems of order 
greater than 6 or 8, it is worthwhile to understand the fundamentals of 
sketching them so that design is other than pure trial and error. For 
this reason, we consider first the basics of sketching root locus plots, 
and then discuss design using the plots. 

18.1 SYNOPSIS 

The root locus diagram (sometimes in the general cases called a root 
contour) plots the closed-loop poles of a system as a parameter varies. 
In the paradigm situation, this is a plot of the poles of the transfer 
function of the form 

N1(q) 

G(q) = D(q) 
1 + K N(q) 

D(q) 

and more particularly the zeros of the denominator 

(18.1) 
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N(q) 
I + K D(q) 

as the parameter K varies, when N and D are polynomials in q which 
do not contain K. The calculations are easily done by a computer in 
several different ways. Design methods, however, sometimes require 
that the control law C(q) be such that this be modified to 

As knowing how to choose CCq) is something of an engineering art 
form, sketching methods are presented in section 18.2 and design, 
which really is repeated analysis for any but simple parameter choices, 
is the topic of section 18.3. 

The locus shows all possible pole locations as the parameter varies; 
the issue of 'good' choices of pole locations is left to Chapter 19. 

18.2 SKETCHING OF ROOT LOCUS PLOTS 

18.2.1 Basics 

The rules for sketching root locus plots apply to closed-loop transfer 
functions placed in the form (18.1) where Nl(q), N(q) and D(q) are 
polynomials in q, and K is a real constant, frequently a gain constant, 
which is varied to give the locus. In this, q may be either the Laplace 
transform variable s or the z-transform variable z. Further, because 
the interest is in the poles of G(q), it is the zeros of the denominator 
which are of interest, i.e. the system poles are complex numbers qp, 
dependent upon K, such that 

For the purposes of drawing the locus (and for some of the 
frequency domain methods of later sections), the two polynomials are 
presumed to be available in factored form as 
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N(q) _ (q - zd (q - Z2) ... (q - Zm) 
D(q) - (q - p})(q - P2) ... (q - Pn) (18.2) 

where the Zi are zeros and the Pj are poles of the numerator and 
denominator, respectively, and are complex numbers; a gain factor 
within NI D is ordinarily incorporated into the locus parameter K. It 
is presumed that n ;::: m. 

The main rules are summarized here. 

Rule 1: Basic Rule 
Any point qk lies on the locus for some value of K, K > 0, if for some 
integer t' 

and for some K < 0 if 

[N(qk)] 0 

arg D(qk) = ±t'x 360 

The value of K is given by 

Rule 2 
The locus has max(n,m) branches and the closed-loop system has one 
pole (zero of the denominator polynomial) from each branch. Each 
starts at one of the poles at K = 0 and goes to one of the zeros as 
I K I ~ 00. If n > m, then n - m zeros are interpreted as being 'at 
infinity', while if m > n then m - n poles are 'at infinity'. We remark 
that having many zeros 'at infinity' is more common with analog than 
with digital systems. 

Rule 3 
The n - m zeros 'at infinity' are reached by loci converging onto 
n - m asymptotes, provided n "* m. These asymptotes form angles ~i 
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(measured counter-clockwise positive from the real axis of the 
q-plane) of 

{
(2i + 1) x 1800 

n-m 
<Pi = 2i x 180 0 

n-m 

for K > 0 

for K < 0 

where i = 0, 1,2, ... , n - m -1. The asymptotes intersect at the point on 
the real axis with coordinates (<Jc, 0), with 

n m 
LPi - L Zk 
i=l k=l 

n-m 

Rule 4 
A branch of the locus will lie on the real axis to the left of an odd 
number of poles andlor zeros for K > 0 and to the left of an even 
number for K < O. For these purposes, 0 is considered an even 
number. 

Rule 5 
The locus is symmetric about the real q-axis. 

Rule 6 
The locus may exhibit points on the real axis at which closed-loop 
poles transition between real pairs and complex values as K varies. 
These are called breakaway points qbreakaway if the locus branches from 
the real axis as K increases and breakin points qbreakin if the locus 
arrives at the real axis as K increases; the former occur between 
adjacent real open-loop poles (including perhaps poles at infinity), and 
the latter between real open-loop zeros. The locations of such points, 
whether breakaway or breakin, are given by the real solutions qb of 

n 1 m 
L ----=---- = L 
i=l qb - Pi k=l qb - Zk 

1 
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The computation of this location can be perfonned several different 
ways. It is often possible to guess roughly the location of qb, as the 
above calculation and several variant forms of computation are quite 
tedious. One alternative arises if the poles and zeros are real, for then 
the above denominators are distances which are easily determined 
graphically. Another approach (to be used in the example below) 
exploits the observation that the breakaway is the point for which K is 
a maximum on the real axis (or K is a minimum for a breakin point). 
Ordinarily the breakaway or breakin fonns an angle perpendicular to 
the real axis. 

Rule 7 
The locus leaves a complex pole Pi of multiplicity L at an angle given 
by 

e ,= 1800 + arc{N(q) (q - Pi)L} 
PI D(q) q=Pi 

where the cancellation of factors is assumed, and arrives at a complex 
zero Zi of multiplicity M at an angle given by 

{ N(q) } ezl' = 1800 
- arc D( ) ( )M q q - Zi q=Zi 

The 1800 angles used become 00 when considering K < o. 
Usually for sketching purposes, Rule 1 should be kept in mind, but 
Rules 2-6 are crucial, while Rule 7 is a refinement. Even Rule 6 need 
not be computed exactly for sketching purposes. 

The algorithm for root locus diagrams, then, is as follows. 

1. Place the transfer function in form (18.1). Determine the 
number and locations of the zeros and poles of the rational 
function of q in the denominator, i.e. find representation (18.2) 
of the denominator. 

2. Place the poles (using crosses) and zeros (using circles) on the 
graph paper. 

3. Compute the centroid qc for the asymptotes and draw in the 
asymptote lines, which all start from the point (qc,O) in the 
q-plane. 



www.manaraa.com

424 Root locus methods for analysis and design 

4. Start sketching locus branches in the upper half plane (the lower 
half will be a mirror image). First place lines on the real axis. 
Draw arrowheads (showing K increasing in magnitude) as in 
Rule 3. If two arrowheads point at each other (or away from 
each other), then guess (optionally compute) a breakaway point 
(breakin point) and sketch in the perpendiculars. 

5. Fair in lines with the asymptotes. For complex zeros and poles 
either guess or (preferably) compute the arrival (departure) 
angles. 

6. Connect the various line segments. Be sure that each pole has a 
locus branch going to some zero. 

The above comes with experience and the use of a good computer 
program. 

Example: root locus manual technique 

As an illustration of the algorithm for root locus diagrams, we 
consider the rather artificial example 

I 
G(z) = (z - 0 .25)(z - 0.75)(z + 0 .5) 

and the locus as K varies of the closed-loop poles, that is, the poles of 

KG(z) 
H(z) = 1 + KG(z) 

To do this, we need only examine the zeros of the denominator. 
Applying the root locus approach, we first mark the poles and zeros 
of the denominator function G(z): we see there are (n =) 3 poles at 
qp = 0.75, 0.25, -0.5 and (m =) 0 zeros, as shown in Fig. 18.I(a). 
There are three branches to the loci: one starting at each of the three 
poles - these go to three open-loop zeros 'at infinity' . 

Next we find the centroid of the poles and zeros and the asymptote 
angles. The centroid is real, as it must be because all complex poles 
and zeros are paired, and is given by 

0.75 + 0.25 - 0.5 - {O for sum of zeros}_l 
3 - 0 - 6 
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The angles are 

'" _ (2k + 1) 1800 _ 600 1800 3000 _ ~ 51t 
'I' - 3 - 0 - , , - 3 ,1t, 3 

as shown in Fig. 18.1 (b) where the asymptote at 1t is the negative real 
axis. 

Rule 4 is illustrated in Fig. 18.1(c), in which the segments to the 
left of -0.5 and between 0.25 and 0.75 must lie on branches of the 
locus. 

Finally, the breakaway point which must lie between 0.25 and 0.75 
is determined. It could reasonably be estimated as being half way 
between those poles, i.e. at z = 0.5, but was here calculated. The 
calculation 'trick' used was to calculate the value of K which would 
give a value of closed-loop pole on the real axis in the range 
{0.25,0.75}. The largest such K is that 'just prior to' breakaway. In 
particular, we calculate 

(cr - 0.25)(cr - 0.75)(cr + 0.5) + K = 0 

for K as cr varies. A simple search, as illustrated by Table 18.1, is 
usually sufficient for sketching purposes. Clearly the largest value of 
K yielding a real pole in the interval examined is K breakaway::::; 

0.063448, giving Zbreakaway ::::; 0.530 ± OJ. 

Table 18.1 K corresponding to 
particular real axis values cr of s 

0- K 
0.5 0.0625 
0.6 0.05775 
0.4 0.04725 
0.55 0.06300 
0.52 0.063342 
0.53 0.063448 
0.525 0.06342187 
0.535 0.06341963 
0.529 0.06344711 
0.531 0.063446700 

etc. 
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The breakaways are sketched in Fig. 18.l(d), and the poles for K = 
1.094 (at z = -1 + OJ and at z = 0.75 ± 0.79j and respective 
magnitudes of 1.0 and 1.09) are shown also. The latter were found by 
direct calculation. This figure also shows the final root locus. The 
arrowheads indicate the directions of traversing the locus as K 
increases. 
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Figure lS.l Development of a root locus diagram example for a discrete 
time system, showing the stability boundary (unit circle). (a) Placement of 
poles. (b) Sketching of asymptotes. (c) Finding locus segments on real 
axis. (d) Completion of diagram with breakaway point and asymptotic 
loci. 
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The root locus manual technique may also be used to find general 
patterns of loci: general form for two real poles, two complex poles, 
three poles in various combinations of real and complex plus one zero, 
etc. Some of this is done in tables presented by Phillips and Harbor 
(1991, Table 7.6). Many examples are in elementary textbooks. 

We should observe, however, that a very typical discrete time 
system will lead to a form of z-transform such as 

bI Z-I + b2Z-2 + b3 z-3 + ... + bm z-m 
G(z) = 1 + aIz-I + a2z-2 + ... + anz-n 

with bI *" 0 and n ~ m. In this case we see that the system will have n 
poles and n-l zeros (n-m of them at the origin). Then there will be 
one asymptote out to 1t and all other parts of the locus running from 
finite poles to finite zeros. Figure 18.2 shows the locus for a system 
with 4 poles and 3 zeros. 

K ---
~ 

K 

1m 

...... .. .,j-Unit circle . , : . 
: ~ Re 

Figure 18.2 Typical 4-pole 3-zero root locus diagram showing unit circle 
stability boundary. 

18.2.2 Variations 

The treatment of K < 0 is often seen as a variation of the basic method, 
but the essentials have already been noted above. Two other, 
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somewhat related, variations also arise: 

1. treatment of a parameter other than gain; and 
2. treatment of multiple parameters. 

The first variation is easy for a computer program based upon root 
computation, as it does not care which parameter is varying. For 
sketching methods based upon the above, a rearrangement of the 
transfer function is needed. 

Suppose that the denominator has the form 

Nl(q) + KN2(q) 
1 + -D"::"';l (~q )-+-K-D......:2::....:..(q~) 

Simple rearrangement puts it in the form 

{Nl(q) + DI(q)} + K {N2(q) + D2(q)} 
DI(q) + KD2(q) 

and because we are only interested In zeros of this, we may 
concentrate upon 

N2(q) + D2(q) 
1 + K N-l (=q-'-) -+-D-I-'-( q"'-'-) 

which is of the required form. This approach is sometimes called a 
'root contour' method. 

Example 

Consider the simple example 

H(s) = 

1 + a 
K (s + a) 

1 + a 
1 + K (s + a) 

The design parameter is taken to be a (which might, for example, be 
related to a hardware time constant) and K is preset to 0.5. Then the 



www.manaraa.com

Sketching of root locus plots 429 

poles of H(s) are the zeros of 

, 1.5 
D (s) = 1 + <X S + 0.5 

This function may be studied in the usual manner. 

When several parameters must be chosen, the root locus approach 
becomes difficult to implement, for the approach by its nature is 
concerned with a single parameter and a certain structure. To make 
fruitful use of root loci, one approach is to start with all parameters 
set to zero and work sequentially through them, choosing a good value 
for each before proceeding to the next. Each parameter in the 
sequence is evaluated using a root contour. A variation is to place the 
successive parameters on the one plot, and to evaluate the successive 
ones for several values of the first. We best see this with an example. 

Example 

We are to choose the gain and a zero location for a controller to be 
used with the system 

1 
Gp(Z) = (z - 0.25) (z - 0.75) (z + 0.5) 

Thus we are to choose <X and P in C(z) = pz + <X and are concerned 
with 1 + C(z) Gp(z). 

Setting p = 0, we examine the roots as <X varies; the resulting 
diagram was in Fig. 18.1. We might choose values <Xl and <X2 for 
further study, plotting new root loci as functions of p as in Fig. 
18.3(a). An alternative is to show many loci together as in Fig. 
18.3(b), which shows varying <X starting a family of loci in p. 

It is clear from the example that multiple parameter cases can place 
a considerable burden on the designer in trading off the design choices 
to be made. On the other hand, patterns which are useful may become 
apparent. 
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Figure 18.3 Development of plots representing two-parameter design: 
(a) showing the basic ex locus and ~ loci for two values of ex; and (b) the 
family of ~ loci as ex changes from 0.05 to 5. 

18.3 DESIGN IN ROOT LOCUS 

Design with root loci is a matter primarily of design by repeated 
analysis, except of course for the obvious selection of a single 
parameter. 

The situation when the desirable root set is unattainable using only 
K becomes one in which the control law must be changed. Sometimes 
it is obvious what must be done to change the locus: for example, one 
may guess at a new open-loop pole or pole set (or zero or set of zeros) 
and then repeat the single variable design. Thus, a PID controller 
introduces two zeros and a pole along with the gain constant; anyone 
of these may be a design parameter. Alternatively, one may try to 
look at two parameters simultaneously. Either approach requires a bit 
of artistry on the part of the design engineer. 

Example 

Let us consider the selection of a single parameter by root locus 
methods. In particular, we study the proportional control of a simple 
motor; the object is to choose the gain to obtain 'good' response. The 
motor model is taken as 
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Kl (z + b) 
G(z) = (z - 1) (z - e-aT) 

aT - 1 + e-aT 
Kl = a 

1 - e-aT - aT e-aT 

b = aT _ 1 + e-aT 

Design in root locus 431 

We choose the motor time constant as 't = 1 s and select sampling 
frequency as 10 samples/s, so that T = 0.1 and aT = 0.1. Then 

Kl = 0.048 and b = 0.967 

and hence 

G( ) _ 0.048 (z + 0.967) 
z - (z - 1) (z - 0.905) 

U sing the root locus approach, we first plot the diagram labelled P 
control in Fig. 18.4. We also calculate a few numerical values, in 
particular, 

Zbreakaway z 0.952 

Zbreakin z -2.87 

IIzll z 1 at roTz 30° = TC/6 

where K z 0.024 

where K z 158 

where K z 2.05 

We return to this in Chapter 19, but at this point we comment that 
the alternative choices of K are not attractive: either slow frequency 
of response for small K or slow decay of transients for larger K. 

Let us reconsider the design and in particular consider using a PI 
controller, digitized as 
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z K(z-c) 
G(z) = Kp + Kj --1 = 1 z- z-

where K and c are to be chosen. A quick root locus sketch shows this 
is unlikely to help. We try instead a PD controller of the form 

z - 1 (z - c) 
G(z) = Kp + Kd -z - = K z 

1m 
1 

PD Control 

Re 

Figure 18.4 Two parameter loci. The effect of various zero locations 
(PD control) on the basic locus. Example design with varying zero 
location. 

Sketches of the resulting root locus diagrams for various c = KdlK 
with K = Kp + Kd as the root locus parameter are in Fig. 18.4. By 
choosing c::::: 0.5 or greater, the root locus is made to bend into the 
unit circle. We choose c = 0.7 from which the K value of K::::: 5 (~ 
Kp = 1.5 and Kd = 3.5) yields poles at zp ::::: 0.28, 0.69 ± 0.32j. The 
reasons for these choices come in Chapter 19. Figure 18.5 shows step 
responses of some of the compensators considered. 
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Figure 18.5 Step responses for P control and PD control, with 
parameters chosen from the root loci of Fig. 18.4. 

18.4 COMPUTER AIDS 

The above is in principle not difficult to do on a computer, and 
algorithms tend to be of two varieties. 

1. Compute the roots of D(q) + K N(q) as K ranges over some 
selected range. Attempt to build loci by connecting the 
appropriate roots in each set. Thus for an nth order system, for 
each K compute the n roots and then attempt to connect the 
corresponding roots from each set to form the plot of the loci. 

2. Search for points z satisfying the angle criterion and 'near' a 
point already on the locus. Connect the new point to the old and 
continue. Start each branch of the locus at a pole and end it at a 
zero. 

Both methods have problems, usually associated with branching 
points, such as breakaway and breakin points, of the loci. Either 
method needs careful programming and use to avoid ambiguities and 
errors in the plots. For this reason, one is well advised to have at least 
some knowledge of the expected appearance of the locus. 
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The first option is easy for a personal computer and is used in some 
commercial packages such as MATLAB®; it presents difficulties in 
showing fine detail unless the user is prepared to interactively adjust 
the parameter set to be plotted or to mentally fill in gaps which may 
appear in the loci between calculated roots. The second option iterates 
on the basic angle rules while searching over the complex plane for 
candidate locus points; the programming can be tricky. 

18.5 SUMMARY 

We have considered only the essence of root locus plotting so that the 
engineer will be able to develop notions of the effects of design 
choices. Computers make it easy to generate approximate root locus 
plots for any given parameter variation, and the methods are 
independent of whether the system under consideration is continuous 
time or discrete time. 

18.6 FURTHER READING 

Root locus plots are standard in most introductory level textbooks. 
Root locus diagrams themselves are actually independent of the system 
studied - only the interpretation of good and bad poles depends on 
whether the system is discrete time or continuous time. Hence most 
textbooks (e.g. Dorf (1989), Kuo (1980), Franklin et ai. (1990), 
Phillips and Harbor (1991), etc.) can help. For drill, the student 
might look at such as (DiStefano et ai., 1976). 



www.manaraa.com

19 

Desirable pole locations 
It is always required that system characteristic values, also known as 
transfer function poles and dynamics matrix eigenvalues, be stable, 
meaning that they should be in the left-half plane for continuous time 
systems and within the unit circle for sampled data systems. It is also 
true, however, that some pole values may yield more desirable system 
responses than other values. We explore this issue in this chapter. 

19.1 SYNOPSIS 

There are two ways to set the poles of linear systems: by direct 
selection in the complex plane and indirectly by optimization methods. 

We study the direct evaluations in section 19.2 for both continuous 
and sampled data systems. The characteristic values A of linear 
constant coefficient systems are either real or in complex conjugate 
pairs. The usual representation for continuous time systems has 

for real and complex poles, respectively, where ~ is the damping 
coefficient and (On is the undamped natural frequency. Usually if one 
considers the traditional performance indicators, then speed of 
response requires that if possible cr or ~(On be 'large', while reasonable 
trade-offs on overshoot and speed of response lead to ~ in the vicinity 
of 0.5-0.6. 

Similarly, for sampled data systems the poles are of the form 

A = r or AI,2 = re±jep 

with stability requiring I r I < 1, speed of transient decay higher when 
I r I « 1, and speed of oscillation increasing as <I> ranges from 0 toward 
1t. 

When there are many poles, as in a high-dimensional system, then 
sometimes the response is dominated by (Le. looks most like) a 
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particular pole or pole pair: a pole pair much closer to the origin in a 
continuous time system, or closer to the unit circle in a sampled data 
system, than other poles. This pair is then used for design to meet 
classical performance measures, using approximate rules of thumb 
such as: 

1. ratio of successive oscillations := 0 = r21t/4>; 
2. oscillation period = 2re/ffid := 2reT/<\>; 
3. percent overshoot to step response := 100{B; 
4. 2% settling time := T In(0.02)l1n(r); and 
5. time to peak of overshoot := reT/<\>. 

Here T is the sample period. Similar approximations for continuous 
time systems are: 

1. the ratio of successive peaks := exp (-21t~/(1- (2)!); 
2. period of oscillation = 21t/ffiosc = 21t(On(l-~2)~)-1; 
3. percent overshoot = 1 00 exp( -re~/(l-l;2)!) 

:= 100 (l-l;/0.6) l; < 0.6; 
4. 2% settling time ts := 4't = 4/?;ffin; 
5. peak time tp = 1t/(ffin (l_l;2)!); and 
6. rise time tr := 2.5/ffin. 

An alternative point of view is to choose poles to minimize a 
particular criterion such as ISE (integral squared error) or a trade-off 
of error and control effort as in the linear quadratic regulator (LQR) 
problem. This gives the appearance of objective design but requires 
freedom in choosing the design parameters. 

19.2 PLACEMENT OF POLES IN THE COMPLEX 
PLANE FOR DISCRETE TIME SYSTEMS 

For a linear discrete time system, there will be a transfer function 

m 
L biZ-i 

Xill i=O 
G(z) = U(z) = --n--

1 + L aiz-i 

i=l 

(19.1) 
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relating the output sequence {y(k)} to the input sequence luCk)}. 
From the fundamental theorem of algebra (that any polynomial may 

be factored into a product of terms linear in the variable, or terms at 
most quadratic if all coefficients are real) it follows that the above is a 
sum of terms of the fonns such as 

where: 

K z-j j=O,I, ... 

(1 - p) z-1 
K l_pz-l 

z-1 (1 - Zo z-1) 
K Gc 1 _ 2rcos<» z-1 + r2z-2 

G _ 1 - 2r cos $ + r2 
c - 1 - zo 

and the complex zero fonn 

1 - 2rocos$0 z-1 + r1, z-2 
K Gc 1 _ 2rcos<» z-l + r2 z-2 

with Gc now given by 

G _ 1 - 2r cos $ + r2 
c- 2 1 - 2rocos<»0 + ro 

(19.2) 

(19.3) 

(19.4) 

(19.5) 

All of the parameters K, p, zo, r, and <» are real and have the 
following interpretations: K is a gain, p is a real pole, Zo is a real 
zero, and in (19.4) there is a complex pole located at (r cos <», r sin <» ), 
i.e. a pole pair of magnitude r and angle ± <» to the real axis. Gc is 
chosen so that when K = 1, a unit input gives - eventually - a unit 
output for a stable system. In (19.5) both a complex zero pair at 
(ro cos <»0, ro sin<»o) and a complex pole pair as in (19.4) are present. 
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Complex zeros with a single real pole and stand-alone poles (or zeros) 
are also possible in digital compensators. 

Since the transfer function can be written in a partial fraction 
expansion, it follows that the output is the sum of outputs from 
individual sections of the above types, each with the same input. 

The term in (19.2) is simple and uninteresting, since the output is 
simply a delayed multiple of the input; it gets more interesting when 
several such terms are considered together, as this constitutes what is 
called a finite-duration impulse response (FIR) filter in the signal 
processing literature, and it is discussed in detail there, including 
design for noise removal and signal emphasis. 

The first-order term (19.3) is more interesting per se. It may be 
interpreted as relating input sequences {u(k)} to output sequences 
{y(k)} as in (19.1) and may be implemented as 

y(k+ 1) = p y(k) + K(l-p)u(k) 

This system's response for a unit pulse input is 

y(k+ 1) = K(l_p)pk k=O,l, ... , 

when yeO) = O. The unit step response is 

y(k) = K(1_pk+l) 

One should note that these converge if I pi < 1, and the pulse 
response, unlike continuous time first-order systems, oscillates 
between + and - errors if p < O. 

Most interesting is the quadratic type term in (19.4), and we look at 
an example to study its characteristics. 

Example 

We look at (19.4) with K = 1 and consider the effect of varying r, $, 
and Zo relative to a nominal case defined by 

r = 0.8 

$ = 0.5 rad 

Zo = 0 



www.manaraa.com

Placement of poles in the complex plane 439 

Direct inverse transformation shows that the decay rate of the 
oscillation depends heavily on r, the frequency on </>, and that Zo 
particularly affects the initial direction and magnitude of the response. 
The latter appears to have a heuristic interpretation related to a 
derivative type of term, and partly because of the gain term Gc, it can 
contribute a large output when the input is a pulse, step, or other 
rapidly changing signal. This contribution can be seen in Fig. 19.1. 

(a) 
2 __ ~--__ ~--__ ~--__ -r--__ ~~ 

· · · . . 
:r=O.S: 

: · · · · · ... ··}.·····~7 ... ~····.· ····i····· i·····.··· .. ~ ..... ~ ..... Q) ...,..... I 

~ : If O.!.: ~\: : : : : : 
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Figure 19.1 Effects of the parameters in quadratic discrete time systems: 
(a) effect of distance r of poles from origin; (b) effect of zero location z. 

In spite of this occasional dominance by the zeros, it is possible to 
identify desirable regions for the poles. We consider how the poles 
affect the solution. 
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Expanding (19.1) to fIrst-order terms yields the form for G(z) as 

G(z) = ~ 1 - ZPiZ-1 

where ai and ZPi may be complex; for convenience we assume that no 
factors of G(z) are repeated in the original form (19.1). Then the 
inverse transform yields 

n 
g(kD = L aiz~i 

i=l 

The individual terms of the expansion are time-varying of the form 

(19.6) 

Hence, the magnitude of g(kD develops as the kth power of the pole 
with the largest magnitude (which necessarily must be less than or 
equal to one for stability). This 'dominant pole' then can have its 
magnitude be a design constraint. Very roughly, if error magnitude 
after p steps is to be less than q times the initial magnitude, then we 
need 

IIzp Ilk eo < qeo 

or 

Example 

The ten-step error magnitude of a system response is to be less than 
0.01 of the original value. Then 

IIzp IImax < (0.01)1/10 = 0.63 
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Circles of constant z are useful additions to the root locus diagram, as 
in Fig. 19.2(a). 

(a) 

1m 

I 

-- --,;' ..... . . 
/ ,;' 

' ..... '\ . 
" I I ,.. ..... \ . \ . 

I \ Re 
·1 

(c) 

(b) 

roT =27tf3 -
\ 

\ 
\ 

\ 
\ 

roT =57tf6 .... 
..... 

..... 

1m 

\ 

roT=7tf2 

1m 

\ 
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/ 
, \ / .,; 

,\ .,; 

/ 
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.,; 

I 
/ 

roT =7tf3 

Figure 19.2 Development of graphical display of pole influence 
representations: (a) distance from origin (::::} speed of decay); (b) angle 
relative to real axis (::::} oscillation frequency); and (c) damping indicator. 

There is also the question of oscillation frequency to consider. 
From (19.6) it is clear that the angle of a tenn will change by one 
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cycle (i.e. an angle of 21t) in p steps if 

where 

arc' (a) = arc(a) 

= arc(a*) 

if arc(a) S 1t 

otherwise 

(19.7) 

This gives us a criterion for choosing or evaluating pole angles. In 
particular, for example, if a response is to oscillate through one cycle 
in p steps, (19.7) suggests how to place the pole angle. Lines of 
constant cycle frequency are indicated in Fig. 19.2(b). 

Example 

The response of the preceding example should go through one 
oscillation in 12 steps. Then we place the dominant pole so that 

are' (zPmax) = 1t/6 = 30° 

Using this with the magnitude criterion used above, 

Zp = 0.63 ei30° = 0.63cos 30° + 0.63j sin 30° 

= 0.55 + 0.32j 

Since complex poles must necessarily come in pairs, 0.55 - 0.32j will 
also be a pole of this system. 

More important, or at least more accessible and understandable, may 
be a requirement to understand the damping of a term. By this we 
will mean the ratio of successive peaks in an oscillatory response. 
Since a single term contributes 
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to the response, it contributes one oscillation in the number of steps k 
for which k = 21t/arc(zp). We define the damping 0 as the ratio of 
successive peaks, i.e. the ratio defined by 

where q and (k + q) are indices of times yielding oscillation peaks in 
the error. Using this and the defining relation (19.7) for oscillation 
period yields 

o = II Zp II 21t/arc(Zp) 

This also gives us a criterion for design and evaluation of pole 
locations. 

Example 

The dominant response should oscillate once in each 10 steps and 
should have a ratio of successive peaks of 0.3. Where should the pole 
Ii ? e. 

By performing a calculation like that in the previous example, we 
may find arc(zp) = 36°. Then 

0.3=lIzp lllO 

yields 

IIzpll = 0.887 

and hence 

zp = 0.72 ± 0.S2j 

where again both members of a complex conjugate pair must be 
present if one member is. 

Spirals of constant 0 may be drawn and appear in Fig. 19.2(c). A 
form combining all indicator lines is in Fig. 19.3. 
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(a) 

\ 
\ 

\ 
\ 

(b) 

1m 

1 

1m 

1 
I 

I 

roT = rc/3 
I 

I 
I 

I 

roT = rc/6 

Re 
1 

roT = rrJ6 
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Figure 19.3 Root locus pole placement form: (a) upper half of unit 
circle; and (b) first quadrant. 
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The above design 'rules' are definitive only if we indeed have 
dominant poles, and then only when the terms due to other poles have 
essentially died out. Nevertheless, they always will help bound the 
actual performance. More difficult to separate are the rise time and 
percent overshoot, which may well happen while several poles are still 
making their presence felt. To study this, we must assume dominance 
plus make an assumption about the presence or absence of zeros. 
(Results here are of the type which may make initial rules of thumb, 
but should be checked for the actual system - perhaps by simulation.) 

We have already seen time constant effects as indicated by r = IIzpll 
and oscillation frequency effects as indicated by <1>. We now look at 
rise time and peak overshoot indicators. The effects of zeros will 
show in a phase smft 9, so that errors are of the form 

e(nT) = KrnT cos (<1>1 n + 9) 

This response has an envelope given by the exponential term. If 9=0, 
then the maximum error after time = ° will for a stable system occur 
at approximately the first time np for which I cos (arc(pole»I= 1, 
which is when np= 1t/arc(pole) and hence the overshoot will be 

II zp 1I(7rlarc(pole» 

This of course presumes np is an integer; otherwise a 'nearest 
integer' situation may prevail. 

When 0 #- 0, then np = (1t - O)/arc(pole) and 

overshoot z II zp 1I(1t- 9)/arc(zp) 

We note that the expression II pole 1I(1t/arc(pole» is the square root of 
the ratio 0 used earlier. Hence we may parameterize the percent 
overshoot using o. The phase shift 9 is related to the zero location 
Zo = C, and either 9 or c may be used as a parameter. The effects are 
shown in Fig. 19.4, which resulted from simulation. 

In summary, we have the following approximate relations to 
classical performance indicators: 

1. Oscillation period = 21t/OOd z 21tT/arc(zp) 
2. Percent overshoot to step response z 1 00 ~ 



www.manaraa.com

446 Desirable pole locations 

(5 
o 
J:: en .... 
Q) 

~ 
c 
Q) 

~ 
Q) 
Q. 

100~~~~~~~~~~~-•• ~~~~ 

zo= ~:~ ••••••••••••••• 
.. "' .............. . 

. 
.#,#,# 

.' 

. . 

No zeros 

Figure 19.4 The effect of damping parameter S on percent overshoot for 
various zero locations c for discrete time systems. 

3. 2m 1· . 4 T In(0.02) 
-10 sett mg tIme::::: 't::::: 1n(1I zp II) 

4. Time to peak of overshoot::::: rtf) arc Zp 

5. Ratio of successive oscillations::::: 8 = "Zp 1121t1arc(zp) 

With these parameters in mind, it is possible to select some pole 
locations. This is particularly true if there are only two poles, or if 
one pole or pole pair clearly dominates the response of the system. 
The latter, incidentally, also shows up if a pole and a zero are 'close' 
together, for then the pole's term in the transient response will have a 
small coefficient and hence make a small contribution to the response. 

19.3 POLE LOCATIONS FOR CONTINUOUS TIME 
SYSTEMS 

The situation is similar for continuous time systems. We first 
consider systems described by linear coefficient constant ordinary 
differential equations and hence having transfer functions such as 
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bmsm + bm_Ism- I + ... + bI s + bo 
G(s) = ansn + an_Isn-I + ... + al s + ao 

Usually n ~ m and all coefficients are real. The denominator can be 
expanded into factors of the form 

(s + cr) 

and hence G(s) has a partial fraction expansion 

in which the denominator of each Gj(s) has only one such factor and 
the numerator order is less than or equal to that of the denominator. 
For this reason the system response is a superposition of responses due 
to the individual terms, and we are justified in considering only the 
responses of typical such terms. 

Linear factors When GiCs) has the form 

a 
s+cr 

then it is easy to see that the unit step response with zero initial 
conditions is 

a 
yet) = - (1 - e-at) 

0' 

Clearly all responses are of the same shape and having 0' large 
means that the transient will decay very rapidly until yet) takes on its 
steady-state value a/cr. There is no overshoot, and all speed related 
indicators (rise time, settling time, delay time) are faster for large 0' 

than they are for small cr. An alternative notation has 
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. 1 
't = tune constant = a 

Quadratic factors The situation becomes more interesting for 
quadratic factors such as 

as + b 

where S, o~s~ 1, is called the damping ratio and COn is called the 
undamped natural frequency. The factor has its poles at 

If we take a = 0 and b = co~ and normalize the time axis for various 
S we can find unit step responses as in Fig. 19.5. 

<1> 
I/) 
c: o 
0. 
I/) 

l:!? 1 
0. 
<1> 

U5 
· · · · · · · • • I • ....................................................... 

, • I • · . , . 
• • I • · . , . t • • • 
I • • • 

• • I • 

o~~ __ ~ __ ~ __ ~: __ ~: ___ :~~:~ 
o 15 

Normalized time - ront 

Figure 19.5 Effect of damping ratio ~ on step response for continuous 
time systems. 
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It is straightforward to show that the error is of the form 

exp(-~(Ont) ( [ v=Q ] ) 
e(t)::::; ....;1_~2 cos ron....;I-~2 t + tan- 1 ~ 

Various parameters are of interest and can be computed; these are 
defined in Chapter 13. The time constant t is sometimes used and is 
defined here as 

Other parameters specific to the second-order system with complex 
poles are as follows. 

1. 

2. 

Peak time tp = ....; 1C ~2 
ron 1-

-1C~ 
Percent overshoot = 100 exp ....; I _ ~2 

::::; 100 (I - 0\) ~ < 0.6 

3. Settling time ts. 2% settling time is approximately after 4 time 
constants: 

4 
ts::::; 4t = y-­

~ron 

4. The ratio of successive peaks is roughly 

5. 

( 
-21C~ ) 

r::::; exp ....;1_~2 

Ri . 2.5 
se tIme tr ::::;­

ron 

From these one trade-off is immediately obvious, as it was on the 
graphs: large ~ means small overshoot but late peak time. It is 
common to consider ~ the order of 0.5-0.6 as being a reasonable 
choice. Graphs of some of the functions and the effects of a zero at 
s = - a are given in Figs 19.6 and 19.7, respectively. 
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Figure 19.6 Effect of damping ratio ~ on percent overshoot and peak 
time for continuous time systems. 
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Figure 19.7 Effect of damping ratio ~ on percent overshoot as a function 
of zero location for continuous time systems. 
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The above define the response characteristics of a pole or pole pair 
in terms of standard representation parameters. They are 
conveniently placed upon a root locus diagram for guidance in 
choosing poles. To this end we notice that for a particular pole 

Wn = distance from origin 

= undamped natural frequency 

~ = cos( $) where $ is the angle of pole with negative real axis 

~wn = -r-l 

= - real part of pole 

Wd = actual oscillation frequency 

= imaginary part of pole 

= wn ...j 1-~2 

One can place (slanted) lines of constant ~, circles of constant 
undamped frequency Wn, vertical lines representing constant values of 
t (since Re(s) = -lit), and horizontal lines corresponding to constant 
oscillation frequency Wd, as appropriate to represent specifications. 
Such guidelines are demonstrated in Fig. 19.8. The design steps 
involve plotting a root locus on such a form and using it to choose the 
closed-loop poles. 

With the root locus diagram in hand, the engineer attempts to 
choose a 'good' value Kif of the available parameter K. Good is taken 
to mean a value such that the resulting poles are those of a closed-loop 
system with rapid response in which transients are small and die out 
rapidly. This translates to requirements as follows. 

1. Kif must be such that all poles are in the left-half plane. This is to 
yield a stable system. 

2. It is preferred, for reasons of speed of response, that poles be as 
far to the left as possible. A requirement is often one that 
transients will decay faster than e-ot , which necessitates 
Re(poles) < -0" < 0 for a specified 0". 

3. Overshoot in response to step inputs should be at a reasonable 
level. This often means that the most important complex poles 
should have damping coefficient S in the range 0.4 < S < 0.7. 
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Figure 19.8 Root locus form for continuous time systems, showing 
circles (._._._.-) of constant natural frequency COn (except <On = 1 is solid), 
slanted lines (-----) of constant damping ratio ~, vertical lines of constant 
cr = -~<On = -l/'t, and horizontal lines ( .. -. '-' .-) of constant damped 
frequency. 

Example 

An example of G(s) is shown overlaid with indications of the regions 
cr $; -1.25 and 0.4 < ~ < 0.7 in Fig. 19.9. K" should be chosen if possible 
so that poles will be in the desired region, i.e. 0.47 <K" < 1.36. 

With the above in mind, it is possible to attempt to meet specifications 
on response. If they cannot be met, then it is necessary to introduce 
more complicated elements into the compensator C(s). 
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Figure 19.9 Root locus plot showing region of desirable poles. It is 
possible here to select a gain such that the poles are in that region. 

19.4 DESIGN FOR DESIRED POLES 

If specific properties are sought, this translates into a certain 
specificity in pole location. Our choices then are to modify root locus 
plots so that the desired poles are obtained, to use a design method in 
which all poles can be specified either precisely or to be within a 
certain region (Chapter 23). 

19.4.1 Design in root locus 

Design with root loci is a matter primarily of design by repeated 
analysis, except of course for the obvious selection of a single 
parameter. 



www.manaraa.com

454 Desirable pole locations 

Example 

Let us consider again the example of section 18.3 and the selection of 
a single parameter by root locus methods. The root locus plots of the 
proportional control and the PD control with zero at c = 0.7 is 
overlaid with the parameter plot Fig. 19.3 to yield Fig. 19.10. 
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Figure 19.10 Selecting the attainable closed-loop pole for the example 
system of section 18.3: (a) overview; and (b) close-up of portion of first 
quadrant. 
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Examining the plot makes the trade-off clear: increasing K leads to 
faster response oscillations (larger ron but slower damping (smaller 
0) and slower transient decay (larger pole magnitude). One possible 
design chooses 0 = 0.1, for which roT::::: rc/24 and from the graph 
zp ::::: 0.9 ± 0.2j and K ::::: 0.05. It may be predicted that the system with 
this gain will be stable, will oscillate at around one cycle each 48 
samples (i.e. about every 4.8 s), and will have oscillations reduced by 
90% each cycle. Results for the chosen values K = 1 for P control and 
K = 5 for PD control were shown in Fig. 18.5. 

For this simple system, all of the numbers can be calculated exactly, 
but this defeats some of the purpose of using the graphical method. 

The situation when the desirable root set is unattainable becomes one 
in which the control law must be changed (section 18.3) or the desires 
must be modified. Either approach requires a bit of artistry on the 
part of the design engineer. 

19.4.2 Design for regions of the complex plane 

The above examples, and many in later chapters on pole placement 
techniques, involved the selection of particular poles. In fact, what is 
needed is good response, which means only that poles must be such 
that the response has particular properties. The latter, in fact, then 
means that poles must be within a region r of the complex plane, with 
exact choice being influenced by other considerations. One suggestion 
for sampled data systems is that r be the intersection of the regions 
defined by r :::;; rc and ~ :::;; ~c for choices such as rc = 0.4 and 
~c = 104; to simplify the mathematics, this can often be taken as the 
circle 

r = {z I liz - ~II :::;; ~ where rc < 0.5 } 

Design algorithms for such regions are considered in Chapter 23. 

19.5 ALTERNATIVE POLE SPECIFICATION -
OPTIMAL POLES 

An indirect specification of the poles results from using criteria such 
as 'optimal' response and doing numerical optimization. Two of these 
methods are indicated in this section. 
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19.5.1 Prototype design 

One technique which serves to specify all of the poles is that of 
prototype design. For this section, we let 

A S 
S=­

(00 

where <00 is roughly (sometimes exactly) a bandwidth parameter and 
hence can be selected, e.g. using rise time specifications. The idea 
here is that all of the settable poles are chosen according to some 
criterion, usually representing some optimality argument. 

For example, the closed-loop poles for a zero-less system (able to 
have zero steady-state error for a step input) of third order using a 
criterion that the ITAE (integral time absolute error) 

ITAE = J tle(t)ldt 

should be minimized have been found numerically to be at (Franklin, 
1985) S = -0.7081, -0.521 ± 1.068j. 

These can be mapped to sampled data system poles if necessary. It 
is worth remarking that a one-zero closed-loop system will not have 
the same poles, nor will a system designed to a different criterion. 
The latter is clearly illustrated in the different characteristic equations 
found by D' Azzo and Houpis (1968), when they considered five 
different criteria, including IT AE and 5% settling time. 

Tables 19.1 and 19.2 show pole locations for these criteria, and 
Figs 19.11 and 19.12 show some normalized step responses. 

Table 19.1 Characteristic equations for optimum ITAE 
response 

& + 1 
12 + 1.4 & + 1 

S3 + 1.7512 + 2.15& + 1 
S4 + 2.1 &3 + 3.4 12 + 2.7 & + 1 

SS + 2.8 S4 + 5.0 33 + 5.5 Sl + 3.4 S + 1 
S6 + 3.25s5 + 6.6 S4 + 8.6 S3 + 7.4512 + 3.95s + 1 

*Derived from D' Azzo and Houpis 1968, 1988 
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Table 19.2 Characteristic equations for minimum 5% 
settling time 

s + 1 
f2 + 1.4 S + 1 

13 + 1.55 f2 + 2.10 $ + 1 
S4 + 1.6 13 + 3.15 f2 + 2.45 $ + 1 

$5 + 1.57 S4 + 4.05s3 + 4.10 f2 + 3.02 s + 1 
Sf> + 1.45 $5 + 5.1 S4 + 5.3 13 + 6.25 f2 + 3.426 $ + 1 

*Derived from D' Auo and Houpis 1968, 1988 
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Figure 19.11 Step responses of nth order systems with poles chosen to 
optimize the ITAE criterion, for n = 1,2,3,4. 

It is possible to consider minimizing other performance indices such 
as integral square error (IS E) and integral absolute error (IAE) 
(Chapter 13). This is done in texts such as Dorf (1989) and D' Azzo 
and Houpis (1968, 1988). An alternative is to make the system 
explicitly have one of the well-known low-pass filter transfer 
functions of known type; one of the possibilities is a Butterworth 
characteristic (the transfer function is very flat for low frequencies). 
This is presented by the text of Franklin and Powell (1980) and the 
paper of Franklin (1985). 
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Figure 19.12 Step responses when poles are optimized to minimize 
settling time, for n = 1,2,3,4. 

The above may in principle be converted to sampled data system 
forms using impulse invariant response conversions or may be 
recalculated by going back to the original works (Graham and 
Lathrop, 1953). 

19.5.2 Optimal pole locations 

We shall meet optimal control theory in Chapters 26-27, but let us 
summarize a result here which is relevant. We have already met 
criteria ITAE and settling time, and we indicated that ISE and IAE 
criteria are also minimized by choice of pole locations. Consider the 
quadratic criterion 

N 
J = L {xT(k) Qx(k) + uT(k) Ru(k) } (19.8) 

k=O 
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for the usual linear system 

x(k+ 1) = Ax(k) + BU(k) 

If the sum is from 0 to 00, then this is called the linear quadratic 
regulator (LQR) problem of optimal control theory. It turns out that 
the minimum value for (19.8) is attained when the control u(k) is 
chosen to be the value, which we denote by u *(k) to indicate 
optimality, computed from 

u*(k) = Kx(k) 

where K is the solution of 

K = - [R + BTPB]-l BTPA 

P = Q + ATPA - ATp [R + BTPB]-lBTPA 

In continuous time, the corresponding result has u*(t) = Kx(t) 
where 

K = -R-IBTp and ATp + PA + Q - PBR-IBTp = 0 

The closed-loop poles will then be given by the characteristic 
equation of (A + B K). The derivations of this are given in 
Chapter 26. 

The point here is that a systematic way of arriving at a pole set is 
possible, provided that the weighting matrices Q and R can be 
determined. The latter is the engineering problem, and it is one that 
has not really been solved in general: there is no clear relation 
between Q, R, and various traditional criteria even though it is known 
that for any K there is a corresponding optimal control problem. 

19.6 SUMMARY 

We first comment upon what can and cannot be done with pole choice 
alone. In evaluating the system, a common response waveform to 
examine is the unit step response, which may be taken as indicating 
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how rapidly and accurately the system will take up a new set point. 
We discussed this in Chapter 13 and suggested various criteria, such as 
rise time and percent overshoot, for the response. By choosing poles, 
we choose the decay rate of the envelope of the response and the 
frequency of oscillation of the error. This has a bearing on all of the 
indicators, but ultimately is the main arbiter only of the settling time; 
all of the other factors can be strongly, even critically, affected also 
by zero locations. 

Given the above disclaimers, it is still reasonable to attempt to 
choose poles. This is particularly because they get us started in a 
design, which might nevertheless be tuned further, e.g. using 
simulation methods. When we choose poles, their relation to response 
should be kept in mind, and that was really the point of sections 19.2 
and 19.3, along with giving a preliminary guide to 'good' locations. 

If optimization is allowed, there is implicitly a feeling that many 
poles can be set, at least in the methods presented in section 19.5. One 
also has a certain disquiet about those. Considering that an SISO 
system with identity observer (Chapter 25) and state feedback 
(Chapter 23) will have us placing up to 2n poles for a system with n 
state variables. and that 'good' response requires perhaps five 
specifications (Td, Tr, Ts, Mp, ess for some signal form) to be met plus 
'good' disturbance rejection, all without excessive sensitivity to 
modelling errors and with a reasonable cost, it can seem overly 
restrictive to require us to choose so many poles. It may well be that 
good design can be done with only a few parameters chosen. One 
attempts then to place all poles within a region of the complex plane, 
rather than at particular points. Techniques for this are not yet well 
established, but one approach is mentioned in Chapter 23 . 

19.7 FURTHER READING 

Pole choice in root locus design methods is given in various texts, 
including Dorf (1989) and Franklin, Powell, and Workman (1990). 
D' Azzo and Houpis (1968) is one of the earlier textbooks which 
elaborates somewhat upon prototype-based design and related 
methods. See also 0' Azzo and Houpis (1988). A recent unifying 
paper concerning the pole location region r is (Haddad and Bernstein, 
1992). 
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Bode diagrams for 
frequency domain analysis 
and design 

The classical methods known as frequency domain techniques have 
their origin with electrical engineers, who rely extensively on 
representations of signals as sums of sinusoids in their modelling and 
analysis. It has seemed natural for them to carry such ideas with them 
into control systems analysis and synthesis, often with considerable 
success. Less successful has been the direct use of the methods for 
sampled data control systems (although indirect use characterized by 
conversion of continuous system designs is possible). This has been 
for several reasons: the approximations that allow sketching do not 
always apply, the compensators of most common use are not so 
relevant for digital control systems, and well established relationships 
between step responses, pole locations, and frequency responses seem 
to hold only roughly for sampled data systems. Nevertheless having at 
least some knowledge of frequency domain methods is fundamental, 
and for that reason we review them here. 

20.1 SYNOPSIS 

Interestingly enough, and perhaps curiously, it is not the closed-loop 
frequency response which is usually used in frequency domain 
analysis. Rather, the design methods are used for studying the 
denominator of the closed-loop frequency response of certain 
structured systems. Typically we have a form 

C(q) Gp(q) 
G(q) = 1 + C(q) F(q) Gp(q) 

for the closed-loop transfer function, and we wish to study and design 
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compensators C(q) (where q can be either z or s at this stage) for the 
form 

N(q) 
1 + C(q)G(q) = 1 + C(q)F(q) Gp(q) = 1 + C(q) D(q) 

in which a gain compensator, C(q) = K, is only a special but important 
case. To do this, we make one or more of three types of graphs of the 
frequency response: the Nyquist (polar) plot, the Bode (magnitude and 
phase versus frequency) plots, and the Nichols (log magnitude versus 
phase) plot. 

This frequency response information is available experimentally for 
some plants using an experimental set-up as in Fig. 20.1. 

Signal Generatorf---~ 

jq,( ro) 
e 

B sin(rot + $) 

Oscilloscope 

Figure 20.1 Equipment configuration for experimental determination of 
frequency response. 

The Bode plots seem particularly familiar because of their common 
use for representing frequency response data for such consumer items 
as audio systems. We concentrate upon them here because they are 
easy to sketch and to perform rough designs upon. Furthermore they 
give an indication of stability margin for stable systems. 

Serious users will probably, after learning how to make sketches 
and preliminary designs, use computers to generate the necessary plots 
and even the final designs. They will also pursue the alternative 
representations, Nyquist diagrams (Chapter 15) and Nichols charts, 
which we only mention here. 
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20.2 THE BODE PLOTS 

The Bode plot representations of frequency response data are useful 
partly because they are easy to sketch and perform a basis for rough 
designs. They are particularly applicable to continuous time systems, 
as the sketching property does not carryover directly to sampled data 
systems. Hence we present first continuous time models and then 
show how the techniques may be applied to sampled data models. 

20.2.1 Continuous time systems and associated sketches 

The starting place for Bode plots is the transfer function 

....::b'-'ocs_m_+.:........::cbJ.I.::.-sm_-_I_+..:.........:b-:"2c..s_m_-2----'-+_._. ·_+..:.........:b...!1.mL-H(s) --
- sn + QlSn-I + a2sn- 2 •• • + an-l s + an 

where by assumption one usually has m ~ n. 
The Bode plots have two characteristics, both resulting from the 

choice of quantities graphed, which make sketching them easy. 

1. Because of the ordinate choices (log (magnitude) and arcO), the 
plots can be reduced to additions of simple terms. 

2. Because of the abscissa choice (log (0) along with the ordinate 
choices, it turns out that straight line asymptotic approximations 
are fairly accurate for each term. 

To see this we consider the typical HUw). This will have the 
factored form 

. NUw) , UW-ZI)UW-Z2) ... Uw -Zm) 
H(jW)=DU )=K U )kU )U ) U ) 00 00 W-PI W-P2 .• • 00 -Pn 

By combining complex conjugate poles (and zeros) and 
manipulating the result, this is placed in the Bode form 
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From this we have that the magnitude and angle can be given by 

20IogIlH(jeo)1I = 201og1KBI- 20klogeo 

+ % 20log 1I~+111- ~ 2010g 11~+111 

+ ~ 2010g 111 - (: .)2 + j2~aj: .11 
}=1 aJ aJ 

_ ~ 2010g 111 - (: .)2 + j2~bj:. II 
}=1 bJ bJ 

In the above, all of the coefficients eo,a,b,~ are real numbers and 
ml +2m2 = m and nl +2n2 + k = n. 
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We notice that the additive property is apparent. Consider now the 
magnitude of a typical first-order term. We see that 

ro « aj 

ro » ai 

The second expression can be written 

20 log ro - 20 log II ai II 

which is linear in log ro with slope 20 dB per decade (factor of 10 
increase in ro), also called equivalently 6 dB per octave (doubling of ro). 
These asymptotes appear in Fig. 20.2(a), along with the exact 
magnitude of the term. Notice that as a denominator term this is 
subtracted rather than added. 
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"0 .a 
'c 
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(/) 
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ci> a 
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.t::. 
Co -100 
CI) 
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a 
Co 
(/) 
CI) 

a: 
0.01 100 

Normalized frequency - ro/a 

Figure 20.2 Frequency response of first-order pole: (a) magnitude; and 
(b) phase. Straight line asymptotes are solid lines; actual response is dotted. 
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The angle of this term is given by 

(0 « ai 

(0 = ai 

(0 » ai 

This is shown in Fig. 20.2(b), along with a commonly used 
interpolating straight line approximation. 

Similar arguments for the second-order terms give the following: 

(a) 
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Figure 20.3 As in Fig. 20.2, but for second-order systems with ~ from 
0.1 to 0.7. 
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Such tenns are shown in Fig. 20.3, including both exact expressions 
and the asymptotes. Notice that the asymptotes depend only on ooa}, 

while the exact expressions depend also on the damping coefficient ~. 
The term (joo)k in the denominator is easy: the log-magnitude 

20 k log (0 is clearly linear in log 00, and the angle is a multiple of 
- rc/2, as is easily seen in the complex plane (Fig. 20.4). 

The Bode gain K B is the final type of term of interest. Its 
magnitude is given by 20 log\\ KB II and its angle is either 0 0 for a 
positive gain or 1800 for a negative gain. 

Using the asymptotes, it is easy and straightforward to find the 
approximate frequency response of a transfer function GD(s): one 
places the function GDGoo) in Bode fonn, plots the gains and phases of 
the individual factors, and graphically adds and subtracts the terms as 
appropriate to their presence in the numerator or denominator, 
respectively. 
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Figure 20.4 As in Fig. 20.2, but for terms l/jrok. 
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Examples 

Consider the system of Fig. 20.5 which is to be studied using 
frequency response methods. 

+ 
R(oo) - / 

f--T"-I- Y (00) 

Figure 20.5 The basic system configuration for Bode analysis. GOl is 
known and may include both plant and controller models. 

The open-loop system frequency transfer function is 

5 Oro + 7) 
Gol(W) = Oro) (Oro)2 + 3.6 Oro) +9) 

which is first placed into Bode form as 

The asymptotic magnitude and phase approximations and their sums 
are shown in Fig. 20.6. Although shown as a point by point sum, 
most users will quickly develop the knack of working from left to 
right, with break points up and down for zeros and poles, 
respectively, as the critical frequencies (here 7 and 3) are passed. 
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Figure 20.6 Construction of system Bode plots using asymptotes: 
(a) approximations to separate terms for magnitude response; 
(b) sum of approximations and (dotted) actual response; 
(c) and (d) are repeats of (a) and (b) for phase. 
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20.2.2 Application of Bode approximation methods to 
digital control systems 

To apply the above to digital systems, we have two possibilities: 
sample rapidly enough that approximations will work, or use a 
w-transformation to obtain the required form. This is only necessary 
for manual design, in which the easy sketching allowed by the 
asymptotic approximations greatly simplifies the task, but it is also 
helpful in computer aided design, because the required variations are 
easily visualized. 

Let us elaborate upon the above by assuming that we are concerned 
with a closed-loop system with denominator in the form 

N(z) 
1 + e(z) H(z) = 1 + e(z) D(z) 

We expand both numerator and denominator polynomials into their 
first- and second-order terms (so that all coefficients are real). 

N(z) (l-ZIZ-I)(l-Z2Z-I) ... 
e(z) -D(-z) = Kb ZL -'-(1---"P"--'-IZ--I"-'-)(-I--P=2-'-Z-----'I )-.-.. 

2 2 (1+2rzi COSQ>zI Z-I + rzi Z-2) (1+2rz2 COSQ>z2 Z-I + r z2z-2) 
X 2 

(1 +2rpi COSQ>pI Z-I + rp2z-2) ... 

where there are presumably n possibly complex poles and m such 
zeros, with n ~ m. Then we see that the magnitude of this expression 
can be given from 

log I H(e-jro1) I = log I Kb I 

+ logll - ZI e-jroT I + logll - Z2 e-jroT I + .. . 

+ log I I + 2 rzi COS<J>zI e-jroT + rz1 e-2jroT I + .. . 

- log I I - PI e-jroT I - log I 1 - P2 e-jroT I - ... 

- log I I + 2 rpi COSQ>pl e-jroT + r)1 e-2jroT I - .. . 

and the angle is 
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arc (H(e-jcoT) ) = arc( Kb) + arc (ejLcoT) 

+ arc ( 1- Zl e-jcoT) + arc ( 1 - Z2 e-jcoT) + ... 

+ arc( 1 + 2 rzl COS~zl e-jcoT + rli e-2jcoT ) + ... 

- arc ( 1 - PI e-jcoT) - arc ( 1 - P2 e-jcoT) - ••• 

- arc ( 1 + 2 rpl COS~pl e-jcoT + r}l e-2jcoT ) - ... 

As the addition is simple, we need in principle only to know how to 
handle generic terms evaluated on the unit circle. Unfortunately, the 
terms are not linear in the frequency, so sketching is not possible 
except for small angles roT. We see this in Fig. 20.7; particularly 
notable is the periodicity of the response, i.e. that the frequency 
response is periodic in roT with period 21t. This reminds us that 
sampled data systems are not intrinsically low-pass filters in nature; an 
input of high frequency may lead with sampling to an output of low 
frequency unless precautions are taken. This effect is called 'aliasing' 
and preventive measures are taken either in the form of a guard filter 
or in knowledge that the sampling is fast enough that high frequency 
disturbances are so small as to be negligible. 

It is possible to compute the frequency response with a calculator 
and thereby gain some of the visualization benefits provided by Bode 
diagrams. The additivity property remains, so simple controller 
designs can be quickly established. If roT is 'small enough', which 
usually means that roT < 0.1, a condition usually associated with rapid 
sampling compared to the frequencies of interest, then the 
approximation ejcoT::: 1 + jroT may be used to obtain forms linear in 
log ro and the methods of the previous section may be applied to obtain 
sketches. 

When the rapid-sampling assumption about sampled data systems is 
not justified, then to reap the sketching benefits of Bode methods a 
further transformation is sometimes made. This is the so-called 
w-transformation, a change of variable which we met in Chapter 14, 
and which may be motivated as an approximation to ew or by 
arguments about mappings. In either case, the transformation is given 
by the substitution 

1 + w 
Z = 1 -w 
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(a) 

coT - rad 

(b) 

o ~~::'::::"::::::··T··-·""-""·""-"-""" : .................... .. ........ · .... -r--- .. --_ ............ _ .. · .. 
......... ........ ..... : : : 
", ':"" 0.99 : : .......... r' , .... ,..: : 

r-- .. , .. , .. ,.... : : 
I ....... ~ .. ~ .. ,: ! 

: ", i 

CD -200 
III 
III 

.£: a.. 

.... - .. _ .. _ ... ------ .. --! ------------ ---- --f---- ----.... .. .. .... -- --

0.01 

o 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 

o 
o 

1 
roT - rad 

\ 
i 

! 
100 

Figure 20.7(a) and (b) Bode plots for discrete system terms: (a) 
magnitude; and (b) phase for a fIrst-order term, showing effect of pole at 
0.8, 0.9, 0.95 or 0.99. 
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Figure 20.7(c) and (d) Bode plots for discrete system tenns: (c) 
magnitude and (d) phase for a second-order tenn, showing effect of pole 
pair with", = 30° and r = 0.5, 0.8, 0.9, or 0.95. Noteworthy is the 
unlikelihood of using asymptotes successfully except for small T values. 
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or a scaled version thereof in which the scaling uses 2fT. The reverse 
(or inverse) transfonnation is then 

z - 1 
w = z + 1 

To use the transfonnation we substitute 

H(w) = H(z)/ 
l+w 

Z = l-w 

to obtain the fonn 

ml ( w) m2 ( (w) (W )2) II 1 + - II 1 + 2~n' - + -
A i=1 ai j=1 z roni roni 

H(w) =Kb 1 2 

win (1 + ;.) n (1 + 2~di (: .) + (: .)2) 
1=1 z 1=1 dz dz 

If we evaluate this for the pseudo-frequency row by the substitution 
w = jrow and take log magnitude- and argument, we obtain the same 
fonns as appeared in the continuous time case. 

It is interesting to compare the pseudo-frequency row with the real 
frequency ro in using this approach. Since we have set z to eieoT and w 
to jrow, we have that the frequency is warped 

or 

• ejeoT - 1 . roT 
Jrow = ejeoT + 1 = J tan 2" 

roT 
row = tan 2 2 

ro = T tan- l row 
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Example 

For this example, we return to the motor model used in the examples 
in sections 18.3 and 19.4.1. First we perform the w substitution. 
With 

H( ) _ 0.048 (z + 0.967) 
z -(z-l) (z-0.90S) 

we find 

C+w ) 0.048 1 + 0.967 
A (1 + W) - w 
H(w)=H 1-w =(1 +w _1)(1 +w -0.90S) 

l-w 1-w 

0.048 (1.967 + 0.033w) (1 - w) 
= 2w (0.09S + 1.90Sw) 

In Bode form, this is 

H( ) _ 0.497 (1 - w) (1 + wI59.6) 
w - w(1 + wI0.050) 

The frequency response at the pseudo-frequency row is given by 

HU ) - 0.497 (1 - jcow) (1 + jco wI59.6) 
COw - jcow(1 + jco wI0.050) 

The asymptotic Bode plots are shown in Fig. 20.8. Notice that the 
numerator term (1 - jcow) contributes -11)2 to phase rather than the 
+1[/2 usually contributed by numerator terms; this is due to the minus 
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Figure 20.8 (a) Magnitude and (b) phase in terms of w-frequency row 
for text example. 

sign and is called a non-minimum phase l situation in the literature. 
The w-transformation makes the Bode approach very easy}o use 

because of the asymptotes, but the actual substitution to obtain H(w) is 
tedious and error-prone. Obtaining the coefficients using a simple 
computer algorithm is easy of course, but if a computer is available, 
one might as well design directly with the actual frequencies. 

20.3 APPLICATIONS OF THE BODE DIAGRAMS 

The Bode diagram sketches have several uses for the student. 

1. When experimental data is obtained for a system, a fit of the data 
can be used to identify the system, i.e. to estimate its parameters. 

2. Measures of relative stability can be read directly from the 
sketches. 

3. Approximate compensator designs can be developed using the 
sketches. 

Since the first of these is nearly obvious and will be met later (in 
Chapter 30), we elaborate on the second and third topics in this 
section. 

1 A transfer function with all poles and zeros in the stable region, either left-half plane or unit disc 
as appropriate, is said to have minimun phase. It can be shown that the phase of a transfer function 
with all zeros in the stable region has less displacement from 0° as CJ) goes from 0 to 00 than any 
transfer function with the same magnitude but with one or more zeros outside that region. This 
becomes a particular problem for design techniques which effectively cancel plant zeros with 
compensator poles, as the compensator is then unstable. 
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20.3.1 Gain and phase margins 

We recall that we are interested first and foremost in having a stable 
system. As we argued in discussing the Nyquist stability criterion 
(Chapter 15), this means we want no frequencies roo such that the 
transfer function 

C(P) G(p) 
R(P) = 1 + C(p)F(P)G(P) 

has, for p = jroo (or p = eiroOT for the discrete time case) 

Hence we do not want GD(jroO) =-1, i.e. we do not want 
arc(GDUroo» = -1t and I CoUron) 1= 1 for the same frequency roo. 

From this observation we introduced two related measures of 
'closeness to instability': phase margin and gain margin. 

Definition The phase margin <Pm is the angle by which the actual 
phase lag arc(GDUrogc» exceeds -1t at the frequency rogc at which 
I CoUrogc) I = 1. rogc is called the gain crossover frequency. 

Definition The gain margin GM is the amount by which the gain 
I GoUCOpe) I is too small to lead to instability at the frequency rope for 
which arc(GD(jropc» = -1t . rope is called the phase crossover 
frequency. It is often expressed in decibels, so that 

~ = -20 log I GD(jropc) I dB 

Both of these are easily found from the Bode diagrams. They are 
shown for a typical system in Fig. 20.9. 

It turns out that a system 'near to instability' shows faster response 
with less damping than one 'far from instability'. An engineering 
design trade-off is speed of response against rapid settling (accuracy 
of response) and robustness in the face of parameter errors, and 
nominal desirable values are often taken as 
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Figure 20.9 Illustration showing (a) gain margin GM and (b) phase 
margin and cjIm - and gain and phase crossover frequencies O>ge and COpe for 
each. 

GM :::: 6-10 dB 

<Pm :::: 45-55 0 

For second-order poles the fact that phase margin is related to 
damping coefficient (as in Fig. 20_10) is argued as follows. 

For unit step response of a second-order system with no zeros, 
various texts (such as Dorf (1989) and Saucedo and Schiring (1968» 
show that the relationship between phase margin <Pm and damping 
coefficient l; is 

and the percent overshoot PO is 

( -nl; ) 
PO = 100 exp (1 _ l;2)~ 
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Figure 20.10 Relationship of damping coefficient to percent overshoot of 
step response, showing also linear approximation (dashed). 

Using the definitions in Chapter 19 (root location) the 
corresponding approximations for discrete time systems are 

PO = 10001 

and 

{ -2a } 
<Pm = tan-I «5a4 + 2a2 + 1 )! - 2(2)! 

where a = In(0)/21t. An approximation is that 

-100 a 
<Pm :=: 100~ - (1 + (2)! 

From these (Fig. 20.11), it is possible to design approximately for a 
particular PO or one of its relatives (settling time, damping coefficient 
~, damping ratio 0) by choosing the phase margin. 
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Figure 20.11 Relationship of percent overshoot to phase margin for 
simple second-order systems. 

20.3.2 Design of compensators 

With the above in mind, the designer first generates the Bode plots for 
the basic open-loop system and evaluates the gain and phase margins. 
If these are unsatisfactory, the compensator design process begins. 
This usually works with three elements: 

1. gain (in an amplifier, for example); 
2. lead networks, i.e. circuits for which 

s - + 1 a 
C(s) =-- a<b 

~ + 1 
b 

3. lag networks, for which 

~ + 1 a 
C(s) =-- a>b s 

- + 1 
b 
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The lead and lag networks have the same form of transfer 
functions , but different parameter characteristics. 

The above elements, which can be cascaded if necessary to obtain 
the required compensation, have their origin in electrical circuits. 
Each has an associated passive circuit (Le. one made up of resistors, 
capacitors, and inductors) which will yield the necessary form, and 
for this reason the above set dominates the classical electrical 
engineering approach to control law design. 

A fourth classical approach, the PID or three-term controller, has 
transfer function 

K 
C(s) = Kp + -t+ KM 

This is common in process control applications and can be 
implemented with pneumatic and hydraulic controllers. If one allows 
for the fact that true differentia tors are difficult to construct by 
replacing this with the different model 

C(s) = Kp + ~i + S KdS 

- + I 
b 

one finds that rearrangement gives 

(~+ 1) 0c + 1) 
C(s) = K (S ) 

s - + 1 b 

which is of the general form of an amplifier cascaded with a pair of 
lead/lag type elements. 

We indicate the nature of lead/lag compensator design. One first 
notes the following effects of the basic elements on a set of Bode 
diagrams of a plant or plant plus partial compensator. 

1. Gain compensation moves the Bode gain plot up and down 
without changing its shape. The Bode phase plot is unaffected. 

2. A lead network increases the gain between ro = a and ro = b until, 
above ro = 5b or so, it causes a constant gain increase of 
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2010g(b/a) dB. The phase plot receives an upward hump between 
about co = a/IO and co = lOb, with the maximum increase being at 
co = ..J(ab) and the angle at this point equal to tan-1(b-a)..J(2ab) 
(Fig. 20.12). 
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Figure 20.12 Gain (a) and phase (b) of lead and lag networks as 
parameters vary, for continuous time systems. 

3. A lag network decreases the gain between co = a and co = b until, 
above co = 5b or so, it causes a constant gain decrease of 
20log (b/a)dB. The phase plot receives a downward hump 
between about co = b/l0 and co = lOa, with the maximum 
decrease being at co = ..J(ab) and the angle at this point equal to 
tan-1(a-b)..J(2ab) (Fig. 20.12). 
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4. Digital implementations of the same idea have the fonn 

z-a 
C(z) = K-­z-b 

with a and b both typically in the interval (0,1). Here there will be 
phase lead for 1 > a > b > 0 and lag for 0 < a < b < 1. The gain K 
makes a third parameter which may be used, e.g. to provide a 
particular steady-state error level (provided the system type is 
appropriate). It is quite possible and straightforward to generate 
curves of phase and gain versus frequency for various values of a and 
b; the nonnalized cases with C(eiro1) are shown in Fig. 20.13. 
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Figure 20.13 Gain (a) and phase (b) of certain first-order digital 
compensators as parameters a = zero location and b = pole location vary. 
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As an alternative to the above, the w-transform allows us to work 
with the forms 

jrow 
1+­a 

jrow 
1+ - b 

to have lag (a < b) and lead (b > a) elements as in Fig. 20.12. This 
can be considerably easier to use than the z-transform model. 

The art of the designer is to manipulate these to meet specifications, 
either explicit or implicit (e.g. to obtain 'good' performance). These 
may include (one or more of) the following: 

1. having prescribed steady-state error - this usually determines 
minimum O-frequency gain and/or system type; 

2. having prescribed or implied gain and/or phase margins; 
3. having prescribed bandwidth. 

General design rules are fraught with exceptions, but one is inclined 
to make the following statements. 

1. Increased gain compensation decreases steady-state errors and 
stability margins and increases bandwidth. 

2. Lag compensation decreases bandwidth (and hence slows 
response) and relative stability margins . Lag filter 
implementations are associated with decreased steady-state errors. 
One might think of lag as similar in effect to integral control. 

3. Lead compensation increases bandwidth (and hence yields faster 
response) and relative stability margins, usually with marginal 
effects on steady-state errors. Intuitively, lead is rather like 
derivative control. 

Example 

For this example we again return to the motor, 

H( ) _ 0.048 (z + 0.967) 
z -(z -1) (z - 0.905) 
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with w-form 

H( ) _ 0.497 (1 - w) (1 + w/59.6) 
w - w(1 + w/0.050) 

Phase margin is chosen to be 40°, and velocity constant ~50 is 
needed. Treating the velocity constant first, we fmd (Chapter 17) 

. z - 1 
Kvel == z~l-T-C(z)H(z) 

2w A A 

= w~o TC(w)H(w) 

= 0.994 lim C(w) 
T w~O 

A '" 

With T = 0.1, we need C(O) > 5. Imposing CeO) = 5 =: 14dB gives 
a gain crossover frequency of COw = 0.36, at which the phase is -192°. 
We must now choose between a lag compensator, which will need to 
bring the gain crossover back to about 0.05, or a lead compensator 
which will increase the phase by 52° plus enough to compensate for 
the shift it will bring to the crossover frequencies. In either case we 
need the fact from the compensator effects above that for lead/lag 
elements 

1 + w/a 
1 + w/b 

the maximum phase is at COw = --Jab and the phase contribution is 

so that 

b+a 
tan~max = 2 ~(ab) 
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We choose to design a lead filter. Then with row = 1 as the guess 
for the new crossover frequency and with the choice <I> = 75° as 
hopefully providing enough margin change (we remark that this is 
almost the maximum a single lead can provide), we obtain 
approximately a = 0.2 and b = 7.8. The results of this are shown in 
Fig. 20.14, and are noteworthy in being only moderately successful. 

As seems too often the case with pure lead of this amount, the 
crossover frequency has shifted by enough to dilute some of the added 
phase effect. In fact, we have gone from a gain margin of about 6 dB 
and a phase margin of 9° in the original system to about 4 dB and 35° 
in the new one with the improved velocity constant. The result is 

w 
1 +-

C(w) = 5 0.2 
w 

1 + 7.8 

which leads after the inverse w substitution to 

C(z) = 195 1.2z - 0.8 
8.8z + 6.8 

A better design would have used another stage of lead. A single 
stage of lag compensation would have met specifications, although not 
necessarily have constituted a 'good' compensator, because of low 
bandwidth. With the lag, we might select that the gain crossover 
frequency should be 0.045 and design the lag so that the original phase 
response is unaffected in this area, which could be shown to lead to a 
very small b/a ratio and a small difference of phase from -180° at low 
frequencies. 

The above simple example shows some of the difficulties with 
oversimplifying classical design methods. The traditional remedy is to 
cascade several lead and lag compensators. 
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Figure 20.14 Example of continuous system design with lead network: 
(a) gain; and (b) phase. Original system frequency response is solid line; 
effect of gain change only is dotted; compensated frequency response is dot­
dash. 

20.4 VARIATIONS 

20.4.1 Other frequency domain representations 

Two other graphical representations of frequency domain models are 
in use: the Nyquist diagram (Chapter 15) and the Nichols chart. Each 
is a single plot of the frequency response with frequency as a 
parameter. 

The Nyquist diagram (Fig.20.15(a» plots Im(H(joo» versus 
Re(H(joo» for -00<00<00 when H(joo) is the continuous time 
frequency response, and plots Im(H(ej<p)) versus Re(H(d<p» for 
-1t<<I> <1t when H(ej<p) is the sampled data frequency response. It is 
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Figure 20.15 The alternatives: (a) Nyquist chart with M- and N-circles; 
and (b) Nichols chart (log-magnitude versus phase with loci of constant 
closed-loop magnitude and phase). 
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difficult to sketch and poorly scaled for detailed design, but shows 
gain and phase margins and design concepts readily. 

The Nichols chart (Fig. 20.l5(b» shows a plot of I H I versus arc(H) 
with co or <1> as a parameter, depending upon whether continuous time 
systems or sampled data systems are under consideration; it also has 
the M- and N-circles (of constant closed-loop magnitude and phase, 
respectively, in a unity feedback configuration; see Chapter 15) 
mapped onto the graph. Margins and co-ordinated design of the gains 
and phases of compensators are relatively easy, as is representation of 
experimental data; sketching, however, is not straightforward. 

20.4.2 Multi-dimensional transfer functions 

When considering MIMO systems described by transfer function 
matrices, it is not always best to consider the effects on an element by 
element basis. One alternative is to note that we frequently consider 
the magnitude of the open-loop gain, i.e. IG Oco)1. Ie multi­
dimensions, this magnitude is interpreted as a matrix norm (Appendix 
B), in particular an induced norm. Thus it is natural to look at 

II Gil = sup II Y II = SlIP II GR II 
R IIRII R IIRII 

where R is the input and Y is the output. It turns out that 

(G(j » < IIGOco).ROco)1I < -(G(j » 
a co - IIR(jco) II _a co 

where crO and aO denote the largest and smallest singular values, 
and are computed using a singular value decomposition. The induced 
norm is 

IIG(jco) II = sup IIG(jco).R(jco)II = crCG(jco» 
R(jO) II R(jco) II 

The design of G(jco) such that low frequency gain is high and high 
frequency gain is low might be specified in terms of requirements that 



www.manaraa.com

490 Bode diagrams for frequency domain analysis and design 

Q(G(jro» > l(jro) 

<5'(G(jro» < h(jro) 

Some aspects of actually doing such designs are met in Chapter 33. 

Example 

We consider the system 

1 2s + 1 
s(0.2s+ 1) s(s + 1) (0.2s + 1) 

s 
G(s) = 1}+ 1 1 

C2 S 1) (S2 S 1) (0.5s + 1) "9 + 1. 2 3 + -+ 1. 2 3+ 9 

The upper and lower singular value limits (in fact there are only 
two singular values) and the frequency responses of the individual 
terms are shown in Fig. 20.16. 
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Figure 20.16 The multivariable case: example showing magnitude plots 
of individual terms and the upper and lower singular value bounds. 
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20.5 COMPUTER AIDED DESIGN 

One would expect almost any computer design aid program to allow 
some frequency manipulations. Given a model, for example, 
MATLAB® will generate frequency response data and plot it in any of 
the three approaches of this chapter. 

Formulae and graphs have been published for the design of leadllag 
compensators, and these can also be put into computers if desired. 

20.6 SUMMARY AND FURTHER READING 

Bode analysis should be viewed as straightforward mathematically and 
quite possible experimentally. It is well covered in elementary texts 
such as Dorf (1989) and drill problems are in DiStefano et al. (1976). 

Of the alternative frequency domain analysis methods, Nyquist 
theory, which is sometimes considered their theoretical basis, was 
dealt with in Chapter 15, and is in the above textbooks. The pl:rsuit of 
Nichols methods is more common in older texts than more recent 
ones ; one more recent one is D' Azzo and Houpis (1988). 
Multivariable methods were seen in Chapter 15 and will be met again 
in Chapter 34; one text is Maciejowski (1989). 

Elementary design is typically done by introducing compensator 
structures with known generic effects and then iterating their 
parameters. Electrical engineering text books such as DiStefano et al. 
(1976) do this with lead-lag compensators, while three-term PID 
controllers are in the chemical engineering process control texts such 
as Stephanopoulos (1984). More advanced approaches called loop 
shaping are introduced in Doyle et al. (1992). Design is an art form 
rather than being purely algorithmic. This is particularly so for 
classical approaches such as those in this chapter; optimal control 
(Chapters 26-27) and robust control design (Chapter 33) methods 
shift the artistry from element choice to selection of appropriate 
weighting functions. In any case, only practice and experience will 
make the designer competent with any design method. 
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A special 
deadbeat 

control 
control 

law: 

Most of the methods we have considered so far have their origins in 
linear control laws for systems described by linear constant coefficient 
differential equations, with sampled data control studied by adapting 
those theories. Even in the nominally linear control law realm, 
however, it is possible to develop a special and interesting 
performance property with discrete time control. In particular, it is 
possible in principle to achieve a zero error to an input after finite 
time with a linear control law; this contrasts with continuous time 
control, which can only asymptotically provide zero error, and 
follows from the fact that computer control commands are piecewise 
constant in nature. A response which quickly reaches zero error at 
the sampling instants and has little ripple between samples is called a 
deadbeat response. In this chapter we develop both transfer 
function oriented and state-space oriented approaches to design of the 
control laws, called deadbeat controllers, which yield such response. 

21.1 SYNOPSIS 

A deadbeat controller has the property that for a given input type, 
such as a step, the error between input and output, 

e(kT) = Yin(kT) - y(kT) 

will always show e(kD = 0 (k > n) for a particular n which depends 
upon the plant. 

Such controllers can be designed using transfer functions or state­
space arguments. In the first case one first finds an appropriate 
closed-loop transfer function Gcl(Z) and then generates, from it and 
the plant model, a control law C(z) which yields it. 
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When using state-space arguments, we in effect use the controller in 
a state feedback configuration u(kT) = K x(kT) (see Chapter 23) to 
place all of the closed-loop eigenvalues at O. 

The use of deadbeat controllers can be controversial. Design 
requires excellent knowledge of the system model and is highly tuned 
to particular inputs. 

21.2 TRANSFER FUNCTION APPROACHES TO DESIGN 

R(z) 
E(z) 

C(z) 
U(z) 

G(z) I----ri~y (z) 

Figure 21.1 Basic digital control system block diagram for examination 
of compensators for deadbeat response. 

Consider a control system with compensator C(z) and plant G(z) in a 
unity feedback configuration (Fig. 21.1). The closed-loop transfer 
function GcJ(z) is 

M C(z)G(z) 
R(z) = GcJ(z) = 1 + C(z) G(z) 

We notice that if we can choose GciCz) = liz and if the input R(z) is a 
unit step, R(z) = z/(z-l), then 

Y(z) = Gcl(Z) R(z) = 1/(z-l) = Z-1 + Z-2 + ... 

which gives E(z)=l=R(z)-Y(z), i.e. e(nT)=I, n=O, and e(nT)=O, 
n > O. Thus the response is deadbeat, at least at the sampling instants. 

Not all responses are deadbeat: we must specify the inputs to which 
the response is to be deadbeat. If the input is a polynomial in t of 
order N-1, then its transform is of the form 

A(z) 
R(z) = (1 - Z-I)N 
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where A (z) is a polynomial in Z-l with no zeros at z = 1. If the 
system has unity feedback, then 

E(z) = R(z) [1 - Gel(z)] 

and what we want is 

lim e(nD = lim (1 - Z-l) E(z) 
n~oo z~l 

= lim A(z) (1 - Gel(z)) 
z~l (1 - Z-l)N-l 

=0 

For this to hold, (1 - Gel (z» must have (1 - Z-I)N as a factor, i.e. it 
should have the form 

1 - Gel(z) = (1 - Z-1)N F(z) (21.1) 

where F(z) is a polynomial in Z-l and has no zeros at z = 1. Thus 
Gel (z) must be of the form 

ZN - (z-I)N F(z) 
Gel (z) = ZN (21.2) 

i.e. the closed-loop transfer function must have a characteristic 
equation with all poles at the origin. The error will have 

E(z) = A(z) F(z) 

which is clearly a finite polynomial in Z-l, yielding from the definition 
of the z transform that e(nD is non-zero only for finite duration. 

Physical realizability, in the sense of causal relationships of input 
and output, requires (Kuo, 1980) that if the plant pulse response G(z) 
shows a delay of k samples, then the closed-loop pulse response must 
show at least the same delay. Thus if 
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then 

Gcl(Z) = cnz-n + Cn+l z-n-l + ... (21.3) 

with n ~ k. We remark that k is given by the pole excess, i.e. the 
number of poles minus the number of zeros of G(z). Subject to this 
constraint, the design procedure is as follows. 

1. Choose the input to be tracked. This yields A (z) and more 
particularly N. 

2. Choose Gcl(Z) satisfying (21.3) and also (21.2). F(z) is fairly 
arbitrary for a stable minimum phase plant (all poles and zeros 
inside unit circle) for which the pole excess is zero; Kuo (1980) 
discusses the alternative. 

3. Then e(z) is calculated from rearranging the standard unity 
feedback relationship as 

(21.4) 

We remark that (21.4) shows that part of the controller consists of 
cancellation of the poles and zeros of the plant; if the plant is not 
accurately known, this can be a problem. 

Example (Kuo, 1980, p. 518) 

Let G(z) = 1/(Z2 - Z - 1) and require deadbeat response to a unit step. 

Step 1 Because of the unit step requirement, N = 1 and A(z) = 1. 

Step 2 Since G(z) = Z-2 + 2z-3 + 3z-4 + "', Gc1(z) must start no 
sooner than k=2. Choose Gcl(Z) = Z-2. Then F(z) can be 
derived from (21.1) as 

F( ) - 1 - Gc1(z) _ 1 -1 
Z - 1 _ Z-l - + z 
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Step 3 The controllaw is now 

1 - Z-I - z- 2 Z-2 
e(z) = Z-2 X 1 - z- 2 

1 - Z-I - Z-2 
= 1 - Z-2 

Notice that we have in effect cancelled the plant's poles with 
the compensator. 

To emphasize the fact that the response is tuned to the polynomial of 
order N, we consider a different input RI(Z). Then we might have the 
form 

B(z) 
RI(Z) = (l - Z-I)K 

with B(z) having neither zeros nor poles at z = I and with K an 
integer. Then 

E(z) = B(z) F(z) (1 - Z-I)N-K 

for which the control will be deadbeat only for K ~ N and B(z) a 
polynomial in z; the limiting error could be 0 if B(z) is rational and 
K<N. 

21.3 STATE-SPACE APPROACHES 

It is instructive to consider the issue of pole placement in state-space. 
We take only a preliminary look at two results, with more detail 
becoming obvious in Chapters 22, 23, and 27. 

We take the simple view that the object is to drive the system to the 
state Xf = D and the model is 

x(k+ 1) = Ax(k) + Bu(k) xeD) = Xo (21.5) 
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We choose the control law 

u(k) = K (Xf - x(k» 

Then if e(k) = Xf - x(k) with Xf = 0 we have 

e(k+ 1) = Ae(k) - BKe(k) = (A - BK) e(k) 

Since 

e(k) = (A - BK)k e(O) 

and since a matrix must satisfy its characteristic equation, we have, for 
any A which is an eigenvalue of (A - BK) that 

An + al An-l + a2 An-2 + ... + an = 0 

and hence 

(A - BK)n + al(A - BK)n-l + ... + an (A - BK) = 0 

If the eigenvalues Ai of (A - BK) are all 0, this means 

(A - BK)n = 0 

Thus, if we can choose K such that the eigenvalues of (A - BK) are 
all 0, then e(n) = 0 for any initial condition. 

For an alternative approach, notice that the solution of (21.5) is 

k-l 
x(k) = Akxo + IAk-J-1 Bu(j) 

j=O 

If u is a scalar, this can be written 
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x(k) - Akxo = [Ak-IB 1 Ak-2B 1 ... 1 B ] 

u(O) 
u(l) 

u(k-I) 

If k = n, the right-hand side matrix is square. If it can be inverted, 
then 

[ 
u(O) 1 u(1) 

: = [An-IB ~ An-2B ~ .. . ~ B ]-1 [x(n) - Anxo] 

u(n-l) 

for any chosen x(n). 
The above gives a sequence of controls to be applied open-loop to 

go from Xo to x(n) = Xf in n steps. Provided Xf = 0, we can use linear 
algebra arguments to obtain a closed-loop control. For those, we note 
that if A-I exists (the approach can be used if it does not exist, but is 
not quite so straightforward), then we can write 

Clearly, we can write any x, including x(k), as a linear combination 
of the columns of the r.h.s. matrix, i.e. 

x(k) = [A-IB ; A-2B ; ... ~ A-nB] z 

for some vector z with elements Zi, i = 1,2, ... , n. If we choose 
u(i) = - ZI at each stage, then we can show that x(n) = O. To see this, 
we observe that for arbitrary x(O), we can take uO =-zO to find that 
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x(l) = Ax(O) - BZI (0) 

= A (x(O) - A-I BZI(O» 

= A ([ 0 j A-2B j ... j A-nB ]z(O» 

= [A-IB j A-2B ~ ... 1 A-n+IB ~ 0 ]z(l) 

Hence, x(1) cannot have a component in the A -n B direction. 
Repeating the approach, with u(l) = -ZI(1), will eliminate the A-n+l B 
component in the representation of x(2), etc. Hence x(n) is 
necessarily 0 by simply continuing the argument for n stages. The 
feedback law is 

u(k) = - component of A-I B in the representation of x(k) 

=_{[A-IB ;A-2B ; ... ;A-nB ]-l x(k)} 
First element 

= KTx(k) 

Example 

The example of the previous section has among its state-space 
representations the following: 

x(k+ 1) = [~ ~] x(k) + [~] u(k) 

y(k) = [1 0] x(k) 

We find 

. [211] [A-IB ~ A-2B ]-1 = 1 
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and hence 

u(k) = - [2 1] x(k) 

It is easy to show that the closed-loop eigenvalues are O. Also, by 
direct calculation, if x(O) = [a. ~ F, then x(1) = [a.+~ -a.-~]T and 
x(2) = [0 0 F . 

Example 

We present an arbitrary example showing the characteristic of 
deadbeat response. Let the system be randomly chosen using the 
rand(·) command in MATLAB® as 

0.8886 0.5911 0.4154 0.1537 0.4985 
0.2332 0.8460 0.5373 0.5717 0.9554 

x(k+ 1) = 0.3063 0.4121 0.4679 0.8024 0.7483 x(k) 

0.3510 0.8414 0.2872 0.0331 0.5546 
0.5133 0.2693 0.1783 0.5344 0.8907 

0.0269 
0.7098 

+ 0.9379 u(k) 
0.2399 
0.1809 

0.1304 
0.0910 

x(O) = 0.2746 
0.0030 
0.4143 

y(k) = [1 0 0 0 0] x(k) 

The coefficients are random numbers, and the resulting poles are at 
2.5782, 0.4082 ± 0.1855j, -0.1342 ± 0.1393j. Using Ackermann's 
formula (see Chapter 22 and Appendix B) in MATLAB® to place all 
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of the five poles of (A - BK) at z = 0 gives the gain 

K = [1.6585 1.7921 1.0839 1.3599 2.5802] 

(Numerically, in fact, this places the poles at 0.0013, 0.OOO4±0.0013j, 
-0.0011 ±0.0008j, an indication of the possibility of numerical 
problems when using CAD methods.) Figure 21.2 shows the response 
with the control u(k) = -K x(k) to the initial condition x(0)=0.25. 
Note that y(k) = 0, k ~ 5, with the implication, easily verified with the 
simulation, that x(k) = 0 for k ~ O. 
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Figure 21.2 Example of deadbeat response to initial error for fifth-order 
system. 

The modifications to take a state representation to Xf;f; 0 in n stages 
are tricky, but in principle straightforward; maintaining x = Xf ;f; 0 
cannot generally be done. One way to do the former is to choose K 
such that (A-BK)n=O as above, and then find uredk), k=O, 2, ... ,n-1 
such that 

n-l 
Xf = L(A - BK)n-l-i BUref(i) 

i=O 

and finally apply the control 

(21.6) 
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u(k) = - Kx(k) + uref(k) 

Since the closed-loop system has 

x(k+ 1) = (A - BK)x(k) + Burec(k) 

with solution 

n-l 
x(n) = (A - BK)n x(O) + L(A - BK)n-l-i Burec(i) 

i=O 

the choices of K and UreC (21.6) yield x(n) = Xf. If Xc = 0, the choice 
UreC (k) = ° is the obvious choice, and in fact this choice is required if 
(A + BK; B) is controllable (Chapter 22) and the control is a scalar. 
We have implicitly assumed the latter in all of the above. Maintaining 
x(n+i) = Xc is difficult with this law unless (I - A + BK)Xf = Bu is 
possible for some U =Uref, in which case the above control law 
continues to work satisfactorily. 

21.4 PROBLEMS AND FIXES 

There are a number of problems with deadbeat design. 

1. The controller is tuned for one particular input (a unit step, say) 
and may be inappropriate for other inputs. 

2. The controller is based upon cancelling plant poles and zeros (the 
lIG(z) factor in e(z». If these are not known precisely, the 
controller will not be deadbeat. Hence, the design is not robust. 

3. Related to (2) is the fact that if the plant has zeros outside the unit 
circle, then the controller will have poles outside that circle, i.e. 
the controller will be an unstable subsystem. 

Kuo (1980, p.520) considers problem 3 in some detail. The 
solution is essentially one of incorporating the suspect poles and zeros 
into constraints on the allowable Gcl(z). 

Problem 1 is treated by Kuo (1980, p.526) by modifying the 
deadbeat constraint. In particular, the desired response is changed by 
the incorporation of a new pole at z = c, -1 < c < 1. The system is no 
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longer deadbeat, and c is used to 'tune' the controller. 
Problem 2 is a mathematical problem (the control law is infmitely 

sensitive to parameter errors) but perhaps not a 'real' problem. 
Astrom and Wittenmark (1990) claim that the difficulties are 
overemphasized and that deadbeat control is worth considering. 

21.5 COMPUTER AIDS 

The design is straightforward with state-space, because then it is a 
special case of pole placement. For this reason, Ackermann's formula 
(Appendix B, Chapter 22) can help with design, and several CACSD 
packages contain pole placement algorithms of that or similar type. 
Simulation programs can be used for testing. 

21.6 SUMMARY, EVALUATION, AND FURTHER 
READING 

Deadbeat control is unique to computer control systems in that analog 
linear control laws do not provide that capability. It seems worth 
considering in an application, but a designer should always beware of 
controllers based upon pole-zero cancellation. 

References include Kuo (1980), whose approach we followed in 
section 21.2, and Astrom and Wittenmark (1990). Alternative 
derivations can be associated with controllability studies (see Chapter 
22) and pole placement (Chapter 23). 
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Controllability 

Two properties of the linear state-space system descriptions which are 
often needed in proofs about existence of certain types of controllers 
and state estimators are controllability and observability. Although 
these have important and easily visualized interpretations in terms of 
the natural language definitions of the words, it should be recognized 
that they are ultimately technical terms, used as shorthand to 
summarize properties of the system which allow certain types of 
controllers and state estimators to be designed. In particular, a system 
which is not controllable is not 'uncontrollable' in the natural language 
sense, nor is a not observable system 'unobservable'. 

In this chapter we investigate controllability; observability is 
covered in Chapter 24. 

22.1 SYNOPSIS 

Definition A system is said to be controllable if any initial state Xo 
at any initial time to can be moved to any other desired state Xf, 

x(tc) = xc, in a finite time interval 't = tc - to by applying an admissible 
control function u(t) = u(t; to, XO, xc), to :=;; t :=;; tc. 

From this definition, the following is the most commonly quoted 
result. 

For a discrete time system modelled by the linear time invariant 
n-dimensional state difference equation 

x(k+ 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) + Du(k) 

or the continuous time system modelled by 

(22.1) 
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x = Ax + Bu 

y = ex + Du (22.2) 

the system is state controllable iff (if and only if) 

rank [B 1 AB 1 ... 1 An-2B 1 An-IB] = n (22.3) 

Because the test applies to the matrices, we sometimes say the 
matrix pair (A; B) is controllable if (22.3) holds. 

22.2 DEFINITIONS 

Definitions are crucial to understanding the topic of controllability. 
The following are starting points. 

Definition A state Xo is controllable at time to if it can be 
transferred, in finite time starting at time to, to the origin Xo = 0 by 
some allowable control function u(t, xo), to::; t ::; to + 't < 00. 

Definition A state XT is reachable at time tf if the origin Xo = 0 can 
be transferred to it, in finite time starting at time to, by some 
allowable control function urCt, xc), to::; t::; tf < 00. 

We choose to consider controllability as incorporating both 
controllability to the origin and reachability from the origin by a 
generalizing of the term. This is quite acceptable for linear constant 
coefficient systems and therefore all that is of interest to us here. 

Definition A state Xo is controllable if, for any to and any Xf, there 
is an admissible control function u(t), which may depend upon 
xo, Xc, to, such that x(t) is driven from x(to) = Xo to x(tc) = Xc during a 
finite time interval to::; t ::; tc, tc - to < 00. More succinctly, a state Xo 
is controllable if any state is reachable from it in a finite time. 

Definition A system is controllable if all states Xo are controllable. 

Alternative terminology sometimes calls a system which is 
controllable by the term completely controllable. The above can 
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be combined to give the definition in the synopsis. A system which 
does not meet the restrictions of the definitions is said to be not 
controllable. In fact, there are a number of variations in the 
development of controllability and reachability definitions, but for our 
purposes with linear constant coefficient systems the technical 
differences are operationally slight. 

We emphasize that a system may not be controllable in the sense of 
the definition and yet may be quite adequate and be easy to design 
control laws for. In particular, a system which is not controllable is 
not necessarily uncontrollable in the common sense of the word. 
Systems which are controllable are often easier to design for because 
more design theorems apply, but other systems which are not 
controllable are often quite useful. 

22.3 CONTROLLABILITY TESTS FOR CONSTANT 
COEFFICIENT SYSTEMS 

In this section we present the standard tests and canonical 
decomposition for the system described by 

x(k+ 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) + DU(k) 

where A is assumed to be n x n, B is n x m, and C is p x n. D is 
obviously then p x m. 

The above system is controllable if and only if the n x nm matrix 
Qc, given by 

Qc = [ B ~ AB ~ A2 B ~ ... ~ An-l B ] 

has full rank, i.e. rank (Qc) = n. The demonstration of this is as 
follows. The solution of the above system is 

k-l 
x(k+q) = Ak x(q) + IAk-i-l Bu(q+i) 

i=O 

If both x(k+q) and x(q) can be arbitrary, then the above holds iff 
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k-l 
~x = LAk-i-l Bu(q+i) 

i=O 
(22.4) 

can take on any (vector) value for some k and some choice of u(j), 
j = 0,1, ... , k-l. The largest useful value of k is n, because of the 
implications of the Cayley-Hamilton theorem (see Appendix B) that 

n-l 
Ai = L <Xi An-i-l 

i=O 

for some scalars <Xi and any j ~ O. In particular, (22.4) with k ~ n can 
be rewritten as a sum with k=n. Hence we have the possibility of 
system controllability iff 

n-l 
~x = L An-i-l Bu(i) 

i=O 

can be made arbitrary by choice of u(i). Rewriting this in matrix 
form, we see that, given any ~x, we need to be able to solve 

~x = [ BlAB l A2 B l ... l An-l B ] 

u(n-l) 

u(n-2) 

u(O) 

for the controls {u (i) }. This means that the matrix Qc must have an 
invertible submatrix, which requires the matrix to have full rank. As 
the dimension is n x nm, this means that 

rank [ B 1 AB 1 A2B 1 .. . 1 An-l B] = n 

is required for system controllability. (See Appendix B for tests of 
rank.) If m = 1, then it is necessary to use all of the test matrix. 
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If the system is controllable, there exists a smallest number v such 
that 

rank [ B 1 AB 1 A 2 B ~ ... 1 A v-I B ] = n 

This number v ~ n is called the controllability index of the 
controllable system and has the interpretation of being the number of 
stages generally necessary to transit from one state Xo to any other 
state Xf. 

An alternative viewpoint and test can be derived by considering the 
canonical decomposition. The system may, by similarity 
transformation T (i.e. x = Tz), be placed in the form 

z(k+ 1) = Az(k) + T-I Bu(k) 

y(k) = CTz(k) + Du(k) 

where A is in Jordan form and is diagonal if the eigenvalues of A are 
distinct. With this decomposition, the transformed state vector z has 
elements Zj, i = 1,2, ... , n. Then the result is that Zj is controllable if 
each Jordan block has at least one non-zero row of T-I B associated 
with it and the non-zero rows corresponding to identical Jordan blocks 
are not identical; if A is diagonal with distinct eigenvalues, then Zj is 
controllable if the ith row of T-I B is not zero. The system is 
controllable if and only if Zi is controllable for each i. 

A similar result holds for observability (Chapter 24), so it turns out 
that the state is decomposable to elements which are controllable, 
observable, both, or neither. 

Example 

Let n=3, m =2, p= 1, with 

[
100] 

A = 011 
1 1 0 

C = [0 1 1] D = [0 0] 
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Then by direct computation 

[
0 0 ~ 00 

Qc=10~11 
01 : 10 

00] 21 
I I 

By inspection, rank Qc = 2 (two linearly independent rows; the first 
is zero and is therefore dependent). Since n = 3, the system is not 
controllable. 

For the canonical decomposition, the eigenvalues of A are A1 = 1 
and A2,3 = (l ± --J5)/2, which are distinct so that A = diag(Al, A2, A3). A 
transformation matrix is then 

T =[ -~ 
0 0 

] (1 + --J5)/2 (1---J5)/2 

1 1 

for which the inverse is 

1 0 0 

l/--J5 l/--J 5 
--J5-1 

T-l = 215 

-l/--J5 -l/--JS 
1+--J5 
215 

From this we compute the matrix product T-l B. 

0 0 

l/--J5 
--J5-1 

T-l B = 215 

-1I--J5 
1+--J5 
215 

Because the first row of T-l B is zero, Zl is not controllable. 
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22.4 CONTROLLABILITY AND A CONTROLLER 

To see how the above tests evolved and also to generalize the results, 
we examine the time-varying case of 

x(k+ I) = A(k) x(k) + B(k) u(k) 

y(k) = C(k)x(k) + D(k) u(k) (22.5) 

where A(k) is n x n, B(k) is n x m, C(k) is p x n, D(k) is p x m. 
Consider first the influence of the control on an arbitrary x(O) = xo. 
We see that 

and so 

or 

x(1) = A(O) Xo + B(O) u(O) 

x(2) = A(1) x(1) + B(1) u(1) 

= A(1)[A(O)xo + B(O)u(O)] + B(1)u(1) 

= A(1)A(O)xo + A(1)B(O)u(O) + B(1)u(1) 

x(k) = A(k-1)A(k-2) .. . A(1 )A(O)xo 

+ A(k-l) ... A(1 )B(O)u(O) 

+ A(k-I) ... A(2)B(1)u(1) 

+ ... + A(k-l)B(k-2)u(k-2) 

+ B(k-l)u(k-l) 

[
k-l 1 k-l [ k-l 1 

= n A(j) Xo+ ~ .n A (i) B(j)u(j) 
]=0 )=0 1=)+ 1 
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[
k-l 1 k-l [k-l 1 

x (k) - II A (j) Xo = L .n A (i) B(j)u(j) 
j=O j=O I=J+ 1 

For the left-hand side to have arbitrary xo, arbitrary Xf and 
x(k) = Xf for some finite k, the essence of controllability, means that 
for some k, the matrix relation 

[A(k-I) .. . A(1)B(O) 1 A(k-I)·· · A(2)B(1) ~ ... ~ A(k-l)B(k-2) ~ B(k-I)] U 

= arbitrary vector = xf-A(k-l) .. . A(O)xo (22.6) 

where 

[ 
u(O) 1 u(l) 

u- . 
- u(k:-l) 

must hold for some choice of U. For this to happen, the matrix on the 
left must have at least one set of columns whose linear combinations 
(by choosing elements of U) give any possible columns of n numbers. 
In linear algebraic terms, the matrix must have n linearly independent 
columns, or its columns must 'span the space' of n-vectors. In another 
set of words, the property 

rank[A(k-l) ... A(1)B(O) ~ .. . ~ A(k-l)B(k-2) ~B(k-l)] =n 

for some k, is necessary and sufficient for controllability starting at 
time O. Because the matrices A and B vary, the number of steps k 
may vary also if the initial time is different. 

If A(k) = A = constant and B(k) = B = constant, the above becomes 
a requirement that 

rank [ A k-l B ~ ... ~ AB ; B ] = n 

for some k and then the result of the previous section for the basic test 
applies. 
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We remark that it is not only the index that is important here. If 
the system is controllable, then we can actually compute the control 
necessary for a transition. We look at (22.6) and expand U, which 
generally is an m-vector, to 

U = um(O) 
ul(1) 

u2(1) 

We argue that the test for controllability means that the left-hand 
side matrix in (22.6) has an invertible submatrix. If it is controllable, 
we can solve for the control by setting all elements of U to zero 
except those associated with this submatrix, and then determine the 
others from a matrix inversion. Notice that the matrix in question is 
of dimension n x km. Since it has rank n by assumption of 
controllability, we form the submatrix SA by choosing columns 
1 ~ i l < h < ... < in ~ n from it such that SA has rank n also, i.e. choose n 
linearly independent columns of the matrix. Then 

=s"i(xf-A(k-l) .. · A(O)xo) 

This is easily formalized by using a selection matrix S. In 
particular, S is a km x n matrix with n non-zero columns, and with 
each non-zero column containing a different one of the elementary 
unit vectors. Under these conditions, SST contains an identity matrix, 
and straightforward algebra yields that QcSST x = ~ is solved in our 
sense by x = S [Qc S]-l~. 
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The situation is easy if the matrices are constant and m = 1, for then 
the controllability matrix Qc is square and taking of submatrices is 
unnecessary . 

Example 

Consider the simple example with dynamics equation 

[0 1 01 [0 x(k+ 1) = 0.5 0.5 0 x(k) + 1 
o 0 1 0 

The controllability matrix is given by 

[
0.5 0 1 0 0 0] 

Qc = 0.75 0 0 .5 0 1 0 

010 101 

which has rank 3. Using only the first element of the control vector 
yields rank = 2, and using only the second yields rank = 1. The 
controllability index can be seen to be 2. As we are seeking rapid 
control, we will choose to do a two-step command sequence, so that 
we have 

x(2) - A2xo = Q~U 
with 

[
1 0 0 0] 

Q~ = 0.5 0 1 0 

o 1 0 1 

We now choose i} = 1, i2 = 2, i3 = 3 to obtain the selection matrix S as 
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100 

010 
S= 

001 
000 

[
1 0 0 1 

Q~ S = 0.5 0 1 
010 

for which the inverse is 
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Then for any final condition Xf and initial condition Xo the control 
given by 

Ul (0) 

u2(O) 

Ul (1) 

U2 (1) 

[ 1 0 0] 
= S [Q~S]-l (Xf - A2xo) = -~.5 ~ ~ (Xf - A2xo) 

000 

should be satisfactory. The same operations can be done with Qc and 
a 6 x 3 matrix S to yield the same result. 

22.5 OTHER GENERALIZATIONS 

The above discussions have been of a restricted subset of the 
possibilities of controllability. We mention certain variations in this 
section. 
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22.5.1 Output controllability 

The controllability discussion above has in fact been concerned with 
what is called 'state controllability', because it is concerned with 
reaching a state which may be specified. One variation is called 
'output controllability', which is concerned with whether it is possible 
to move the system's output from one condition Yo to another Ye. The 
conditions for output controllability are less restrictive than those for 
state controllability, because the output dimension p is no higher than 
the dimension n of the state, provided the C matrix in (22.5) has full 
rank p. The above tests carryover in the obvious manner. For 
example, when A(k), B(k), and C(k) are constants A, B, C, 
respectively, the output is controllable iff the matrix 

C Qc =[B lCAB lCA2B 1 ... lCAn-lB] 

has rankp. 

22.5.2 Continuous time system models 

The concepts also apply to continuous time systems, with the result 
that the system described by 

x(t) = Ax(t) + Bu(t) 

yet) = Cx(t) + DuCt) 

with dimensions that x is an n-vector, u is an m-vector, y is a 
p-vector, is (state-) controllable iff 

rank Qc = rank [ B 1 A B 1 A 2 B 1 ... 1 A n-l B ] = n 

The tests are clearly the same as those in the discrete time case. 
Proofs appear in a number of places, e.g. (Graupe, 1972, Ch. 2), and 
in Chapter 24 for the related observability test. 
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22.5.3 Controllability of linear combinations of state 
variables 

It is worth commenting that if the rank of one of the test matrices is 
not the maximum value, all is not lost. First, it is quite possible that 
we can adequately control a 'not controllable' system; we choose not 
to call it an uncontrollable system. Alternatively, the tests may 
indicate the need for another command input. The second piece of 
information is that the rank of the matrices really tells us the number 
of different linear combinations of the state we can control or 
observe: for instance, if rank Qc = 1, there is one linear combination 

!I Xl + hX2 + ... + fnXn =fo 

which we can make take on an arbitrary value of fo, although the 
coefficients ii, i = 1,2, ... , n, are fixed by the system properties. The 
coefficients can be found, if desired, by doing a canonical 
decomposition, finding which z, is controllable, and then doing the 
inverse transformation. More particularly, perform the similarity 
transformation x = Tz and do a canonical decomposition. If z is 
controllable, then the linear combination [ T-l lx can be driven to an 
arbitrary value, where []i denotes the ith row of the matrix. 

22.5.4 Time-varying systems 

For the time-varying system 

x(k+ 1) = A(k) x(k) + B(k) u(k) 

we use the transition matrix defined by 

<I>(k,j) = <I>(k,j+ 1) AU) 

<I>(k,k) = I 

For this system, we may define a matrix, called the controllability 
gramian, as 
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kl-l 
W(ko,kl) = L <I>(kl,j+ 1)B(j) BT(j) <l>T(kJ,j+ 1) (22.7) 

j=ko 

and show, in a manner similar to that used for the observability 
matrix in section 24.3.3, that the system is controllable on the interval 
[ko, kl] iff rank W (ko, kl) = n. 

Furthermore, a feedback control which will steer the system from 
x(ko) to an arbitrary Xf is given by 

u(k) = BT(k) <l>T(kl, k+ I) W-l(ko, kl) (Xf - <I>(kl, ko) x(ko)) 

(22.8) 

The latter is seen by noting that, using the transition matrix, 

k-l 
x(k) = <I>(k, ko) x(ko) + L <I> (k,j+ 1) B(j) u(j) 

j=ko 

kl-l 
x(k1) = <I>(kl,ko)x(ko) + L <I>(kl,j+ 1)B(j) BT(j) <l>T(kJ,j+ 1) 

j=ko 

* W-l (ko, kl) (xr - <I>(kl. ko) x(ko» 

= <I>(kl. ko)x(ko) 

+ W(ko, kl) W-I (ko, kl) (Xf - <I>(kl, ko) x(ko» 

= Xf 

The above applies in a straightforward manner if the system is time 
invariant, for then <I>(k.j) = Ak-j and (22.7) becomes 

kl-l 
W(ko,kl) = L Akl-j-lBBT(Akl-j-I)T 

j=ko 

with kl - ko ::; n -1 because of the Cayley-Hamilton result. 
The continuous time result is as usual similar. with the gramian 

defined by 
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tf 

W(to, tf) = f $ (tf,'t) B('t)BT('t)$T(tf' 't)d't 
to 

and in the time-invariant case given, after change of variables, by 

T 
W(to,to+T) = f exp(A't)BBTexp(AT't)d't 

o 

The gramian test on rank [W] is sometimes more useful than the direct 
form check on rank [Qc] because of better numerical properties. 

22.5.5 Minimum energy control from controllability 

On an interval [/co, kl] the control to reach a given point Xl may not be 
unique. In this case, we may decide to use an optimization criterion to 
choose among the candidates. One such candidate is the weighted 
energy control, in which the criterion to be minimized is 

k\-l 
J(u) = I. uT(j)R(j)u(j) 

k=ko 

where R(j) is a symmetric positive definite weighting matrix. We 
define the modified controllability gramian matrix 

k\-l 
WR(ko,kl) = L.. <1>(kl,j+ l)B(j) R-I(j) BT(j) <1>(kl,j+ 1) 

j=ko 

Then the optimal control is given (Klamka, 1991) by 

The fact that this control allows Xf to be reached follows just as in 
the basic case in (22.8). The fact that it yields a minimum for the cost 
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J requires considerably more algebra (but not calculus or elaborate 
optimization arguments). 

22.5.6 Controllability of non-linear systems 

General controllability results for non-linear systems are difficult to 
come by, simply because there is no general way of writing the 
solutions of non-linear differential equations, and controllability 
theory tends to rely heavily on solution structure. Some local results 
have been obtained by linearization. Thus the system 

x(k+ 1) = f(k, x(k), u(k)) 

for which the known nominal input sequence {unom(k)} yields a 
nominal state trajectory {xnom(k)}, can be studied by examining the 
deviations 

ilx(k) = x(k) - xnom(k) 

and 

flu = u(k) - unom(k) 

If these deviations are small enough, then we consider the 
approximation given by the linearized system 

ilx(k+ 1) = af(k'X~k), u(k)) I x(k) 
x xnom(k),unom(k) 

af(k,x(k),u(k)) I 
+ a u(k) 

u xnom(k), unom(k) 

= A(k) ilx(k) + B(k) ilu(k) 

Another approach studies the quasi-linear case 

x(k+l) = A(k,x(k),u(k)) x(k) + B(k,x(k),u(k)) u(k) 

IIA(k,x(k),u(k)) II ~ ak IIB(k,x(k),u(k)) II ~ Pk 
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This is reviewed by Faradzhev et al. (1986). 
The special non-linear case of bilinear systems, such as 

x(k+ 1) = A(I + i uj(k) Bj)X(k) + Bou(k) 
J=1 

where A, Bj , are all n x n matrices, the Uj are scalar elements of the 
m-vector u, and Bo is n x m, has been examined by researchers with 
some results, summarized by Klamka (1991). 

22.6 COMPUTER TESTING 

Computer testing is straightforward, needing only a capacity to test 
matrix rank. Numerical problems can be present, however, because 
of potential ill-conditioning of the controllability matrix Qc. Some 
packages, therefore, test the gramian form. 

22.7 FURTHER READING 

Observability and controllability as concepts and structural indicators 
are usually traced back to Kalman (1961), and the ideas for linear 
system models are now found in most standard textbooks. The 
material of much of this chapter has also been presented in a similar 
manner in the textbook by Astrom and Wittenmark (1990). 

A good exposition of the results for controllability of linear 
systems, including time-varying systems, constrained control 
variables, and the minimum energy controller design above, is 
presented by Klamka (1991). 

For non-linear systems, the problem quickly becomes very difficult. 
One old discussion is by Gershwin and Jacobson (1971). A survey 
including issues of non-linear systems and limited control is given by 
Faradzhev et al. (1986). 
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Controller design by pole 
placement 

In classical methods of control law design, a structure for the 
controller is introduced by the designer and then several parameters 
within that structure are chosen to yield a response which meets 
specifications. Design work is usually done with the transfer function, 
either in a complex plane (as in root locus) or in the frequency 
domain (Nyquist-Bode-Nichols). The mathematics of pole placement 
design are as useful and interesting as many of the results, and 
therefore this chapter considers many variations on the basic problem: 
the essential result is that under certain conditions the poles of the 
closed-loop system may be placed at arbitrary locations of the 
designer's choice. 

In this chapter, we examine state-space methods of pole placement 
design for linear constant coefficient systems of equations (and hence 
for the physical systems which those systems purportedly model). We 
start with the basic ideas, assuming the entire state is measured and 
that the system is controllable, proceed to a variation of the solution 
when the entire state is not available and output feedback is necessary, 
and continue to the problem of stabilizing non-controllable systems. 
As an alternative, we look at transfer function approaches to pole 
placement. 

23.1 SYNOPSIS 

When there is enough freedom available to the control law designer, 
then the poles of a closed-loop system may be arbitrarily placed 
through choice of control law parameters. This may be done with 
either state-space or transfer function representations. 

In a state-space model 

x(k+ 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) 
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the use of state feedback u(k) = -Kx(k) is sometimes of interest to 
provide reference cases and is sometimes implementable, as in the case 
of a motor with both shaft position and rotation velocity measured. In 
such cases, all n = dim (x) system poles can be placed arbitrarily by 
selecting K such that (A - BK) = F has its eigenvalues at the desired 
pole values. This is possible provided that the system is controllable, 
i.e. that the controllability matrix Qc, defined in Chapter 22, has full 
rank, i.e. 

rank [ B ~ AB ~ A 2 B ~ ... ~ A n-1 B ] = n 

If the system is not controllable, it may still be possible to select 
some poles and have a stable system. When dim(u) = 1 and the system 
is controllable, one convenient design algorithm uses Ackermann's 
formula for the gain K, 

K = [0 0 ... 0 I] [B ~ A2B ~ AB ~ ... ~ An-1B ]-1 (Xdes(A) 

where (Xdes(A.) is the desired characteristic polynomial and (Xdes(A) is 
the matrix polynomial defined by substituting the matrix A in place of 
the scalar A.. It is sometimes possible to design an output feedback law 
u (k) = -Ky(k) so that p of the poles may be selected, where 
p ~ max (dim(y),dim(u)). Also of interest is the possibility of 
stabilizing a system which is not controllable. 

The alternative to state-space arguments is provided by considering 
that the control law transfer function 

T(z) S(z) 
U(z) = R(z) Uc(z) - R(z) fez) 

should be chosen so that the plant transfer function 

fez) N(z) 
H(z) = U(z) = D(z) 

becomes, upon feedback loop closure, equal to a desired (or model) 
closed-loop transfer function 



www.manaraa.com

The state-space approach 525 

with perhaps some additional constraints to ensure, for instance, that 
the system rejects disturbances. 

Finally, for the cases in which selecting all of the eigenvalues is 
more restrictive on the designer than is necessary to meet 
performance requirements, researchers are seeking algorithms which 
place the eigenvalues within a region rather than at precise locations. 
One such technique is briefly outlined. 

23.2 THE STATE-SPACE APPROACH 

The application of state-space methods in a feedback control paradigm 
is not always clear. Our attitude will be more general than the usual 
structure, as in Fig. 23.1. Here the plant and the measurement system 
are linear, but so far the processing of the measurements and of the 
input signals has not been specified. The system is taken as defined by 

x(k+ 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) 

where the first is the dynamics equation and the second is the 
measurement equation. 

In the course of this section we will gradually make more elaborate 
assumptions about the nature of the matrices and functions involved. 

23.2.1 The simplest case 

The basic case in design has the entire state fed back in the control of 
the system, with the control variable being a scalar. We explore this 
problem before proceeding to advanced versions. 

In terms of Fig. 23.1, the basic case has x(n) = x(n) (called an 
identity observer) and u(n) = K(r(n) - x(n», with K a gain to be 
determined. We build slowly to the general case by first having u(n) 
be scalar and A being of controllable canonical form. Then we 
generalize A, and finally we increase the dimension of u(n). 
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COMPUTER 
k) 

Q(k) z f(y(k» u(k) .. PLANT x( -- u(k) .. g(~(k) • r(k» - x(k+l)", A x(k) + B u(k) -
r( 

k) 

• 

y(k) MEASUREMENTS -
y(k) = CX(k) 

Figure 23.1 State-space control system representation for linear system 
and measurements with possibly non-linear controller. 

Thus to start we consider the case C = I, so that the state is 
measured exactly, the plant has a single input (i.e. m = 1) and the 
dynamics are in controllable canonical fonn. Hence 

-al -a2··· ... -an 
1 0 0 0 0 

x(k+1) = 
o 1 0 0 ... 0 

o 0 0 0 1 0 

which has characteristic equation 

An + al An-l + a2An-2 + ... + an = 0 

1 

o 
o 

x(k) + u(k) (23.1) 

o 

and poles which are the roots of this equation. We note that this 
system is obviously controllable from trivial computation of the 
controllability matrix. We choose the control law structure 

u(n) = -Kx(n) + g(r(n» 
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If we wish for the poles to lie at A. 1. 1...2, ... , A.n, this is the same as 
requiring the characteristic equation to be 

A.n + <Xl A.n-l + <X2A.n-2 + ... + <Xn = 0 

By direct substitution in (23.1) it is clear that choosing gain K such 
that 

(23.2) 

will give the closed-loop state equation description 

-<Xl -<X2 · ·· ...... -<Xn 1 
1 0 0 0 0 0 

x(k+ 1) = 
0 1 0 o ... 0 

x(k) + 
0 

g(r(k» 

o 0 0 0 1 0 o 

Our design method is clear: choose the poles as real numbers and 
complex conjugate pairs (so all coefficients are real), form the desired 
characteristic equation, then form K as in (23.2). 

Example 

Consider the simple system 

x(k+ 1) = U· 5 -~.54] x(k) + [~] u(k) 

with poles at -0.9, -0.6. We wish to have poles at ± 0.5, giving a 
characteristic equation 1...2 - 0.25 = o. Choosing 

K = [ 0 + 1.5 -0.25-0.54] = [ 1.5 -0.79 ] 
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gives 

u(k) = [ -1.5 0.79 ] x(k) + uretCk) 

and 

{ [ 1.5 -0.54] [-1.50.79]} [1] 
x(k+ 1) = 1 0 + 0 0 x(k) + 0 uretCk) 

[ 0 0.25 ] [1] = 1 0 x(k) + 0 uretCk) 

which clearly has the required poles. 

23.2.2 Single input systems of general form 

The more general system x(n + 1) = Ax(n) + bu(n) is easily handled 
using similarity transformations. This is because similarity 
transformations do not affect eigenvalues. Thus let P define a change 
in coordinates 

wen) = Px(n) 

Then 

w(n+ 1) = PAP-1w(n) + Pbu(n) 

We remember that 

det(PAP-I - AI) = det(P) det(A - AI) det(P-I) 

= det(A - AI) 

(23.3) 

so that the characteristic equation is not affected by the 
transformation. We select P such that the system is in one of the 
controllable canonical forms (23.1) and then choose K as in section 
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23.2.1, giving a control law 

u(n) = [aI-aI ... an-I-an-I an-an] wen) + g(r(n» (23.4) 

Remembering the initial transformation, the control law for the 
original representation is 

u(n) = - K#x(n) + g(r(n» 

=[al-al a2-a2 ... an-an] P x(n) + g(r(n» 

To find P, we compute the controllability matrix for a transformed 
system (23.3) 

Qcp = [PB ~ (PAP-I)PB ; ... ~ (PAP-l)n-IPB] 

and note that this has the form 

Qcp = P [B ; AB ; ... j An-2B j An-lB] = PQc 

From this form follows the relationship P = QcpQc1. Thus our 
algorithm is as follows. 

1. Compute the characteristic equation of A. 
2. Compute the controllability matrix Qc of the original system 

(x(n+ 1) = Ax(n) + bu(n» and the controllability matrix of the 
controllable form (23.1), which is easy because we can simply 
write down the canonical form from the characteristic equation. 

3. Compute P = Qcp Qc1. Note that the invertability of Qc implies 
that the system must be controllable for this inverse to exist and 
hence for us to design the controller. 

4. Compute the desired characteristic equation and then the gain K# 
from (23.4). 

Example 

We demonstrate the above with the system 

[ 1 0.3 ] [0.5] 
x(k+ 1) = -0.2 0.5 x(k) + 1 u(k) 
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We find that 

_ [0.5 0.8 ] 
Qc - 1 0.4 

and the characteristic equation is 

-1 _ [-2/3 4/3 ] 
Qc - 5/3 -5/6 

Then with or without writing out the canonical form system, we have 

and hence 

= [1116 1112] 
p 5/3 -5/6 

-1 = [112 1120 ] 
p 1 -11/10 

If we choose to have the poles at ±0.5, then 

u(k) = [ -1.5 + ° 0.56 + 0.25 ] P x(k) + urec{k) 

= [ -1.4 -0.8] x(k)+ urec{k) 

Using this control, the closed-loop system has the apparent state­
space model 

[ 0.3 -0.1 ] [0.5] 
x(k+ 1) = -1.6 -0.3 x(k) + 1 urec{k) 

This is easily shown to have the correct poles. 

Manipulation of the transformations and restriction to the special case 
of m = dim(u) = 1 allows Ackermann's formula to be used. This is 
given by 
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K = [00 ... 01] Qcl [An + alAn-1 + a2An-2+ ... + anI] (23.5) 

and is proven in Appendix B. 

Example 

We repeat the above example using Ackermann's formula. Since it is 
desired that the characteristic equation be ')...2 - 0.25 = 0, we have a 1 = 0 
and a2 =-0.25. Hence we easily compute 

[ 0.69 0.45] 
A2 + alA + a2 = -0.3 -0.6 

Qcl was computed in the previous example, and we use that to find 

[ 0 1] Qcl = [1.6667 -0.8333] 

Finally, completing the computation of (23.5) 

Except for the inversion of the controllability matrix, this is clearly 
a quite straightforward computation to perform. 

The above is fairly direct and simple. We must remember, however, 
that we have not addressed several problems, including where to place 
all those eigenvalues; this problem was mentioned in Chapter 19, and a 
possible solution approach is introduced in section 23.7. 

23.2.3 Multiple input systems 

We now consider the general case x(k+ 1) = Ax(k) + Bu(k) where the 
control u(k) is an m-vector. If there is a column Bi of the matrix B 
such that (A; B j) is a controllable pair, then we can obviously do a 
scalar design, using only the ith component of u in the command, as in 
the preceding section. The result of course is 
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u(j) =-

o 
o 
~ x(j) + g(r(j)) 

o 

(23.6) 

If (A; B) is controllable only when more than one column of B is 
used, however, then our design task is somewhat more difficult. The 
method usually presented is to find a scalar sequence us(k) = qTx(k) 
and an allocation vector p of dimension m x 1, such that 

1. (A; Bp) is controllable; 
2. (A - BpqT) has its eigenvalues at the required pole locations; 

and then let 
3. u(k) = - pqT x(k) + g(r(k)) 

As presented by Kuo (1980), the choice of p is done first and is 
nearly arbitrary, whereas Willems and Mitter (1971) present a 
constructive method. We look first at the former, then the latter, and 
then make comments. 

23.2.4 Semi-arbitrary allocation 

Following Kuo, choose the m-vector p arbitrarily but such that 
(A;Bp) is a controllable pair, and let bp denote the n-vector Bp. 
Design, as in section 23.2.2, a gain vector q such that the system 

x(k+ 1) = Ax(k) + bpus(k) 

has eigenvalues in the desired locations. Then clearly the law 

us(k) = - qTx(k) 

gives 

x(k+ 1) = (A - bpqT) x(k) 
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with the proper poles. But from the notation, this is 

x(k+ 1) = (A - BpqT) x(k) 

and is the same result as choosing 

u(k) = -pqTx(k) 

= -Kx(k) 

in the original problem. 
It seems as if almost any allocation vector p will do in the above, 

and we observe that allocation vector is an appropriate name since in 
fact the design of the feedback is for a scalar control relationship 
us(k), which is allocated among the components of the commands u(k) 
using p. Notice that K has rank 1 in this scheme - there has been no 
need for complicated control relationships. 

23.2.5 Systematic construction 

Compared to the above, the method of Willems and Mitter (1971) is 
similar philosophically but more systematic. They do the following. 

1. Construct an m X n matrix L such that (A - B L ; b) is 
controllable for some arbitrary b = Bp where p is arbitrary but 
non-trivial. 

2. Find a gain q such that the eigenvalues of (A - BL + BpqT) are 
as desired. 

3. Let the feedback control law be 

u(k) = (-L + pqT) x(k) 

The key part of the approach is the construction of a matrix L, 
which proceeds as follows. Let Bi denote the ith column of B and let 
kl be the largest index such that 
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has full rank. If this rank is less than n, then let k2 be the largest index 
for which 

has full rank. If this rank is less than n, let k3 be the largest index for 
which 

has full rank. Continue this until, for some r ~ m and sequence 
kl, k2, ... , k" we reach 

Q, = [ Q,-l l B, lAB, l ... l Ak,-l B,] 

which has rank n. By the method of construction, Q, will be of 
dimension n x n and non-singular. Let Q = Q, . 

Continuing, we now define the selection matrix S, an m X n matrix, 
as the matrix with all zeros except for a 1 in the (j + 1 )st row of the 
rjth column, where 

j 

rj = L ki 
i=1 

In matrix terms 

j = 1,2, .. . ,r-l 

j 
forrj=Lki j=1,2, ... ,r-l 

i=1 

otherwise 

where e(j) is the natural unit vector with jth element equal to 1 and all 
others equal to O. We remark that Li=l ki = n from the nature of the 
construction. 

Using S as defined above, we finally define L = SQ-l for which it 
can be shown that (A - BL; Bi) is a controllable pair for any non-
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zero B i. We then can safely form an allocation vector p so that, 
provided B p is non-zero, we can place the eigenvalues of 
(A - BL + BpqT) as we wish with choice of the gain vector q for the 
system 

x(k+ 1) = (A - BL) x(k) + Bpw(k) 

i.e. 

w(k) = qTx(k) 

and hence 

u(k) = (-L + pqT) x(k) 

Observations 

We now make some observations about both of the above schemes. 
First, the underlying problem allows us to choose the elements of an 
n x m matrix, i.e. to choose nm scalars. We are using this freedom to 
place n scalars - the eigenvalues of the closed-loop system. Neither 
of the schemes presented uses the other freedom available. Finally, 
the Willems and Mitter approach could be used with a 'guessed' L 
matrix, since design only needs (A - BL; Bi) controllable for some Bi 
whereas their approach allows a more general b = B P for the 
allocation. 

In both schemes, the allocation vector p can be chosen nearly 
arbitrarily. It turns out that the actual choice will define things like 
the closed-loop zeros and the gain magnitUdes, neither of which is 
explicitly addressed by the design methods. One might think that this 
constitutes a waste of design flexibility. 

Example 

We consider the system 

[ 
I I 

x(k+ 1) = 0 1 
o 0 
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It is easy to show that this is controllable, but that both elements of 
the control are necessary to obtain this controllability. The 
eigenvalues are all at z = 1. The controllability matrix for B} is 

This has rank 2 and hence kl = 2. Using this with the 
controllability matrix for B2, which is 

[
0 0 0] 
000 
111 

gives k2 = I and hence r = 2. The Q2 matrix is 

[
0 1 0] 

Q2 = 1 1 0 
001 

Then we may show from the definitions that 

[ -1 1 0] 
QY = 1 0 0 

o 0 1 

[ 0 0 0] 
S = 0 1 0 [0 0 01 

L = 1 0 0 

The system for our design work, if we select b = BJ, is 

x(k+ 1) = (A - BL) x(k) + buCk) 

= [~ ! ~] x(k) + [~] u(k) 
-1 0 1 0 
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This has controllability matrix 

Q=[~ ! ~] 
o 0 -1 

We may now proceed as with any scalar input case to find the 
transformation to controllable form, etc. The transformation z = Tx 
is 

[
0 0 1 ] 

T = 1 0 -1 
2 1 -1 

The present system has its eigenvalues all at + 1 and its characteristic 
equation is 

We would like the poles to be at, say, 0.5 ± 0.5j, -0.25, yielding a 
desired characteristic equation of 

1...3 - 0.751...2 + 0.251... + 0.125 = 0 

The resulting gain for the transformed system is [-1.125 2.75 -2.25], 
so that the gain for the transformed system is 

K = [-1.125 2.75 -2.25] T 

=[-1.75 -2.25 0.625] 

Our control law then is 

u(k) = [-L + [~] ] x(k) + urer<k) 
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= - K# x(k) + urerCk) 

[ -1.75 -2.25 0.625] 
= -1 0 0 x(k) + urerCk) 

It can be shown (using computer programs, for example) that 
x(k+ 1) = [A - BK#] x(k) + BUref(k) has the desired characteristic 
equation. 

23.3 OUTPUT FEEDBACK BASED UPON STATE-SPACE 
ARGUMENTS 

Since the entire state is rarely measured, it seems obvious that a useful 
design method would use feedback of only the measured quantities, 
i.e. that the control should be 

U(j) = Ky(j) + r(j) 

= KCx(j) + r(j) 

It turns out that, if C has rank p, then at least ne = max (p, m) 
eigenvalues of the system can be arbitrarily placed. The problem is 
that the other n - ne eigenvalues mayor may not be suitable, so 
although we present the methods of placement here for completeness, 
it seems preferable to use a dynamic feedback, as in the next section. 

In this section, we first present a simple design method for a simple 
problem and then examine the method of Davison (1970) for more 
generality. 

23.3.1 Scalar control with a canonical form 

Consider the special case in which the system has controllable 
canonical form and the measurements are of p elements of the state 
vector. Then 

[ ° ; I 1 [0J x(j + 1) = x(j) + 1 u(j) -al -a2 ... -an 

y(j) = [... el ... e2 ... e3 ... ep ] x(j) 
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where the p natural unit vectors ej are in columns 1 ~ rj ~n and 
without loss of generality we take these as ordered with 1 ~ rl <r2 < ... 
<rp~n. IT we have 

u(j) = kl x'1 (j) + k2Xr2 (j) + ... + kpxrp (j) 

then (taking for illustrative purposes only that rt > I and rp < n) 

(23.7) 

is the closed-loop expression and the characteristic equation is of the 
form 

')..n + an ')..n-l + ... + (a rp -kp) ')..rp-l + ... (aq - kl) ')..'1-1 + ... + al = 0 

(23.8) 

We can in principle insert the desired p eigenvalues ')..1, ')..2, .. . , ')..p 
into (23.8) to create a set of p simultaneous linear equations in the p 
unknowns kl' k2, ... , kp. Thus solve the set 

')..1 ')..I ... Al 
a1 ')..r1-1 A,{-1 

1 1 ... k1 

')..2 ')..~ ... ')..~ 
a2 

')..;1-1 ., . At1 k2 I 
= (23.9) 

1 Ap ')..~ ... ')..; an 
')..;1-1 .,. ')../-1 kp 

I 

The r.h.s. matrix is p x p and will be invertible except when we ask 
for repeated eigenvalues, 0 eigenvalues with all rj:l-l, or have some 
other exceptional case. In effect we are setting p of n coefficients in 
the characteristic equation, with the other n - p due to the original 
system dynamics. This will force p eigenvalues to have required 
values but place the other n - p beyond our control. 
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Example 

Consider the system described by 

x(j+l) = 

o 1 0 1 
o 0 1 0 
o 0 0 1 

1 --! 1 ~ 

[ 0100] 
y(j) = 0 0 1 0 x(j) 

It is desired that the n - p = 2 settable poles be placed at ±a using the 
measurement feedback law 

u(j) = kl Yl(j) + k2 Y2(j) 

Inspection of the C matrix reveals that rl = 2, r2 = 3. Applying this 
to (23.7) or using direct computation shows that we are placing two 
eigenvalues of 

o 1 0 1 
o 0 1 0 
o 0 0 1 

1 --!+kl 1 +k2 ~ 

The resulting characteristic equation is 

A 4 + ~A3 - (1 + k2)A2 - (kl - DA - 1 = 0 

Forcing this to have the roots ±! can be done in several ways. 
Using the formula (23.9) gives 
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-1 

[ 1 -114 1/16 -1164 11256] 
112 

=[ -114 1116 ] [kl] 
1 114 1/16 1164 1/256 

-1 
1/4 1116 k2 

-3/2 
1 

for which the solution is kl = 13/32, k2 = -271116. The resulting 
system eigenvalues are ±! , a ± 3.8002j. Notice that two of these are 
the desired eigenvalues, but the other two are artefacts which in this 
case are unstable. 

23.3.2 General systematic design of output feedback 

The pole placement may be approached more systematically by using 
Davison's approach. Here we have the usual general formulation 

x(j + 1) = Ax(j) + B u(j) 

y(j) = Cx(j) 

where state x, control u, and measurement y are n-, m-, and 
p-dimensional vectors respectively. It is assumed for ease of 
presentation that A has distinct eigenvalues. Following Davison 
(1970) we place p eigenvalues arbitrarily using the following method. 

1. Find the similarity transformation T which places A into 
diagonal form 

A = T-IAT 

2. Denote B = [BI 1 B21 ... 1 Bm ] and create an allocation vector q 

with qi = I and such that the indicator vector 

s = T-IBq 

has non-zero elements by choosing qt, k=2, 3, ... , m, recursively 
such that, for j = 1,2, ... , n, the jtb elements, {. b satisfy 
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whenever either 

or 

3. Let K* = qKT and detennine the gain K such that 

x(j+ 1) = Ax(j) + Bqw(j) 

y(j) = Cx(j) 

w(j) = KT y(j) 

has p required eigenvalues, as follows. 

(23.10) 

(a) Place (23.10) into controllable canonical form using the 
transformation matrix P as in section 23.2.2, i.e. let 
11(j) = Px(j), y(j) = CP- l 11(j), etc. 

(b) We observe that 

KTCP-I = [dl d2 .. . dnl 

gives a characteristic equation 

')...,n - (an + dn) ')...,n-l - ... - (al + dl) = 0 

where the di are not necessarily independent (since KT is 
1 xp). 

Then for the actual algorithm, for the desired eigenvalues 
')...,1. 1..2, .. , A.p we define the Vandermonde matrix 
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1 1 1 ... 1 

1..1 1..2 1..3 Ap 
AI A~ A~ 2 

L= 
... Ap 

'\ n-l '\ n-l '\ n-l '\ n-l 
1\.1 1\.2 1\.3 . .. I\.p 

h s: '\ n '\ n-l '\ n-2 . th' , . were ui = I\.j - an I\.j - an-l I\.i _ .. . - a 1 IS e error III 

the original characteristic equation. 
(c) Define the p xp matrix S by S=CP-lL. Then KT=OTS-l. 

If S is singular, the desired eigenvalues Aj are to be 
perturbed slightly until it is non-singular. 

4. Finally, K* = qKT as required. 

Example 

As an example, we use two simple systems with first-order dynamics 
whose sum of outputs is the only measurement. Thus 

[0.9 ° ] [1 0] 
x(k+ 1) = ° 0.6 x(k) + 01 u(k) 

y(k) = [1 1] x(k) 

This system is controllable and observable and in fact is in diagonal 
form already. Hence the transformation T is the identity matrix I, 
T-l = I, and 

T-l Bl = [~] T-l B2 = [~] q = [~] where 9 * ° 
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We choose 9 = 1. The system for pole placement becomes 

[ 0.90] [1] x(k+ 1) = 0 6 x(k) + 1 w(k) 

with w(k) = KTy(k). As is usual, we find 

-1 [10/3 -10/3] 
P = QpQc = 3 -2 ).,2 -1.5 A. + 0.54 = 0 

Then we compute, if we choose to have a pole at 0.3, 

~h = (0.3)2 - 1.5 (0.3) + 0.54 = 0.18 

[ -3/5 1] [ 1 ] 
S = [1 1] -9/10 1 0 .3 = [-0.9] S-l = [-1/0.9] 

Then K = [0.18/(-0.9)] = [-0.2]. Finally 

With u(k) = K# y(k) + urerCk) = K# Cx(k) + urerCk), it can be shown 
that the poles are at 0.3, 0.8. It should be emphasized that a different 
choice of 9 in q = [1 9]T would have yielded a different second pole. 

We should notice that the allocation vector is once again virtually 
arbitrary and, as claimed in the example, the choice of this will affect 
the location of the unplaced poles. 
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23.4 THE STATE-SPACE APPROACH TO 
STABILIZATION OF NON·CONTROLLABLE 
SYSTEMS 

A controllable system can always be stabilized, since its poles may be 
placed as we wish, namely, inside the unit circle. The question arises 
as to whether a system which is not controllable can be stabilized, and 
the answer is 'sometimes'. We investigate this using a variation of 
Wonham's (1967) arguments. 

The system, as usual, is taken as described by 

x(k+ 1) = Ax(k) + Bu(k) 

but in this instance we assume that (A; B) is not controllable, so that 

Qc = [ B ~ A B ~ A 2 B ~ ... ~ A n-l B ] 

does not have full rank (= n). We let a(A) be the minimal polynomial 
of A, i.e. the polynomial of least degree for which 

a(A) = 0 

This will have the same factors as the characteristic polynomial of 
A, but some of the factors may have lower powers. Now factor aO 
into a product of two polynomials, one with zeros inside the unit 
circle, called a_, and one called a+ with zeros on or outside the unit 
circle. Then a(A) = a_(A) a+(A). 

Letting 

E+ = { x I a+(A)x = 0 } 

E_ = { x I a_(A)x = 0 } 

QR = { x I For some a, x = Qc a; i.e. x in range of Qcl 

P.L = projection matrix of x onto E+ 

CR = matrix such that AP.L + P.L BCR has desired eigenvalues 
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then the results are as follows: 

1. (A; B) is stabilizable iff E+ is a subset of QR; 
2. (A P.l; P .lB) is controllable; and 
3. u(k) = C R P .lx(k) is a stabilizing control yielding the desired 

eigenvalues, where the number setable equals the rank of the 
controllability matrix Qc. 

To see how this comes about, we must consider the projection of a 
general x(k) onto E+ and E_, with orthogonal components y(k) and 
z(k), respectively. 

In fact, as seen by considering the definitions and the section on 
projection (where a++ (A) equals full rank row submatrix of a+ (A», 

Then we quickly find 

y(k+ 1) = P .lx(k+ 1) = P .l(Ax(k) + Bu(k» 

= P .lA(y(k) + z(k» + P .1 Bu(k) 

Now note that if y belongs to E+, then Ay does also, since 
a+(A)Ay = Aa+(A)y when a+ is a polynomial. Hence P.lA = AP.l, 
and P .lAP _ = 0 (where P _ = 1- P .1). Using this information, 

y(k+ 1) = AP.l y(k) + P.l Bu(k) 

z(k+ 1) = AP_z(k) + P_Bu(k) 

Since P_ is also A-invariant, AP_ is stable. 
The controllability matrix for the y-subspace is 

because P.lP.l = P.l and P.lA = AP.l, etc. 
Now we seethat, iffE+cQR, then E+=P.lQR. But then ify E E+, 
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there exists q such that y = P.1 QR q, i.e. y is in the space spanned by 

Hence by comparing to Qy we see that any y in E+ is controllable 
with the pair (AP.1; P.1B). 

Choose CR such that AP.1 + P.1 BCR has desired eigenvalues (we 
can choose n.1 eigenvalues, where n.1 =rank(P .1». Then letting 
C = CRP.1 and choosing u(k) = Cx(k) gives 

y(k+ 1) = AP .1y(k) + P .1 BC(y(k) + z(k» 

= (AP.1 + P.1 BCR) y(k) 

z(k+ 1) = A P_z(k) + P _BC(y(k) + z(k» 

= AP _z(k) + P _B CRy(k) 

Written in matrix notation, 

[Y(k+1)]=[ AP.1 + P.1BCR 0 ] [Y(k)] 
z(k+ 1) P_BCR AP z(k) 

this is clearly stable. Intuitively, the part which is not controllable is 
{z(k)}, and this is stable by itself; the part which is controllable is 
{y(k)}, and we placed the poles of this part and kept them from 
interfering with the stability of {z(k)}. 

Example 

Consider the trivial system 

[ 1.5 1] [1] 
x(k+ 1) = 0 -0.5 x(k) + 0 u(k) 

which has poles at -0.5 and 1.5 and, with controllability matrix 
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_ [1 1.5] 
Qc - 0 0 

having rank 1, is not controllable. The minimum polynomial is the 
characteristic polynomial 

a(A) = (A + 0.5) (A - 1.5) 

and hence 

a+(A) = A - 1.5 
a_(A) = A - 0.5 

From the definitions, 

E+ = {x I X2 = O} 

E_ = {x I X2 = -2xd 

QR = {x I X2 = O} 

We see that QR = E+, so stabilizability is expected. Continuing, 

From this we compute 

[1.5 0] 
AP.l = 0 0 

We choose to place one pole (rank of P.l is 1) at -0.25 using CR in 
(AP.l + P.l BCR). Since we are in this case seeking to place a pole of 



www.manaraa.com

Pole and zero placement with transfer functions 549 

we see that the choice 

CR = [-1.75 C2 1 

is suitable for any C2, so that the final gain is 

Using this gain in the control loop, it is easy to compute that 

has 

x(k+ 1) = Ax(k) + Bu(k) 

u(k) = Cx(k) + uin(k) 

[ -0.25 1] [1] 
x(k+ 1) = 0 -0.5 x(k) + 0 u(k) 

with poles at -0.25, -0.5. We notice that the problem had an obvious 
solution C = [-1.75 c2l where the second component is arbitrary; the 
method used here was an 'overkill' demonstrating that the approach 
may be unduly restricting. 

23.5 POLE AND ZERO PLACEMENT WITH TRANSFER 
FUNCTIONS 

Pole placement can be performed with transfer function approaches as 
well as with state-space methods. A little reflection concerning root 
locus methods (Chapter 18) will perhaps indicate that the entire 
complex plane is potentially coverable by selection of compensator 
parameters. 
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23.5.1 General approach 

W(z) 

U(z) --.( l---'V(z) 

Figure 23.2 Transfer function plant representation, with (transfonns ot) 
dynamics noise w and measurement noise v. 

The transfer function approach starts with a system model as in Fig. 
23.2, in which the plant transfer function is modelled as 

XEl N(z) 
H(z) = U(z) = D(z) 

with N(z) and D(z) being polynomials in the z-transform variable (and 
forward shift operator) of degrees deg(N(z» and deg(D(z»), 
respectively. By assumption deg(N(z» ~ deg(D(z», so that the 
system is causal. 

It is desired that a controller be designed, with 

T(z) M 
U(z) = R(z) Uc(z) - R(z) fez) 

so that the overall system transfer function 

(23.11) 

from command input to system output takes on the desired, or model, 
value Hm(z). It is assumed that deg(Nm(z» ~ deg(Dm(z». 

The design task is to specify the polynomials T(z), R(z), and S(z) so 
that the requirements are met. It is required for causality of the 
resulting control law that 
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deg(T(z)) ::; deg(R(z)) 

deg(S(z)) ::; deg(R(z)) 

and common choices are 

deg(T(z)) = deg(S(z)) = deg(R(z)) 

(23.12) 

when the computer is fast enough to give no computational delay and 

deg (R(z)) = 1 + deg(T(z)) = I + deg(S(z)) 

when there is computational delay. Further constraints may be that 
disturbances have 'small' effects, a problem we address shortly. 

T(z) 

R(z) 

W(z) 

S(z) 

R(z) 

V(z) 

N(z) + Y(z) --
D(z) + 

Figure 23.3 Closed-loop control system model for plant as in Fig. 23.2 
and control law defined by T(z), S(z), and R(z). 

With the above control, the closed-loop system appears as in Fig. 
23.3. From this it is easy to see that the closed-loop transfer function 
is given by 

~ N(z)T(z) 
Uc(z) = D(z)R(z) + N(z) S(z) (23.13) 
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and the disturbance noise transfer functions are 

~ N(z)R(z) 
W(z) = D(z)R(z) + N(z) S(z) 

(23.14) 

M R(z)D(z) 
V(z) = D(z)R(z) + N(z) S(z) 

(23.15) 

The design requirement is that (23.13) be equal to the required 
transfer function (23.11), and usually it is also desired that (23.14) 
and (23.15) be made 'small'. The latter is typically approached by 
making the loop gain 

S(z)N(z) 
Hlg(Z) = R(z)D(z) 

be large for certain values of frequency ro in Hlg(~o>1). For example, 
if there is to be no error to constant disturbance values, then the zero­
frequency loop gain Hlg( ~o1) can be made very large by imposing 

R(z) = (z - 1)K R'(z) 

for some posItIve integer K. This is in fact integral control. 
Similarly, to block out noise at a frequency ron (such as power line 
interference), one might make Hlg(ejO>n1) large by giving S(z)/R(z) a 
notch filter action; such filter design is only mentioned here, as it is 
the topic of digital signal processing courses and their textbooks. 

23.5.2 The open-loop control solution 

An obvious partial solution to the basic problem is pole-zero 
cancellation: choose S(z) = 0 and 

T(z) Nm(z)D(z) 
R(z) = Dm(z)N(z) 
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This yields the system of Fig. 23.4, which is an open-loop system. 
Although having the required transfer function, it will be disturbance 
sensitive because the loop gain is zero. Furthermore, if either N(z) or 
D(z) has roots outside the unit circle (meaning the system is either 
non-minimum phase or unstable, respectively), then the overall system 
will have unstable elements which are uncorrected. 

W(z) V(z) 

Nm(z) D(z) 

Dm(z) N(z) 

N(z) 

D(z) + 

Figure 23.4 Open-loop system resulting from choice S(z) = O. 

23.5.3 Standard feedback control 

Y(z) 

The choice T(z) = S(z) yields standard feedback control, for then with 
e(k) = Uc(k) - y(k) we have 

@ 
U(z) = R(z) E(z) 

The transfer function requirement yields 

1Ql N(z)S(z) !i.mSn 
Uc(z) = D(z)R(z) + N(z) S(z) = Dm(z) 

This requires 

@ D(z)Nm(z) 
R(z) = N(z)(Dm(z) - Nm(z» 

and yields the system of Fig. 23.5. The loop gain will depend upon 
the choices of Nm(z) and Dm(z). Because the controller has N(z) in its 
denominator, the controller will be unstable if the system is not 
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minimum phase; the plant system may be unstable, but the feedback 
should account for this to create a system which is stable. 

N(z) (Dm (z) - ~(z)) 

W(z) V(z) 

N(z) 

D(z) 
Y(z) 

Figure 23.5 Compensation of feedback error to obtain a required closed­
loop transfer function. 

23.5.4 More general solutions 

Since it is characteristic of the controllers that they will cancel factors 
of N(z) not appearing in Nm(z), any such factors which lie outside the 
unit circle plus any others not to be cancelled should be retained. 
Formally this means that N(z) should be factored as 

N(z) = N+(z)N-(z) 

where N-(z) contains the 'protected' factors such as those with roots 
outside the unit circle and N+(z) contains the remaining factors. For 
uniqueness, N+(z) is chosen to be a monic polynomial (the coefficient 
of its highest power of z is 1). Using this, we must have 

Nm(z) = N-(z)N!n(z) 

Keeping this in mind, we have the requirement from (23.13) that 
R(z), T(z), and S(z) be found such that 

N(z) TCz) Nm(z) 
D(z)R(z) + N(z)S(z) = Dm(z) (23.16) 
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To maintain reaS'onable dimensional relationships - the above 
indicates 

deg (N(z» + deg(T(z» = deg (NmCz)) 

- some cancellation must take place. In particular, N+(z) must divide 
both numerator (obviously) and denominator on the left-hand side of 
(23.16). This gives 

N+(z)N-(z) T(z) N-(z)N:n(z) 
D(z)N+(z)R'(z) + N+(z)N-Cz)S(z) = Dm(z) 

which reduces to 

T(z) N:n(z) 
D(z)R'(z) + N-(z) S(z) = Dm(z) 

This gives the design equations 

T(z) = N:n(z) 

D(z)R'(z) + N-(z)S(z) = Dm(z) 

R(z) = R'(z)N+(z) 

This is still awkward dimensionally, as it requires 

deg (R'(z» $ deg (Dm(z» - deg (D(z» 

(23.17) 

for example. Because of the causality constraints (23.8), this can 
easily leave us with too few parameters for adequate design of the 
control law. To circumvent this difficulty, we introduce an extra 
design polynomial F(z), arguably related to observers (Chapter 25), 
into (23.17) as 

T(z) N:n(z)F(z) 
D(z)R'(z) + N-(z) S(z) = Dm(z)F(z) 
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This means the design is a solution of 

T(z) = N:n(z) F(z) 

D(z) R'(z) + N-(z) S(z) = Dm(z) F(z) 

R(z) = R'(z)N+(z) (23.18) 

A good choice for the new factor appears to be F(z) = ZL, L ~ 0, 
but its net effect on the final design is to allow more complexity (more 
terms) in the difference equation for u(k). 

Using (23.18), the real problem is the second equation, which is of 
a form called a Diophantine equation. We can find a unique solution 
to it provided that (see Astrom and Wittenmark, (1990) 

deg (R'(z» < deg (N-(z» 

deg S(z) < deg D(z) 

degDm(z) - degNm(z) ~ degD(z) - degN(z) (23.19) 

degF(z) ~ 2degD(z) - degDm(z) - deg(N+(z» - 1 

Using these polynomial dimensional relationships, the general 
Diophantine solution methods may prove unnecessary; algebraic 
simultaneous linear equations may suffice. We summarize the 
algorithm before showing this in an example. 

Algorithm 

N(z) and D(z) are of course presumed known, and the result is the 
control law 

T(z) ~ 
U(z) = R(z) Uc(z) - R(z) Y(z) 

Step 1 Choose Nm(z)IDm(z), the desired transfer function, and F(z), 
the 'observer' function. 

Step 2 Factor the numerator polynomials, so that 
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N(z) = N-(z) N+(z) Nm(z) = N-(z)N:r,(z) 

where N-(z) contains the zeros protected from cancellation 
and N+(z) is monic. 

Step 3 Solve the Diophantine equation 

D(z) R' (z) + N-(z) S(z) = F(z) Dm(z) 

for R'(z) and S(z). Use a solution for which 

deg (S(z» < deg (N(z» 

deg (R'(z» = deg (F(z» + deg (Dm(z» - deg (D(z» 

Step 4 Complete the control law by taking S(z) from step 3 and 

R(z) = N+(z)R'(z) T(z) = N:r,(z) F(z) 

Example 

A straightforward example from Astrom and Wittenmark (1990) will 
demonstrate what is involved with the technique. A model of a simple 
motor is 

K(z - b) 
H(z) = (z - l)(z - a) 

where the input is a command voltage and the output quantity is shaft 
angle. It is desirable that this behave as 

H _ G(z-b) 
m(Z) - Z2 + PIZ + P2) 

where gain G and pole parameters PI and P2 are selected to meet 
design requirements on the system performance, and we have chosen 
not to cancel the motor's zero. Hence 
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N+(z) = 1 N-(z) = K(z - b) N!n(z) = G/K 

It is clear that 

deg(Dm(z» - deg(N!n(z» = 2 ~ deg(D(z» - deg(N+(z» = 2 

and that we need deg(F(z» ~ 1. This can be met by choosing 
deg (F(z» = 1, and hence from (23.19) 

deg (R(z» = 1 deg (S(z» = 1 

We choose the monic forms (i.e. the forms in which the highest 
power in the polynomial has coefficient +1) for F(z) and R(z), as 
constants will eventually cancel. In particular, choose 

F(z) = z - ex S(z) = SIZ + So R(z) = z + ro 

Thus, we need 

D(z)R(z) + N(z)S(z) = F(z)Dm(z) 

which on substitution gives 

(z - l)(z - a)(z + '0) + K (z - b)(SIZ + so) 

= (z - ex)(z2 + PI z + P2) 

This may be solved to give 

_ b + (b - ex)( b 2 + PI b + P 2) 
ro - - (b - a)( b - 1) 

So = - a (1- ex)dl + (a - ex)d2 

SI = (1 - ex) dl - (a - ex) d2 
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G 
dl = K (1 - b) (1 - a) 

(a 2 + apl + P2) 
d2 = K (a - b) (1 - a) 

We also find 

G 
T(z) = (z - a) K 

The final control law is 

G 
u(k) = - rou(k-l) + K (uc(k) - auc(k-l)) - sly(k) - soy(k) 

We note that fixing G, pI, and P2 fixes the system's closed-loop 
response. All of the control parameters, however, depend upon the 
zero at a in the function F(z), and hence this will be a parameter in 
the control system operation even though it does not affect the 
input/output characteristic of the system. 

23.6 CONTINUOUS TIME SYSTEMS IN STATE-SPACE 

For continuous time state-space descriptions such as 

x = Ax + Bu 

y = ex 

the use of state feedback 

u(t) = - Kx(t) + uretCt) 
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or of output feedback 

u(t) = -Gy(t) 

can be done exactly as for discrete time systems. The major 
difference is that chosen poles for continuous time systems will be in 
the left-half plane rather than inside the unit circle. 

23.7 PLACING POLES IN DESIRABLE REGIONS 

The above schemes all place some number of poles (n in the case of an 
n-dimensional system using state feedback) at or very near precise 
pre-chosen values. For large systems, this can mean the designer must 
choose many poles when it is only required that the system meet a few 
performance specifications: there are more degrees of freedom than 
the problem requires. Since in fact the requirements can often be met 
simply by ensuring that all of the poles are in a certain region of the 
complex plane, there has been considerable interest in design methods 
which place poles within a chosen region. 

Typical discrete-time system specifications may, as argued in 
Chapter 19, require that the poles lie within the intersection of a circle 
around the origin (for transient decay rate), a sector of the unit circle 
(for speed of response) and a curve of exponential decay (for 
damping). Although the general region definition of this type cannot 
yet be handled directly, approximations based on known results may 
be satisfactory. One such simple case is given below. 

We refer to Fig. 23.6 and see that a possible region definition is 
approximated by a circle centred at (a,O) with radius r. Then for a 
system such as x(k+ 1) = Ax(k) + Bu(k) it has been shown (Furuta 
and Kim, 1987) that the control law u(k) = -Kx(k), where 

and P solves the Riccati equation 

(A - a)T (A - a) 
P= r P r +Q 

_ (A - a)T PB(r2R + BTPB)-l BTp (A - aI) 
r r 
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1m 

1 
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1 

Figure 23.6 Region of definition for desired poles. 

Re 

yields eigenvalues of (A - BK) within the defined disc. In this, the 
positive definite matrix R and the positive semi-definite matrix Q, 
where Q = DTD for arbitrary D for which (A; D) is controllable, are 
parameters of the design and are available to use for 'tuning' of the 
pole selection within the region. 

The tuning aspect comes about because the above control law is 
precisely that which gives optimal feedback regulation (see Chapter 
26) for the system 

(A - (XI) B 
w(k+ 1) = w(k) + -v(k) r r 

where the optimization criterion is to minimize 

00 

J = ~ [wT(k) Qw(k) + vT(k) Rv(k)] 
k=O 
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Example 

Let the system be defined by 

[ 110] [00] x(k+ 1) = 0 1 1 x(k) + 1 0 u(k) 

1 0 1 1 1 

The desired region for the poles is chosen to be the circle centred at 
(a,O) = (0.3,0) with radius r = 0.25. 

Using a CACSD program such as the MATLAB® function dlqr, the 
following cases are easily computed. 

= [0.4626 1.3416 0.9983] 
K 0.2641 -1.6801 -0.2882 

eig(A - BK) = 0.3120 ± 0.0402j, 0.3242 

2. Q = 13, R = 100h 

[ 0.4368 1.3090 0.9957] 
K = 0.0748 -1.8675 -0.2726 

eig(A - BK) = 0.3157 ± 0.0679j, 0.3365 

The same design equations may be used for the selection of poles 
for the continuous time system x = Ax + Bu for a similar disc of 
radius r and centre (a, 0), but of course the disc would lie in the left­
half plane rather than inside the unit circle. This is because the 
algorithm is one for selecting K to give eigenvalues of (A - BK) 
within a region, but the algorithm is independent of the meaning of 
the various matrices; the interpretation in terms of the optimization 
criterion is similar to, but not the same as, that for the discrete time 
problem. 
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23.8 COMPUTER AIDS 

Among computer aids, state-space designs, based as they are upon 
vector-matrix manipulations, are often straightforward to program. 
Pole placement is no exception. Packages such as MA TLAB® have 
standard functions which will compute the gain needed for pole 
placement via state feedback. They will also assist in computing the 
gains needed for regional pole placement. 

23.9 SUMMARY 

One of the obvious things to do when there are many elements of the 
state available for feedback is to use all of them in a systematic 
manner to achieve the desirable system response. In this section we 
have worked through various algorithms for instances when controls 
are scalars, controls are vectors, feedback is the state, feedback is a 
subset of the state, and the system is to be stabilized. 

The question of where to place all those poles was pardy addressed 
in Chapter 19. One is likely to wish only that the poles all be in a 
region r but research is continuing on straightforward (as opposed to 
search) methods for doing this. This may be just as well, as the 
placement methods do not of themselves guarantee implementable 
control laws with appropriately small gains and commands and low 
enough complexity relative to the control task. 

Rarely are all the elements of the state available for state feedback 
control. Rather than use output feedback, however, the designer may 
prefer as a first-cut method to assume full state feedback for the 
controller design and use a state estimator (such as an observer, 
Chapter 25) to supply its input. (See also Chapter 29.) 

23.10 FURTHER READING 

References have been cited within this chapter, but the first, basic 
methods are in many textbooks, including Ogata (1987). For transfer 
function approaches, one good source is Astrom and Wittenmark 
(1990). Franklin et aI. (1990) are among those who concentrate 
more on state-space methods. 

One of the recent research articles which summarizes and 
generalizes results such as those in section 23.7 on placement within 
regions is by Haddad et aI. (1992). 
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Like controllability, observability has important and easily visualized 
interpretations in terms of the natural language definitions of the 
word, but it should be recognized ultimately as a technical term. In 
particular, a system which is not an observable system is not 
'unobservable'. In this section we look at some of the tests and 
concepts for observability. The reader may note the striking 
similarity to the Chapter 22 section on controllability; this is not quite 
accidental, as the two concepts are mathematical duals of each other. 
To avoid near repetition, some results for continuous time systems are 
emphasized along with standard discrete time system results. 

24.1 SYNOPSIS 

The definition of observability is a technical one. A system is said to 
be observable if any initial state x(to) can be determined after a finite 
time interval t - to from a measurement history yet) = {y( 't), to ~ 't < t} 
and, in the case of a forced system, the control variable history 
Vet) = {u( 't), to ~ 't < t}. Furthermore, given the usual uniqueness of 
solution arguments, x(t), t ~ to , can also be determined. 

For systems modelled as the discrete time form 

x(k+ 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) 

or the continuous time form 

x = Ax + Bu 

y = Cx 

(24.1) 

(24.2) 

where x is an n-vector, the standard test is that the system is 
observable, also stated as the matrix pair (A; C) is observable, iff the 
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observability test matrix Qo, given by 

C 
CA 

Qo= CA2 

CAn-l 

has full rank, i.e. rank [ Q 0 ] = n. If Q 0 has full rank, then the 
smallest integer v such that 

rank = 

C 
CA 
CA2 

CAv-l 

=n 

is called the observability index. 

24.2 DEFINITIONS 

The notion of system observability is built from state observability 
much as was true for system controllability. Hence we have the 
following definitions. 

Definition A system state x(to) at some given to is observable if 
knowledge of the input u(t) and output yet) over a finite time segment 
to 75: t 75: to + 't < 00 allows the determination of x(to). 

Because of the uniqueness of solutions of difference and differential 
equations, if we know the state at some instant and know the inputs 
from that instant onward, we know the state at later instants. Hence 
we have the equivalent definition of state observability given below. 

Definition A state x(t) of a system is observable if knowledge of 
the input u('t) and measurements yCt) over a finite time segment 
-oo<to75:'t75:t<oo allows the determination of xCt). If all states x(t) are 
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observable, the system is said to be observable, or completely 
observable. If observability depends upon to, the state is 
observable at to. If the system (or state) is observable when u(t) == 
0, it is said to be zero-input observable. 

The above can for most purposes be combined into a single operating 
definition. A system is said to be observable if any state x(to) with to 
arbitrary can be determined after a finite time interval t - to from a 
measurement history yet) = {yet), to~t<t} and, in the case of a 
forced system, the control variable history Vet) = {u(t),to~t<t} . 
Furthermore, given the usual uniqueness of solution arguments, x(t), 
t ~ to, can also be determined. 

It may be seen from examining the definitions above and in Chapter 
22 that it is quite possible to have states which are controllable but not 
observable, observable but not controllable, both controllable and 
observable, or neither controllable nor observable. This 
decomposition can in fact be made explicit, using a canonical 
decomposition. 

Consider what the terminology allows: the fact that a radar target's 
roll rate cannot be extracted from the radar tracking data - making 
the system not observable - does not necessarily make for a poor 
radar system. Systems which are observable are often easier to design 
for because more design theorems apply, but other systems which are 
not observable are often quite useful. 

24.3 TESTS FOR CONSTANT COEFFICIENT SYSTEMS 

Tests for observability are defined primarily for linear systems, 
because they are so highly structured. Time-invariant linear systems, 
i.e. those with constant coefficients, are particularly easy to test. 

24.3.1 Sampled data systems 

In this section we present the standard tests and canonical 
decomposition for the system described by 

x(k+ 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) + Du(k) 
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where A is assumed to be n x n, B is n x m, and C is p x n. D is 
obviously then p x m. We recall that a solution of this is 

k-l 
x(k+ko) = Akx(ko) + L Ak-i-IBu(i+ko) 

i=O 

If we take measurements y(ko), ... , y(ko+k), then 

y(ko) = Cx(ko) + Du(ko) 

y(ko+ 1) = CAx(ko) + CBu(ko) + Du(kl) 

k-l 
y(ko+k) = CAkx(ko) + C LAk-i-IBu(i+ko) + Du(ko + k) 

i=O 

This may be rewritten as 

Cx(ko) = y(ko) - DU(ko) 

CAx(ko) = y(ko+ 1) - CBu(ko) - Du(k l ) 

k-l 
CAkx(ko) = y(ko+k) - C LAk-i-IBu(i+ko) - DU(ko+k) 

i=O 

The right-hand side of these is known from taking the 
measurements y(j+ko), j =0,1, ... ,k, and knowing the commands 
u(j + ko), j = 0,1, ... , k-l. Hence, we have 

C 
CA 
CA2 

CAk-1 

x(ko) = known values 
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and we can solve for x(ko) provided its coefficient matrix has an 
invertible submatrix. For this to be true, since the matrix has n 
columns and pk rows, it needs to have n linearly independent rows. 
Thus we need that 

C 
CA 

rank CA2 

CAk-l 

=n 

for some k. The smallest such k, if a k exists for a given system, is 
called the observability index, and it indicates the number of vector 
measurements needed to find x(ko). The maximum value of k we 
need to check is n, because a square matrix of dimension n (such as A) 
is a linear combination of matrices Ai where 0 ~ i < n (by the Cayley­
Hamilton theorem; see Appendix B). 

The above arguments are clearly independent of ko, and hence the 
basic test for observability of such a system is as follows. 

Observability The system (24.1) is observable iff the matrix Qo, 
given by 

Qo= 

C 
CA 
CA2 

CAn-l 

has full rank, i.e. rank Qo = n 

Canonical decomposition The system may, by similarity 
transformation T (i.e. x = Tz), be placed in the form 
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z(k+ 1) = Az(k) + T-IBu(k) 

y(k) = CTz(k) + Du(k) 

where A is in Jordan form and is diagonal if the eigenvalues of A are 
distinct. With this decomposition, the transformed state vector z has 
elements Zj, i = 1,2, ... , n. Then the result for the diagonal case with 
distinct eigenvalues is that, for each i , Zj is observable if the ith 
column of CT is not zero; for Jordan blocks a generalization of this 
requirement is obvious. 

Combining this with the result of Chapter 22 concerning the rows 
of T-IB, we see that the state is decomposable to elements which are 
controllable, observable, both, or neither. This is a canonical 
decomposition. The tests are modified in the obvious manner if the 
Jordan form has off-diagonal terms, as only one column of CT or 
row of T-IB need be non-zero for each coupled state set for 
observability or controllability, respectively. 

Example 

We continue the example of section 22.2, in which n = 3, m = 2, p = 1, 
with 

[100] [0 
A= 011 B= 1 

1 1 ° ° 
n C=[O 11] D=[O 0] 

Then by direct computation 

[0 1 1] 
Qo = 1 2 I 

232 

By inspection, rank Qo = 3. Since n = 3, the system is observable. 
Using the transformation matrix T from that example, we find that 

CT = [ -1 
3 + cr --

2 
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where 0' == ~5. No columns of CT are zero, so all elements of z are 
observable - the same as finding that the system is observable. 

In the decomposition, then, Zl is observable but not controllable; Z2 

and Z3 are observable and controllable. 

24.3.2 Basic ideas in the time-varying case 

The same thing can be done when the system is time-varying as was 
done for the controllability test. Again consider the system 

x(k+ 1) == A(k)x(k) + B(k) u(k) 

y(k) == C(k) x(k) + D(k) u(k) 

Ignoring (actually setting to zero) the inputs for simplicity, we 
consider a set of measurements y(O), ... , y(k) when the initial state is 
x(O) = Xo. Then 

y(O) == C(O) Xo 

yO) == C(l)x(1) = C(l)A(O)xQ 

y(2) = C(2)x(2) = C(2)A(l)A(O)xQ 

[ k-l 1 
y(k) = C(k) DA(j) XQ 

]=0 
(24.3) 

Then it is clear that if this system can be solved for Xo for some k, we 
have observability, because if we know xo, then we can determine 
x(k) for any k. To find this solution for XQ, we need only that the 
(k+l)p x n matrix 

C(O) 
CO) A(O) 

C(2) A(l) A(O) 

C(k) A(k-l) A(k-2) ... A(O) 
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should have an invertible submatrix for some k. This means the rank 
of the matrix should be n, i.e. it should have n linearly independent 
rows, its rows should span the space, etc. 

The arguments follow those of the controllability case in Chapter 
22. If C (k) = C = constant and A (j) = A = constant, the test 
immediately reduces to that of the previous subsection. 

We remark that we can get Xo explicitly by using an n x n 
submatrix, so that from (24.3) we get the form, using a selection 
matrix S with dimension n x np and columns which select the 
independent rows of Qot. 

Xo = [S Qok]-l [S Y] 

where S Y is the appropriate submatrix (subvector) of 

Y= 

yeO) 
y(l) 

y(k) 

24.3.3 The continuous time case 

It turns out that, just as was claimed for controllability, the basic test 
applies to the constant coefficient continuous time system described by 
(24.2). Rather than simply claim that result, we examine continuous 
time here with the understanding that, because of duality, many of the 
methods and a variation of the results apply to controllability. 

The essential results can be derived for unforced linear time­
varying systems, as known inputs are simply subtracted out as above. 
In particular, consider the system 

x = A(t)x 

y = C(t)x 

with transition matrix <I>(t, 't). Then this system is observable on the 
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interval (to, t1) if 

1. for any A :1= 0, there exists some t in the interval (which may 
depend on A) such that 

C(t) <p(t, to) A :1= ° (24.4) 

or equivalently, 
2. the observability gramian matrix M(to, t1) defined as 

tl 

M(to, ft) = J <p T (t, to) CT(t) C(t) <p(t, to) dt 
to 

is non-singular. 

The proof of the above is more intricate, but instructive. Notice 
that 

x(t) = <p(t, to)xo 

yet) = C(t)<p(t, to)xo 

by definition of transition matrices. Now if there is a A violating 
condition 1, then x(o) = A gives no output and hence is not observable. 
On the other hand, if condition 1 holds, then C(t) <p(t, to) Xo is not 
identically 0, and hence y(t) is not zero on the interval. Therefore 

tl 

11(t, to) = J <pT (t,to)CT(t)y(t)dt 
to 

tl 

= J <p T (t, to) CT( t) C( t) <p( t, to) dtxo 
to 
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Since this is non-zero for arbitrary xo, M must have full rank and 
therefore be invertible. The explicit solution is 

(24.5) 

Thus, if condition 1 holds, then the system is observable and M is non­
singular. Now if M is singular, (24.5) is impossible, so the system 
must not be observable. 

If the system is observable, then yet) ¢ 0 for Xo :t O. In this case 

11 

0< J yT('t) y('t)d't = x6M(to,tl)XO 
to 

This inequality for arbitrary Xo ensures that M has full rank and 
hence that M-l must exist. This concludes the basic demonstration of 
the truth of the above assertions. 

Let us now specialize the result to the time-invariant case. We 
consider 

X =Ax 

y =Cx 

Since in this case <1>(/,/0) = eAt, (24.4) means that we have 
observability iff C eAt A. ¢ 0 for any A.. Since A satisfies its 
characteristic equation peA) = An + alAn-l + ... + an-l A + an I = 0, 
we have CP(A) eAt A. = O. Expanding the polynomial and noticing 
that 

dkeAt 
AkeAt --­- dtk 

means that 

dn CeAt A. dn- 1 CeAt A. 
dtn + al dtn- l + ... + an CeAtA. = 0 
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For this to hold with CeAt AiD, it must be that one of the initial 
conditions of the differential equation is non-zero. Hence we need 

for at least one k. This means that, for any A, 

C 
CA 
CA2 

CAn-t 

This is equivalent to requmng the matrix to have full rank n. 
Essentially the same argument can be used to develop the test for 
continuous time controllability of time invariant systems, Chapter 22. 

24.4 OTHER GENERALIZATIONS AND COMMENTS 

The definitions of observability apply for non-linear systems, but just 
as there are no standard non-linear systems, there are no standard 
tests. 

It is worth commenting that if the rank of one of the test matrices is 
not the maximum value, all is not lost. First, it is quite possible that 
we can find out what we wish to know about a 'not observable' 
system. Alternatively, the tests may indicate the need for another 
measurement sensor. The second piece of information is that the rank 
of the matrix Qo really tells us the number of different linear 
combinations of the state we can observe: for instance, if rank Qo = I, 
there is one linear combination 

/tXt + Jz X2 + ... + inxn =io 

of which we can make measurements, although the coefficients ii, 
i = 1,2, .. . , n, are fixed by the system properties. The coefficients can 
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be found, if desired, by doing a canonical decomposition, finding 
which Zi is observable, and then doing the inverse transformation. 
More particularly, perform the similarity transformation x = Tz and 
perform a canonical decomposition. If Zi is observable, then the linear 
combination [ T-l ]i x can be observed, where [ ]i denotes the ith row 
of the matrix. 

A second observation is that the observability test is clearly similar 
to the controllability test. Comparison with the tests of Chapter 22 
show that if (24.1) is observable, then the system modelled by 

z(k+ 1) = ATz(k) + CTw(k) 

v(k) = BT z(k) (24.6) 

is controllable; also, if the latter is observable, then the former is 
controllable. Again, the notation occasionally used is that (A; C) is 
observable iff (AT; CT) is controllable; also, (A; B) is controllable iff 
(AT; BT) is observable. The system (24.6) is said to be dual to (24.1), 
whether or not either is controllable or observable. A similar 
definition of dual system holds for continuous time systems, and the 
same relationships between observability and controllability hold. 

24.5 COMPUTER AIDS 

Computer testing for time-invariant cases is, since they are essentially 
a transpose of those for controllability, easy to do; mathematical aid 
programs such as MATLAB® and Ctrl-C have no difficulty doing 
such tests . The time-varying case is more difficult because it is 
necessary to check whether there exist any to and 't for which 
observability holds; inability to find such a time interval does not 
mean it does not exist. Some programs check the grarnian rather than 
the observability matrix. 

24.6 FURTHER READING 

The concepts of observability, like those of controllability, are usually 
traced back to Kalman (1961), but the ideas are also found in most 
standard textbooks. The material of this chapter has also been 
presented in a similar manner in the textbook of Astrom and 
Witten mark (1990). 
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State observers 

State estimators are algorithms for deriving state estimates from 
measurements. Based upon proper manipulation of system models, 
they allow, for example, the estimation of state variables such as 
accelerations from position measurements. Applications can be found 
in instrumentation, flight reconstruction, and in providing inputs to 
state feedback control laws. The most famous state estimators are the 
Luenberger observer and the Kalman filter. The basic form of the 
former does not explicitly consider the possibility of noise on the 
measurements and it is in many respects related to pole-placement 
controllers. Hence it is reasonably accessible theoretically and we 
introduce it at this point. We concentrate on discrete time 
formulations simply because implementation is likely to be on digital 
computers, but analogous results hold for continuous-time observers. 

25.1 SYNOPSIS 

In the state estimation problem, a dynamic system is described by the 
n-dimensional state vector x, input m-vector u, output p-vector y, and 
noise vectors v and w, as 

x(k+ 1) = j(k, x(k), u(k), w(k» 

y(k) = g(k,x(k) ,v(k» 

The immediate object of the estimation is to find an estimate x(k) of 
x(k) which is 'good' in some sense. The estimate is to be derived only 
from measurements, knowledge of the input commands, and perhaps a 
priori information. Most state estimators require a good system 
model. 

This problem generally is very difficult. Important special cases 
are well understood, however. In particular, the linear constant 
coefficient case 
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x(k+ 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) 

has a straightforward class of solutions: observers. These were 
originally defined by Luenberger in the following terms: a system So 
which 

1. is intended to approximate the state vector x of another system S 
by means of a vector x, 

2. has as its inputs the inputs and available outputs of the latter 
system, and 

3. has a state vector z which is linearly related to the 
approximation, i.e. z = T x, 

is called an observer. For the special case in which T = I, called the 
identity observer, the answer is easily shown, provided SI is 
observable, to be 

x(k+ 1) = (A - GC)x(k) + Gy(k) + Bu(k) (25.1) 

where the observer gain G can be chosen such that the eigenvalues of 
the matrix F = A - G C are as the designer wishes. The resulting 
error e(k) = x(k) - x(k) satisfies e(k) = Fk e(O). 

More advanced observers, including those for time-varying 
systems, and those of lower order than the nth-order system indicated 
by (25.1), are presented later in this section. Explicit allowance for 
noise is deferred until Chapter 28. 

25.2 THE BASIC LUENBERGER OBSERVER 

The idea of observers arose with Luenberger in the mid 1960s, 
shortly after the publication of Kalman's and Bucy's works on state 
estimation in explicit noise (Chapter 28). We study observers in the 
following sections. Students will undoubtedly note many parallels 
with pole-placement controllers. 
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25.2.1 The identity observer 

The core idea of the observer is as follows. Consider a computational 
structure 

x(k+ 1) = Fx(k) + Gy(k) + Hu(k) (25 .2) 

We wish to find matrices F, G, H such that, as k becomes large, 
x(k) ~ x(k) for the system with state x(k) given by 

x(k+ 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) 

assuming we know u(k) and y(k). 

(25.3) 

Since we want the error to be small, we consider it directly. Thus 
let e(k) = x(k) - x(k). Then from (25.2-3) we find 

e(k+ 1) = Ax(k) + Bu(k) - Fx(k) - Gy(k) - Hu(k) 

= Fe(k) + (A - GC - F)x(k) + (B - H)u(k) (25.4) 

Since we would like the error to be independent of the x(k) and 
u(k) sequences, which may be arbitrary, we choose 

H=B 

F=A-GC 

Since G is arbitrary, this imposes a form but not numerical values 
on F. Further, we now have 

e(k+ 1) = Fe(k) = Fke(O) 

Therefore if G is chosen so that the eigenvalues of F are inside the 
unit circle, e(k) ~ O. This is a problem similar to the pole-placement 
problem for control laws (Chapter 23). It turns out that G can be 
chosen to place the poles of F arbitrarily provided (A; C) is 
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observable, i.e. that the matrix 

Qo= 

C 
CA 
CA2 

CAn-l 

(25.5) 

has full rank: rank (Qo) = n. Poles are often placed so that they are 
closer to the origin, and hence are associated with faster responses, 
than those of the system being observed; this typically means that the 
largest magnitude of an observer pole is taken as considerably smaller 
than the smallest system pole. This can be overdone, however, as very 
fast response from the observer means it may follow too faithfully the 
(ignored) noise of the measurements. 

Example 

An extremely simple example is given by the system 

x(k+ 1) = [~ ~] x(k) + [~] u(k) 

y(k) = xl(k) = [1 0] x(k) 

The observer is to be of the form (25.2), for which 

F = A - GC = [~ !] - [!~ [1 0] 

The characteristic equation of F is 

If we choose to place the poles at ±!, then the desired characteristic 
equation is 
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(A - 0.5) (A + 0.5) = 1.,2 - 0.25 = 0 

Matching coefficients then gives gl = 2 and g2 = 0.75 and the observer 
is 

i(k+ 1) = [';~5 !] i(k) + [0.~5] y(k) + [~] u(k) 

Simulation results for this are shown in Fig. 25.1. The choices 
{ u(O)} = {O}, x(O) = [ 10 1]T, i(O) = [0 O]T were made arbitrarily. 

20 
Q) -co 
E 
~ en 
UJ 
Q) -co -(f) 

'0 
C 
co 
Q) -co -(f) 

0 

0 5 10 

Stage Number - k 

Figure 25.1 Actual system state (dashed line) and estimator state (solid 
line) for identity observer example. 

It is interesting to rearrange the observer into the form 

i(k+ 1) = Ai(k) + Bu(k) + G(y(k) - Ci(k) 
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This has the interpretation 

next observer estimate = 

{prediction based on old estimate and command} 

+ gain x {measurement - measurement predicted by old estimate} 

which makes the observer appear an entirely sensible thing to do, and 
it turns out that many state estimators for linear systems may be put in 
this form. 

25.2.2 General design equations for identity observers 

The fairly general case of identity observer design is analogous to that 
for pole-placement controllers, and involves using a similarity 
transformation. We concentrate on the system with scalar 
measurements 

x(k+ 1) = Ax(k) + buCk) 

y(k) = cTx(k) 

and characteristic equation 

'A,n + an 'A,n-l + ... + a 1 = 0 

for which the observer is 

x(k+ 1) = Fx(k) + Gy(k) + Hu(k) 

subject to 

H=b F =A -GeT 

The desired characteristic equation of F is 

'A,n + d l 'A,n-l + .. . + dn = 0 
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We define the similarity transformation (change of coordinates) P by 
its result, which is the companion form of A given by 

0 0 0 -an 

1 0 0 0 -an-l 

PAP-l = 0 1 0 0 -an_2 

0 0 1 -al 

and 

cTp-l = [0 0 0 ... 0 1] 

We can choose PG = [kn kn- l kn-2 ... kJ ]T so that finally the 
original system is transformed to the canonical form, called an 
observable canonical form, 

0 0 0 -an 

1 0 0 0 -an-l 

w(k+ 1) = 0 1 0 0 -an-2 w(k) + Pbu(k) 

0 0 1 -al 

y(k) = [0 0 0 ... 0 1] w(k) 

The observer for this system will have 

z(k+ 1) = (PAP-l - PGcTP-l) z(k) + Pbu(k) + PGy(k) 

which because of its special form has 
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0 0 0 -a -k n n kn 

1 0 0 0 -a 1 -k 1 n- n- kn- l 
z(k+ 1) = 0 1 0 0 -a 2 -k 2 n- n- z(k)+ kn- 2 y(k) + Pbu(k) 

O 0 1 -al -kl kl 

Since the ai are coefficients of the characteristic equation of the 
original system and the ai + ki are clearly the observer's coefficients, 
we simply choose ki = -aj + dj, where the dj are the desired 
coefficients. Then for our original observer, 

PG = [ kn ... k2 kl]T or G = p-l [ kn ... k2 kl ]T 

To find P explicitly, we observe that if Q 0 is the original 
observability matrix and Qop is the transformed system's matrix, then 
we have 

with Qop having the explicit form 

0 0 0 1 

0 0 1 -at 

Qop = 0 1 -al 2 -a2 +al = QoP-l 

0 

1 -al 
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From this we have that 

an-l an-2 a2 al 1 

an-2 an-3 al 1 0 

P=Q~~Qo= 
an-3 an-4 1 0 0 

0 
Qo (25.6) 

al 1 0 0 0 

1 0 0 0 0 

where the form of the inverse may be generated by structural 
arguments. 

The above arguments yield the design algorithm as follows. 

1. Determine the characteristic equation of the A matrix. 

An + al An-l + ... + an = 0 

2. Determine the desired characteristic equation. 

An + dl An-l + ... + dn = 0 

3. Form P as in (25.6) and find P-l. 
4. Then for the observer 

G = p-l [ dn- an ... dl - al ]T 

F =A -GeT 

H=b 

and the observer is 

x(k+ 1) = Fx(k) + Gy(k) + Hu(k) 

Example 

For an example, we again take the system 
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x(k+ 1) = [~ ~] x(k) + [~] u(k) 

y(k) = xI(k) = [1 0] x(k) 

It is easily computed that the characteristic equation is ')..,2 - 2A, + 1 = 0 
and the observability matrix is 

The transformed observability matrix must be 

and we again choose to have poles at ±0.5, so that the desired 
characteristic equation is A,2 - 0.25 = O. Then 

K = [-0.25-1 0-(-2)]T = [-1.25 2]T 

and 

-I [-21][10] [-11] 
P = Qop Qo = 1 ° 1 1 = 1 0 

Finally, 

[ 01] [-1.25] [2 ] 
G = p-I K = 1 1 2 = 0.75 

This is seen to be the same gain as in the original example, and hence 
it leads to the same observer: 
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x(k+ 1) = [~~5 ~] x(k) + [~.75] y(k) + [~] u(k) 

An alternative to this is careful use of Ackermann's formula (Chapter 
23 and Appendix B), since the methods for observer pole placement 
are essentially the same as those for pole placement. In fact, one can 
use Ackermann's formula using transposes of A, C, and G so that 

GT = - [0 0 ... 0 1] Q~lT [ft (A T - Ail)] 
1=1 

or 

o 

25.2.3 Variation: the reduced-order observer 

The identity observer is an n-dimensional system of equations for 
which the state x is an estimate of the state x of the original system. It 
is arguably ridiculous to 'estimate' any of the state variables for which 
we have measurements, since the model has the measurements being 
noise-free. (In fact, the observer will have a smoothing property 
which may be of benefit with real, noisy measurements y.) 

To circumvent this philosophical problem, and also to reduce the 
computational load, Luenberger (1971) proposed a reduced-order 
observer, in which the dimension of the computational system is 
(n - m) rather than n. His version, easily generalized, assumed that 
the m-vector y in (25.3) had the special C matrix 
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In this case the state can be written 

x = [~] 

and hence the dynamics equation may be written 

As y is known from our measurements, this may be interpreted as a 
system with (n - m)-dimensional state vector w having dynamics 

w(k+ 1) = A22W(k) + {A21y(k) + B2U(k)} 

and measurement 

z(k) = C'w(k) = A12W(k) 

= {y(k+ 1) - Ally(k) - Bl u(k)} (25.7) 

where { } denote quantities which are known numerically. Using this 
model and earlier results, (25.2) and (25.4), an identity observer may 
be designed for w(k) as 

w(k+ 1) = (A22 - LAI2) w(k) 

+ L {y(k+ 1) - All y(k) - Bl u(k)} 

+ {A21 y(k) + B2 u(k)} (25.8) 

where L is the observer gain and can be chosen as desired provided 
that the system (A22; A12) is observable, Le. that the matrix analogous 
to (25.5) with A22 interpreted as A and A12 interpreted as C, has full 
rank (n-m). The estimate of the original state x is now 
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[ Y(k)] 
x(k) = w(k) 

If the y(k + 1) term in (25.7) is computationally inconvenient, a 
change of variable may be made by defining z(k) = w(k) - Ly(k). 
Then substitution in (25.8) yields 

z(k+ 1) = (A22 - LA 12) z(k) 

+ (A22 L - LA12 L - LAn + A2l) y(k) 

+ (B2 - LBl) u(k) 

and the state estimate is 

A [1m 0 ]-1 [Y(k)] 
x(k) = -L Ip z(k) 

where p = (n-m). 

Example 

We reconsider the first example 

x(k+ 1) = [~ ~] x(k) + [~] u(k) 

y(k) = xl(k) = [1 0] x(k) 

and rewrite the state definition as 

_ [Y(k+ 1)] _ [allY(k) + a12W(k)] [bll 
x(k+ 1) - w(k+ 1) - a2ly(k) + a22 w(k) + bJ u(k) 

=[Y(k)+W(k) ] 
w(k) + u(k) 
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The unknown state w has dynamics 

w(k+ 1) = w(k) + u(k) 

and a 'measurement' y(k+ 1) - y(k). Its identity observer then is 

w(k+ 1) = [1 - g] w(k) + g [y(k+ 1) - y(k)] + u(k) 

where g is the arbitrary observer gain. Choosing the pole at -0.25 
means that g = 0.75 and the observer is 

w(k+ 1) = -0.25 w(k) + 0.75 [y(k+ 1) - y(k)] + u(k) 

[Y(k)] 
i(k) = w(k) 

If basing w(k + 1) on y(k + 1) is inconvenient for timing reasons 
(which is unlikely to be a problem for such a simple system), we can 
define 

J,(k+ 1) = w(k) - g y(k) = w(k) - 0.75 y(k) 

to obtain the alternative observer 

J,(k+ I) = - 0.25 J,(k) - 0.5625 y(k) + 0.25 u(k) 

and 

[Y(k) 1 
i(k) = J,(k) + 0.75 y(k) 

Simulation results are given in Fig. 25.2. 
We remark that it appears that some users feel that reduced-order 

observers are not worth the design effort, particularly since the 
smoothing property on y(k) is lost through their use. 
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Figure 25.2 Actual (dashed line) and estimated (solid) value of 
unmeasured state variable for reduced-order observer example. 

25.3 A GENERAL FORMULATION 

10 

The above sections have seen us consider the design of observers for 
the state x(k) . Sometimes we may wish to estimate a function L x(k). 
We see immediately that this is more general than the situation above; 
the direct estimation of x(k) is a special case in which L = I, and is 
our familiar identity observer. 

As we are generalizing, we also allow the system to be time­
varying. Thus let the system be described by 

x(k+ 1) = Akx(k) + Bk u(k) 

y(k) = Ckx(k) (25.9) 

and we wish to design an observer/estimator with variable z(k) such 
that 
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and 

[ Z(k)] 
w(k) = [Pk V kl y(k) (25.10) 

with w(k) estimating Lk x(k) and [zT(k) yT(k)]T an n-vector or 
longer. Assume that z(k) estimates Tkx(k) for some T k to be 
determined. Then if 

e(k) = z(k) - TkX(k) 

we may write, using this expression and (25.9) in (25.10), that 

w(k) = Pde(k) + TkX(k)l + VkCkX(k) 

= Pke(k) + [Pk Tk + VkCk 1 x(k) 

Then we see that if e(k) ~ 0 and Pk Tk + V k Ck = Lko we have that 
w(k) ~ LkX(k). To make e(k) ~ 0, we need 

e(k+ 1) = z(k+ 1) - Tk+l x(k+ 1) 

= FkZ(k) + Gky(k) + HkU(k) 

- Tk+lAkX(k) - Tk+l BkU(k) 

= Fk [z(k) + Tkx(k)l + [Fk Tk + GkCk -Tk+lAkl x(k) 

+ [Hk - Tk+l Bkl u(k) 

= Fk e(k) + [Fk Tk + GkCk - Tk+lAkl x(k) 

+ [Hk - Tk+l Bkl u(k) 

to be a stable system unaffected by the actual state and inputs. Thus 
our design problem is solved by choosing: 

1. Fk such that e(k) is always a stable sequence 
2. Fk Tk + GkCk - Tk+lAk = 0 
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3. Hk = Tk+l Bk 
4. Pk Tk + VkCk= Lk 

Provided dim(z) ;?! dim(x) - dim(y) = n - m, a solution of this is 
usually possible (O'Reilly, 1983). We notice that if Lk = I, then the 
choices Fk = Tk+lAkPk and Gk = Tk+lAk Vk are explicit values for 
Fk and Gk. 

We consider further the case Lk = I, and in particular the condition 
z(k)~TkX(k). The result is that provided Tk is S xn, with s ;?!n-m, 
and there exist matrices Pk and V k such that Pk T k + V k Ck = I, then 

satisfies z(k) = TkX(k), and x(k) is estimated by 

i(k) = Pkz(k) + V ky(k) 

The above results may be interpreted and used in three ways: 

1. to design a feedback law, with Lk as the desired feedback; 
2. as a method to arrive at a reduced-order observer; and 
3. to give 'optimal' observers for the case in which noise is 

explicitly considered (Chapter 28). 

We start with an example demonstrating the first two 
interpretations. 

Example 

We again return to the simple example 

x(k+ 1) = [~ ~ ] x(k) + [~] u(k) 

y(k) = xl(k) = [1 0] x(k) 

We wish to estimate Lk x(k) = x2(k), so that 

w(k) = LkX(k) = [0 l]x(k) 
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We choose Fk = 0.25 and find that Tk = [ex. P] must satisfy 

0.25 [ex. P] + Gd 1 0] - [ex. P] [~ ;] = 0 

yielding ex. = 4G kl3 and P = -16G k19. Examining the other two 
constraints yields 

and 

H - A _ - 16Gk 
k - ... - 9 

We find that Vk = 0.75 for any solution of this, with Pk = liP 
related to G k, with one or the other to be chosen. The choice 
Gk = -9/16 gives a comparison with our reduced-order observer 
above, yielding Hk = 1, and Pk = 1, and finally 

z(k+ 1) = 0.25z(k) - 0.5625y(k) + u(k) 

x2(k) = w(k) = PkZ(k) + VkY(k) = z(k) + 0.75 y(k) 

The third interpretation requires more detail concerning random 
processes than we are prepared for at this time, so we settle for a 
demonstration that Vk may be considered the design parameter with 
no loss of generality. First, we elaborate upon the definitions above 
by taking 

[ Z(k)] [Tk] 
y(k) = Ck x(k) 

and having this be invertible (a restriction on the generality of Tk) so 
that 
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[
Tkj-l [Z(k)] [Z(k)] 

x(k) = Ck y(k) = [Pk Vd y(k) 

We define the state error e(k) and compute its transition 

e(k+ 1) = i(k+ 1) - x(k+ 1) 

= Pk+I z(k+ 1) + V k+l y(k+ 1) - x(k+ 1) 

= Pk+I Tk+I (AkPkz(k) + Bk u(k) + Ak V ky(k» 

+ Vk+l Ck+IX(k+ 1) - x(k+ 1) 

= Pk+I Tk+I (AkPkz(k) + Bk u(k) + Ak V ky(k») 

+ (Vk+lCk+I-I) (Akx(k) + Bku(k») 

= (I - Vk+I Ck+I) Ak (Pkz(k) + V ky(k) - x(k») 

= (I - V k+I Ck+I) Ake(k) 

(25.11) 

Hence we want eigenvalues of [I - V k+l Ck+tJ Ak such that II e(k) II 
decreases. Thus V k is the key to design, with Pk and Tk chosen to 
satisfy (25.11). 

25.4 OBSERVERS IN CONTINUOUS TIME SYSTEMS 

Observers for continuous time systems are essentially the same in 
concept as those for discrete time systems. Thus, for the system 
described by 

x = Ax + Bu 

y = Cx 

we seek to find an estimate z of Tx using an algorithm of the form 
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z = Fz+Gy +Hu 

We consider the error e = z - Tx and find that it evolves as 

e =Fz+Gy+Hu-TAx-TBu 

= Fe + [GC + FT - TA] x + [H - TB] u 

The choices 

H=TB 

GC+FT-TA=O 

ensure that the error is independent of the input u and the actual state 
x. Choosing F such that its eigenvalues are all in the left-half plane 
ensures e ~ O. 

As usual, the simple case is the identity observer, for which T = I. 
Then we choose H = Band G such that the eigenvalues of (A - GC) 
(which are the eigenvalues of F) are stable. The latter is simply the 
pole-placement requirement and may be attacked as before or, by 
taking transposes, placed in the form (AT - CTGT) with unknown GT 
which was met in Chapter 23. 

Reduced-order observers and observers of functions are also 
analogous to the discrete-time case. 

25.5 COMPUTER AIDS 

As with pole placement, observer design is easy, as is the 
implementation of observers. Any algorithm which places poles can 
be adapted to observer design. 

25.6 SUMMARY 

With the goal of creating algorithms for estimating the state of 
dynamic systems, we have considered the deterministic Luenberger 
observer. We started with simple and then more general approaches 
to design of the most common form - the identity observer. This was 
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followed by the reduced-order identity observer and then a fairly 
general observer formulation. 

25.7 FURTHER READING 

The original paper of Luenberger (1964) or his introduction paper 
(1971) are worth reading, as they give a view of the elements of the 
theory. Many texts, such as that of Franklin, Powell and Workman 
(1990), have at least some consideration of basic observer theory for 
computer systems. One elementary text with some discussion of 
continuous time systems is by Hostetter et ai. (1989). 

A book devoted entirely to observers is that of O'Reilly (1983). 
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Optimal control 
multiplier-type 

by 
methods 

Optimal control theory is concerned with the mathematics of finding a 
function or set of parameters which cause a given functional (function 
of a function) to take on an extremal value - minimum or maximum -
subject to constraints. Mathematically, the continuous time problem is 
often of the following form. 

Find a function u(t) from a defined set of candidates U called the 
admissible control set such that a functional J(u(t)), such as 

te 
J(u(t)) = J g(x('t), u('t))d't 

to 

is minimized and for which the constraints 

1. x(t) = f(x(t), u(t), t) for t E (to, tf), and 
2. x(t) is an admissible state, x(t) E X(t), 'V t E (to, tf) 

are satisfied. 
In this, to is the initial time and is usually fixed, while tf is the final 

or terminal time and may be fixed or flexible, finite or infinite, 
depending on the problem. The sets X(t) may specify only boundary 
conditions, or may represent ongoing constraints on the solutions, 
x(t), often called trajectories. Discrete time versions of such problems 
have also been studied. Part of the engineer's task is to use this 
mathematics to help in designing control laws for real systems. This 
is done for two reasons. 

1. The optimal, or a near approximation, may be incorporated into 
the actual system control. This is true for space launcher 
trajectories, for example. 
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2. The optimal gives a standard against which the system can be 
judged, even if the result is too complicated for real-time 
implementation. For example, some optimal controllers in 
simple systems have been found to yield closed-loop responses 
which are rather like underdamped second-order systems for 
which the damping coefficient is around 0.6. Also, knowing the 
mathematical optimum payload of an airplane can help indicate 
the cost of legally-imposed constraints or engineering safety 
factors. 

The standard results available are for linear systems and two 
criteria: minimum time to attain a desired state, and minimum average 
quadratic function of state and control for a fixed time of operation. 
Techniques are available for general problems, but then the results are 
seldom reducible to straightforward algorithms. 

26.1 SYNOPSIS 

One of the important methods of finding optimal trajectories is the 
Pontryagin Maximum Principle, which may be characterized as 
non-classical calculus of variations. Its basic formula is as follows. 

The control u#(t) which causes a system 

i = f(x(t), u(t), t) x(to) = Xo 

to follow an admissible trajectory x#(t) that minimizes the 
performance measure 

tf 

J(u) = h(x(tC),tf) + f g(x('t),u('t),'t)d't 
to 

must necessarily satisfy the following conditions, expressed in terms 
of the Hamiltonian 71' defined as 

K(x(t), u(t), p(t),t) == -g(x(t), u(t), t) + pT(t) f(x(t), u(t), t) 

such that 



www.manaraa.com

1. 

2. 

3. 

4. 

.#) air I x (t =-ap (x#(t) , u#(t) , p#(t), t) 
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:r(x#(t) , u#(t), p#(t), t) ~:r(x#(t), u(t), p#(t) , t) for all admissible u(t) 

The final boundary conditions satisfy 

[ ~h I # - p#(tf)] 8Xf + 
oX (x (tf),tf) 

r:r(x#(t), u#(t) , p#(t), t) + ~h I # ] 8tf = ° t x (x (tf),tf) 

A discretized version of this can be set out which is sometimes, but 
not always, helpful. In this case, for the system 

x(k+ 1) = f(x(k), u(k),k) x(O) = Xo given 

for which the function 

N­
J({u(k),k=O,l, ... ,N-l},x(O),N) = h (N , x (N» + L 

i=O 
1, )g(x(i), u(i) , i) 

is to be minimized, define the Hamiltonian function 

:r(x(i) , u(i), AU + I), i) = - g(x(i), u(i) ,i) + AT(i + 1) f(x(i), u(i), i) 

where A(') is the sequence of Lagrange multipliers (sometimes called 
costates in this application) for this problem and must be determined. 

Then the necessary conditions to be satisfied by the optimal state 
vector x#(i), control vector u#(i), and costate vector A#(i) are that 
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# aJf' I # # x (k+ 1) = a'l(k+ I) # # # = f(x (k), u (k),k) 
I\, (x (k), u (k),)" (k» 

A,#(k) _ aJf' I 
- ax(k) (x#(k), u#(k), ).,#(k» 

k=O,I, ... ,N-I 

Jf'(x#(i), u#(i), A,#(i),i) ~ Jf'(x#(i), u(i), A,#(i), i) 

for all admissible u(i) with boundary conditions, depending upon the 
problem statement, such as 

x#(O) = Xo 

A,#(N) = ah~~ x) I 
x#(N) 

A standard and useful result is that for the system described by 

x(k+ 1) = Ax(k) + Bu(k) 

the controllaw which minimizes 

J = [x(N) - Xd (N)]T S [x(N) - Xd (N)]/2 

N-l 
+ L { [xU) - XdU)]T Q[xU) - xd(i)] + uTU) Ru(i) }/2 

i=O 

where xd(i) is the desired state sequence, is given by 

u#(k) = - [R + BTP(k+ I)B]-l BTb(k+ 1) + K(k)x(k) 

where 

K(k) = - [R + BTP(k+ 1)B]-lBTP(k+ 1)A 

b(k) = [AT + KT(k)BT]b(k+ 1) - QXd(k) 

P(k) = Q + ATP(k+ 1)A + ATP(k+ I)K(k) 
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with boundary conditions 

peN) = S and beN) = - SXd(N) 

This is the linear quadratic tracking problem; its special case in 
which Xd(i) = 0, and hence b(i) = 0, for all i is the linear quadratic 
regulator (LQR) problem, although sometimes the latter term is 
restricted to the case for which N ~ 00 and the resulting gain K(k) is 
a constant. 

We build up to this result and give examples, including linear and 
non-linear minimum time problems, in the following sections. 

26.2 PERFORMANCE CRITERIA AND APPROACHES TO 
OPTIMIZATION 

Optimization is usually relative to a scalar function of the system states 
and controls which ascribes a cost or payoff to the system operation. 
With a given initial condition (or equivalent initialization sequence) 
x(O), the history of the system, until we consider noise effects in later 
chapters, is entirely dependent upon the control sequence and the 
initial state. On the basis of the arguments the cost I is a function 

I( {u(k), k = 0, 1, ... , N -I}, x(O), N) 

and is usually specified in a form such as 

I({u(k),k=O, 1, ... ,N-l },x(O),N) = h(N,x(N)) 

N-l 
+ L g(x(i), u(i), i) 

i=O 

subject to the system dynamics described by 

x(k+ 1) = f(x(k), u(k),k) x(O) = Xo given (26.1) 

Additional constraints may include bounds on the control variables 
such as 
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II u(k) II ~ V(k) (26.2.) 

and constraints on the control and state such as 

c(u(k),x(k),k) ~ C(k) (26.3) 

The duration of the interval of interest, N, may be finite or infinite, 
fixed or variable; usually, however, N finite and variable (as in the 
minimum time case) must receive special treatment. N unbounded is 
characteristic of regulator problems in process control and is handled 
either using special methods or as a limiting case as N ~ 00; in this 
and the next section we shall assume N is fixed and finite. Equation 
(26.1) simply says the system must satisfy a known model, usually 
based on the problem's physics (or chemistry or biology, as the case 
may be). The constraints (26.2) and (26.3), defining admissible 
controls and admissible states, are often difficult to handle explicitly in 
the mathematics. 

The functions h(·) and gO could be general, but in most of the 
literature they are constant or linear in the explicit time variable, may 
have time-varying weighting parameters, and may have additive terms 
in the absolute values or in quadratics in the control variable uO and 
state variable x(·). The most common state-space form in the 
literature has 

N-l 
J =! xT(N)SNX(N) + ~ ~ {xT(i) Qix(i) + uT(i) Rju(i)} 

,=0 

with dynamics 

x(k+ 1) = Akx(k) + BkU(k) xeD) = Xo 

(26.4) 

(26.5) 

This is called the linear-quadratic (L-Q) problem of automatic 
control: the dynamics are linear and the cost is quadratic in its 
elements. In the cost, the matrices SN and Qi are taken to be non­
negative definite, and the matrices Ri are assumed positive definite. 
Whether the dynamics should be linear was argued in Chapter 9. We 
note that in much of what follows, the matrices Ak, Bk, Qi, and Rj are 
taken as const,ants A, B, Q, R, respectively. This is done for 
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convenience in notation, as variation does not affect most of the 
general results. 

The second major problem class is that of minimum time control. 
Formally, this is to find the minimum value of 

N-l 
J= L 1 = N 

i=O 
(26.6) 

for which a given set of dynamics such as (26.1), or perhaps 
specialized to (26.5), is taken from a given initial condition Xo to a 
final constraint h(x(N),N) = O. Usually there is a constraint such as 
(26.2). 

To solve the above problems, there are three classes of methods 
plus numerical techniques. The first might be called a direct 
approach, involving manipulation of the solution matrices for the 
linear problem. The second is the Principle of Optimality, or 
Bellman's Principle, approach. The third uses methods based upon 
the calculus, the calculus of variations, and their extensions. These all 
have their place in the repertoire of the practising engineer; for the 
same problem, they all give the same result. 

For difficult problems, the methods vary in the insight they provide 
and the direct utility of their results. Many users will find Bellman's 
method (see Chapter 27) interesting for the insights obtained, but 
burdened by the so-named 'curse of dimensionality', which is a need 
for excessive computer time and storage for problems of reasonable 
size (say 10 or so state variables). Most engineers find Pontryagin's 
Maximum Principle (non-classical calculus of variations) useful in 
a cookbook sort of way, but difficult to translate into closed-loop 
control laws. 

Finding feedback control laws rather than optimal trajectories can 
be a serious problem. The mathematical methods often give the 
control as a function of time for a given set of initial conditions, u(t) 
= u(xo,t), instead of a closed-loop law u(t) = u(x(t», and hence are 
inherently open-loop in nature. The engineers' fix is to recompute 
u(xo,t) every few time periods, so that the actual command at time l' is 
given by u('t) = u(x(t),'t), t5:'t<t+T, t=to, to+T, to+2T, ... ,tr; such an 
approach is sometimes called open-loop feedback. 
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26.3 LAGRANGE THEORY AND THE PONTRYAGIN 
MAXIMUM PRINCIPLE 

An important approach to optimization is the Lagrange theory of 
constrained optimization, leading in the case of continuous-time 
systems to the calculus of variations and its non-classical extension, the 
Pontryagin theory. The latter has a discrete-time version, but for our 
purposes it is mostly unnecessary, as the Lagrange theory will do quite 
nicely. 

26.3.1 Parameter optimization and Lagrange multipliers 

The problem of optimal control is one of constrained optimization 
over a function space, where the constraints are due to the dynamics 
relationships and to the various rules which determine admissible 
control commands. The basic ideas are developed in the ordinary 
calculus, however, where the optimization is over a set of numbers 
(rather than functions). The key idea is that of Lagrange multipliers 
to convert the constrained problem to an unconstrained one. We 
quickly review those ideas in this section. 

If a function f(x) is to be minimized by choice of a scalar x, it is 
well known that if the function is suitably 'nice' in that the derivatives 
exist, then the optimum choice of x for a 'local minimum' is x# where 

9i I -0 dx x=X#-

d2
{ I ~ 0 

dx x=X# 
(26.7) 

In particular, the above are necessary conditions on the optimum 
X#, but may not be sufficient (because e.g. there may be more than one 
x which satisfies those conditions, or the second derivative may be 0). 

If f is a scalar function of a vector x, the necessary conditions are 
similar. In particular, it is necessary that the optimum vector x# 
satisfy 

v xf(x) I x=x# = [!-XI !- !- ... !-JI = 0 o OX2 OX3 oXn x=x# 
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(26.8) 

where the second condition means that the matrix is positive semi­
definite. 

Now consider the constrained problem of finding a vector x which 
minimizes a scalar function subject to a set of constraints. In 
particular, find a solution to minj(x), subject to 

i=I,2, ... ,m 

(or d(x) = 0). To solve this, we look at the problem of finding 

min min Iflx) + A.T d(x)] 
x A 

(26.9) 

(26.10) 

without further constraints. It is a fundamental fact of mathematical 
programming that the x# which solves (26.9) also is part of the 
solution (along with 1..#) of (26.10). The variable vector A. is called 
the vector of Lagrange multipliers, and using it relies upon a 
theorem (Luenberger, 1969) which states in essence that: if Xo is an 
extremum of the function I subject to the scalar constraints dj(x) = 0, 
i = 1,2, ... , n, and if V x dj(xo), i = 1,2, ... , n are linearly independent 
vectors, then there exist n scalars, A.i , i = 1,2, ... , n, such that the 
function 

n-l 
I(x) + L. A. i dj(x) 

i=l 

is stationary at Xo. 
For inequality constraints, the Kuhn-Tucker theory applies; as 

seen in any text material on constrained optimization, such as 
Luenberger (1973). 

Treating the problem (26.10) as a vector optimization problem in 
the extended vector yT = [xT A.T] means we can apply the results for 
unconstrained optimization. The first-order necessary conditions are 
then 
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v x [((x) + AT d(x)] I # # = 0 
(x ,A, ) 

VA. [((x) + AT d(x)] I = 0 = d(x#) 
(x#,A,#) 

The second-order conditions are 

from which, because A appears linearly, we get a reduction to 

Example 

Consider the problem min (xi + x~) subject to Xl + X2 = 1. Geometrically, 
this is seeking the smallest circle centred at the origin which touches 
the straight line that passes through (1,0) and (0, 1); a simple graph 
shows clearly that this is minimized when Xl = X2 = 1/2 and the 
minimum value of (xt + x~) is 1/2. 

Proceeding formally, the augmented function is 

for which the first-order necessary conditions are 

2Xl + 1..= 0 

2X2 + 1..= 0 

Xl + X2 - 1 = 0 

Simultaneous solution yields A = 1, Xl = X2 = 1../2 = 1. The 
minimum value of the performance function is then found by direct 
calculation. This is the only extremal point to be found, and from the 
second-order condition 
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[d2(X1 + x} + A(XI + X2 - 1) ]=[20] 
dXjdXj ° 2 

which is positive definite, we know this is indeed a minimum. Clearly 
there is no other candidate for extremal; in fact it is obvious there is 
an unbounded maximum. 

26.3.2 Treatment of discrete time optimum control as a 
problem in calculus 

Let us consider our basic problem as formulated in the previous 
section. Recall that we wished to minimize 

N-l 
l({ u(k), k=O, 1, ... ,N-l },x(O),N) = heN, x(N» + L g(x(i), u(i), i) 

i=O 

(26.11) 

subject to 

x(k+ 1) = f(x(k), u(k),k) x(O) = Xo given (26.12) 

For a fixed-time problem, (26.12) specifies N constraints to be 
satisfied in finding the minimum and can be restated as 

x(k+ 1) - f(x(k), u(k),k) = 0, k=O, 1, ... ,N-l 

Heuristically, we define the augmented cost function, as 

N-l 
la({x},{u},p .. }) = -h(N,x(N» - L g(x(i),u(i),i) 

i=O 

N-l 
+ LA T [f(x(k), u(k),k) - x(k+ 1)] 

k=O 
(26.13) 
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noting that the minus signs lead us to maximize this as an equivalent to 
minimizing the original cost, where the n-vectors A(k) are called 
Lagrange multipliers, or in the Pontryagin theory 'costates' . We may 
observe that the minimum of (26.11) when the constraints (26.12) are 
satisfied also gives a maximum of (26.13). The trick is to make the 
overall maximum of (26.13) lie at the minimum of the original 
problem. We use the Lagrange theory to find necessary conditions, 
and occasionally sufficient conditions, for this to occur. 

We first rewrite (26.13) for convenience as 

fi{x},{U},{A}) = -h(N,x(N» 

N- l 
+ L {-g(x(i), u(i), i) + A(i+ l)T [f(xU), u(i), i) - x(k+ 1)} (26.14) 

i=O 

To find a maximum of fa we look among the points for which the 
various first derivatives are 0, to find 

~ _ (Jh(N, x(N» 'leN) - ° 
(Jx(N) - - (Jx(N) - !I. -

~ __ (Jg(x(i)u(i),i) _ '1(') (Jr(x(N)u(i),i) '1(. 1) - ° 
(Jx(i) - (Jx(i) !I. l + (Jx(i) !I. l + -

i=0,1, ... ,N-l 

~ _ (Jg(x(i) u(i), i) (Jf(x(N) u(i), i) '1(' 1) - ° 
(Ju(i) - - (Ju(i) + (Ju(i) !I. l + -

i=O,I, ... ,N-l 

(Jt:) = - [xci) - f(x(i-1), u(i -1), i -1)] i= 1,2, ... ,N 

Satisfying these yields N x n equations in x, i.e. 

x(k+ 1) = f(x(k), u(k), k) 

and n x (N -1) equations for A, i.e, 
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'l(k) _ dg(x(k), u(k), k) df(x(k), u(k), k) 'l(k 1) 
I\, - - dx(k) + dx(k) I\, + 

k= 1,2, ... ,N-I 

with the 2n boundary conditions 

x(o) = Xo 

'leN) _ dh«N), x(N» 
I\, - ax(N) 

The control is determined to satisfy the m x N constraints 

_ ag(X~~(~ik), k) + af(X(~~,(~;k), k) J..,(k+ I) = ° 
k=O,I, ... ,N-I 

which mayor may not give an algebraic closed-form solution. To 
satisfy these we have (n+ l)xN variables xCi), i=O, I, ... ,N, along with 
n x N variables J..,(i+ I), and mxN variables u(i), i=O, I, ... ,N-I. 

We note that although the above gives necessary conditions, they are 
not necessarily easy to solve. A very important reason for this, 
regardless of the fact that the functions may be non-linear, is that the 
N stages of dynamics equations have conditions specified at initial time 
0, whereas the N stages of Lagrange multiplier equations have 
conditions specified on the final stage N. This situation is called a 
two-point boundary-value problem (TPBVP) and is one of the 
curses of the optimal control theory. 

26.3.3 Special application of dynamic Lagrange 
multipliers: linear quadratic (LQ) problems 

To see some of the implications of the above, we examine the LQ 
problem. The objective is to minimize 
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J=~(XT(N)SX(N) + 1\XT(i) Qx(i) + uT(i) RU(i)}) 
,=0 

subject to dynamics 

x(k+ 1) = Ax(k) + Bu(k) x(O) = xo 

Making the identifications of the various functions, e.g. 

g(x(i), u(i), i) = ~ {xT(i) Qx(i) + uT(i) Ru(i)} 

in equation (26.14) yields the set 

x(k+ 1) = Ax(k) + Bu(k) 

'A,(k) = AT'A,(k+ 1) - Qx(k) (26.15) 

with boundary conditions 

x(O) = Xo and 'A,(N) = - Sx(N) (26.16) 

and control law 

-Ru(k) + BT'A,(k+ 1) = 0 

or if R is invertible (as it will be if it is positive definite) 

u(k) =R-IBTA,(k+l) (26.17) 

Although this is a solution to the problem, it is not in a helpful 
form; to give easy computation from this solution, we need to know 
x(N), but we cannot know that until the optimal control is applied. To 
get a more helpful solution form, we must do some manipulation. 
Eliminating the control variable u(k) so that the equations can be 
solved, (26.15) becomes 
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x(k+ 1) = Ax(k) + BR- IBTj.,(k+ 1) 

j.,(k) = AT j.,(k + 1) - Qx(k) (26.18) 

In this special case, although the above does not look very 
promising, we use the properties of linear equations to generate a 
closed-loop feedback control. 

We note that j.,(N) is a linear function of x(N) and conjecture that 

j.,(k) = -P(k)x(k) 

for some suitable n x n matrix sequence {P(k)}. We now substitute 
this into (26.18) to see if there exists a sequence consistent with this 
assumption, noting from (26.16) that it holds trivially for k = N with 
P(N) = S. The substitution gives 

x(k+ 1) = Ax(k) - BR-l BTP(k+ l)x(k+ 1) 

P(k)x(k) = ATP(k+ l)x(k+ 1) + Qx(k) 

Solving the first for x(k + 1), which needs the inverse matrix to exist, 
yields 

x(k+ 1) = [I + BR-l BTP(k+ 1)]-1 Ax(k) 

which is consistent with the second for all x(k) iff 

P(k) = ATP(k+ 1) [I + BR- IBTP(k+ 1)]-1 A + Q (26.19) 

Alternative forms are sometimes helpful. Using the matrix 
inversion lemma (Appendix B) 

[E + FGH]-1 = E-l - E-IF [G-l + HE-l F)-I HE-l (26.20) 

with E = I, F = B, G = R-l, H = BTP(k+ 1), it can be written in the 
form called a Riccati equation. 
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P(k)=Q+ATP(k+ 1)[I-B [R+BTP(k+ l)B]-IBTP(k+ 1)] A (26.21) 

Hence PO is computed backwards in its index from peN) = S 
(26.20). 

Completing the derivation of the closed-loop control law, we find 

u#(k) = -R-IBTP(k+ l)x(k+ 1) 

= _R-IBT P(k+ 1) [Ax(k) + BU#(k)] 

so that 

u#(k) = - [I + R-l BTP(k+ 1)B]-1 R-l BTP(k+ 1)Ax(k) 

= - [R + BTP(k+ l)B]-IBTP(k+ 1) Ax(k) 

(26.22) 

(26.23) 

Having P(k) computed backwards in its index from k = N can be a 
nuisance. If A-I exists, however, we may use (26.19) to find 

P(k+ 1)-1 = A [P(k) - Q]-1 AT - BR-l BT 

which rearranges to 

P(k+ 1) = [A [P(k) - Q] AT - B R-l BT]-l 

This can be convenient computationally once P(O) is known, 
probably from backward computation from k = N. 

We can also calculate the value of the 'cost to go from stage k', 
defined as 

This is most easily done by induction. Assume 
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with peN) = S. Then we have 

# 1 } h =1k+1 + 2 {xT(k) Qx(k) + uT(k) Ru(k) 

Using the shorthand notations u = u(k), x = x(k), we have for any 
control u 

h = (uTBT + xT AT)P(k+ l)(Ax + Bu)12 + xTQxl2 + uTRU/2 

~ 21k = uT(BTP(k+ 1)B + R)u + xT(ATP(k+ 1)A + Q)x 

+ uTBTP(k+ 1) Ax + xT ATP(k+ 1)Bu 

Using the optimal control from (26.23) 

u# = -(R + BTP(k+ 1)B)-1 BTP(k+ 1) Ax(k) 

then yields 

2I!c = xTATP(k+ 1)B (R + BTP(k+ 1)B)-1BTP(k+ 1)Ax 

+ xT(ATP(k+ I)A + Q)x 

- xT ATP(k+ 1)B (R + BTP(k+ 1)B)-1BTP(k+ 1)Ax 

- xT ATP(k+ l)B (R + BTP(k+ I)B)-1 BTP(k+ I)Ax 

= xT [ATP(k+ 1)A + Q 

- ATP(k+ I)B (R + BTP(k+ I)B)-1BTP(k+ 1)A]x 

Comparison with (26.22) yields ~ = xT P(k) xl2 as was to be shown. 
To summarize, the optimal feedback control and cost are given by 

1. u#(k) = -[R + BTP(k+ I)B]-1 BTP(k+ I)Ax(k) 

2. P(k) = Q + ATp(k+ I)A 

- ATP(k+ 1)B [R + BTP(k+ 1)B]-1BTP(k+ l)A 
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3. it = !xTP(k) x 

with boundary condition peN) = S. 
We should note a number of features of the derivations and results 

in this section. 

1. So far, we have satisfied necessary conditions; we do not yet 
know whether they are sufficient. 

2. The raw solution gave us only a two-point boundary value to 
solve for xO and A,(o). It took some cleverness to reach a 
feedback control law for this problem. 

3. This has been a fixed duration problem. For most practical 
purposes, allowing N to vary puts us into a search mode, simply 
because N must be an integer and hence cannot have a useful time 
derivative (as in continuous time problems). 

Example 

Consider the control of the system 

x(k+ 1) = [~ ~ ] x(k) + [~] u(k) 

where the criterion to be minimized is 

[ 10] 19 2 
J = xT(20) 0 0 x(20) + l: xl (i) + u2(i) 

,=0 

Then with 

P(20) =[~~] 
and 

[ 20] [ P(k+l) [~~] P(k+l)] 
P(k) = 00 +AT P(k+l) - 2 + P22(k+1) A 
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we have a precomputable expression for {P(k)}. Hence, the gain 
K(k) for u(k) = K(k) x(k) is given (and precomputable) as 

K(k) = [OI]P(k+l)A 
2 + P22(k+ 1) 

The gain is plotted in Fig. 26.1 (a); also shown are elements of P in 
26.1(b) and a typical trajectory in 26.1(c). It is notable that for small 
k, that is, for a long time to go, K(k) is nearly constant. This 
property may sometimes be used in applications. In this example the 
steady-state gain is K = [-0.73 -IF. The dependence of this gain on 
R = r is shown in Fig. 26.1(d). 

The above example demonstrates that K(k) may be nearly constant for 
k «N. For this to be true, P(k) must also be constant, and hence 
equal a value P given by the solution of 

The (relatively) easy way to solve this is numerically, by starting at 
peN) and working backwards until P(k) :::::: P(k+ 1). Matrix solution 
methods are used in CACSD (computer-aided control system design) 
packages. 

(al 
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Figure 26.1(a) Optimal gains versus time for example of LQ optimal 
control. 
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Figure 26.1(b)-(d) (b) Optimal weighting matrix elements for same 
problem. (c) Optimal evolution of state vector elements for given initial 
conditions. (d) Optimal steady-state gains (LQR) as function of control 
weighting r. 
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26.4 A PONTRYAGIN FORMULATION 

The above has in fact used only a subset of the classical calculus of 
vanatIOns. In particular, the existence and utility of the first 
derivatives has been assumed. Pontryagin's contribution was to extend 
this to problems to which the assumption does not apply. 

26.4.1 Basic approach 

Recall that our basic problem is that we wish to minimize 

N-l 
J({ u(k), k =0,1, ... ,N -I}, x(O),N) = heN, x(N)) + I.. g(x(i), u(i), i) 

i=O 

subject to x(k+ 1) = f(x(k), u(k), k) with x(O) = Xo given. Then we 
define a function Jf", called the Hamiltonian, as 

%(x(i), u(i), A(i + 1), i) = - g(x(i), u(i), i) + AT (i + 1) f(x(i), u(i), i) 

where {AO} is the sequence of Lagrange multipliers, or costates, for 
this problem and are to be determined. The original problem, given 
in (26.1) is then equivalent to maximizing 

N-l 
Ja ({x}, {u}, {A}) = -h(N,x(N)) - L g(x(i),u(i),i) 

i=O 

N-l 
- I.. AT (k + 1) [x(k+ 1) - f(x(k), u(k),k)] 

k=O 

which in terms of the Hamiltonian is 

N-l 
Ja = -heN, x(N)) + I.. [%(x(k), u(i), AU + 1), i) - AT (i + 1) xCi + 1)] 

i=O 
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This function is to be maximized for each value of index i . To do 
so, a variation of ox(i),ou(i),o).,(i) is made from the optimum x#(i), 
u#(i), ).,#(i) and a set of necessary conditions is found. In doing this 
carefully, in a manner partly demonstrated by Kuo (1980), we 
substitute x f- x# + £ Ox, U f- u# + you, etc. with scalars £, y, etc. 
and find that we are required to have 

# a)f'#(k) # # 
x (k+ 1) = a).,#(k+ I) = f(x (k),u (k),k) 

aJt'#(k) 
).,#(k) = ax#(k) k=O,I, ... ,N-I (26.24) 

with boundary conditions 

x#(O) = Xo and 'I #(N) _ ah(N, x#(N» 
/'y - ax(N) 

Furthermore, u#(i) must, for each i, minimize Ja and since it appears 
only in $, must maximize 7t'. Hence 

%(x#(i), u#(i), )"#(i), i) ~ %(x#(i), u(i), )"#(i), i) (26.25) 

and this expression determines u#(i), i = 0,1,2, ... , N -1. For many 
problems, uO appears quadratically or higher in%and the maximum 
can be found by setting 

a Jr(x#(i) , u, )"#(i), i) _ 0 
au - (26.26) 

In other cases, particularly those involving linear systems and time 
optimal control, (26.25) must be used. 

26.4.2 Application to linear quadratic tracking problem 

An important variation of the linear quadratic regulator problem of 
the previous section is the tracking problem, in which it is desired that 
the state follow a predetermined trajectory {xd(k)} . For this, the 
quadratic payoff (26.4) is modified to 
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J = [x(N) - Xd(N)]T S [x(N) - Xd(N)]/2 

N-l 
+ L {[x(i) -Xd(i)]TQ[x(i)-xd(i)] + uT(i) Ru(i)}/2 

i=O 

We then find that 

g(xCi),u(i), i) = 1 { [xCi) - Xd(i)]T Q [x(i) - xd(i)] + uT(i) Ru(i)} 

and (26.24) with its boundary conditions becomes 

x#(k+ I) = Ax#(k) + BU#(k) 

# aJe#(k) 
'A, (k) = ax#(k) k=O,I, ... 

= AT 'A,#(k+ I) - Q [x#(k) - xd(k)] 

with revised boundary conditions 

x#(O) = Xo 

'A,#(N) = - S [x#(N) - Xd(N)] 

and control law from (26.26) as 

By substitution, 

x#(k+ 1) = Ax#(k) + BR-l BT'A,#(k+ 1) 

'A,#(k) = AT 'A,#(k + 1) - Q [x#(k) - xd(k)] 

We conjecture 

(26.27) 

(26.28) 
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'A,#(k) = -P(k)x#(k) - b(k) (26.29) 

where b(k) is a bias term, and note that (26.27) implies 

peN) = S 

beN) = -SXd(N) 

Substitution into (26.28) then gives 

x#(k+ 1) = Ax#(k) - BR-l BT [P(k+ 1) x#(k+ 1) + b(k+ 1)] 

P(k)x#(k) + b(k) = AT [P(k+ l)x#(k+ 1) + b(k+ 1)] 

+ Q [x#(k) - xd(k)] 

Solving the first of these for x#(k+ 1) and substituting in the second 
yields 

x#(k+ 1) = [I + BR-l BT [P(k+ 1)] -1 [Ax#(k) - BR-l BTb(k+ 1)] 

P(k)x#(k) + b(k) = AT {P(k+ 1) [I + BR-IBTP(k+ 1)]-1 

[Ax#(k) - BR-I BTb(k+ 1)] 

+ b(k + 1)} + Q [x#(k) - xd(k)] 

For this to hold for all x#(k) it is sufficient that 

P(k) = ATP(k+ 1) [I + BR-IBTP(k+ 1)]-lA + Q 

b(k) = -ATP(k+ 1) [I + BR-IBTP(k+ 1)]-1 BR-IBTb(k+ 1) 

+ ATb(k+ 1) - QXd(k) (26.30) 

As before, the optimal control can be found from 

u#(k) = - R-IBT[P(k+ 1)x#(k+ 1) + b(k+ 1)] 

= - R-IBTP(k+ l)[Ax#(k) + P(k+ 1) BU#(k) + b(k+ 1)] 
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to yield 

u#(k) = -[R + BTP(k+ I)B]-1 BT[P(k+ I)Ax#(k) + b(k+ 1)] 

Defining a gain K(k) as 

K(k) = - [R + BTP(k+ I)B] -1 BTP(k+ I)A 

allows this to be written 

U#(k) = - [R + BTP(k+ 1)B]-1 BTb(k+ 1) + K(k)x#(k) 

which is mainly helpful in that (26.30) becomes 

P(k) = Q + ATP(k+ 1)A + ATP(k+ l)K(k) 

b(k) = [AT + KT(k)BT]b(k+ 1) - QXd(k) 

In this the first is a rearrangement as was done to obtain (26.21). 
In summary, since in the regulator xd(k) == ° and hence b(k) == 0, 

both the regulator and tracking problems can be represented using the 
following algorithm: 

peN) = S 

beN) = - S Xd(N) 

FOR k = N-l ,N-2, ... ,0 

K(k) = - [R + BTP(k+ I)B]-1 BTP(k+ I)A 

P(k) = Q + ATP(k+ I)A + ATP(k+ I)K(k) 

b(k) = [AT + KT(k) BT] b(k+ 1) - QXd(k) 

FOR j = 0, 1,2, ... , N -1 

u*(j) = -[R + BTP(j+l)B]-1 BTb(j+l) + K(j)x(j) 
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26.4.3 Application to minimum time problems 

It is not hard to demonstrate that minimum time problems with 
control magnitude constraints have 'bang-bang' solutions, in which the 
control elements usually switch back and forth from minimum to 
maximum admissible value. This means, incidentally, that the optimal 
controls may be relay-implemented and do not require throttling. To 
see the ideas, we consider a standard example. 

Let g(x,u,i) = I, so that N is to be minimized with 

N-l 
1= L 1 = N 

i=O 

Further, let x(k+ I) = Ax(k) + buCk) where u(k) is a scalar sequence 
(primarily for notational convenience). The boundary conditions are 
that x(o) = Xo and x(N) = Xf, with N, the final time, unknown. Then 

Jf"= -1 + A,T(k+ I)[Ax(k) + buCk)] 

From the necessary conditions, 

x(k+ I) = Ax(k) + buCk) 

A,(k) =ATA,(k+l) 

with u(k) such that A,T(k+ I) buCk) is maximized. 
Thus u(k) takes on its maximum allowed value for A,T(k+ 1) b > 0, 

takes on its minimum allowed value for A,T(k+ 1) b < 0, and is 
undefined for A,T(k+1) b = 0. If u(k) is bounded, i.e. if IU(k)1 ~ I, 
then we have 

u#(k) = sgnA,T(k+ I) b 

which is seen to be a 'bang-bang' control, implementable using relay 
actuators . Notice that because of the constraint on the magnitude of 
the control this is not the same problem as will be solved by placing 
poles at the origin (section 27.4); the latter does not restrict the 
control in this way. 
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It is arguable, and supportable for real systems by physical 
arguments and by the continuous time theory, that u(k) should change 
signs between samples. This can be done in hardware by having the 
computer set a counter to signal when the switching should occur (see 
section 26.6). 

The same ideas, in particular Lagrange multipliers, are also used 
for optimization of functionals, as we will see in the next section. 

26.5 OPTIMIZATION OF CONTINUOUS TIME SYSTEMS 

The mathematics of continuous time systems are sometimes easier and 
sometimes harder than for sampled data systems - harder because of 
the use of functionals (functions of functions) rather than functions, 
easier in that many of the derived expressions are less complex. The 
results are sometimes applicable to continuous time systems which are 
computer controlled, provided the engineer interprets them properly. 

26.5.1 Basic Euler-Lagrange theory for continuous 
systems 

The optimization theory for finding functions is similar in form to 
that for finding numbers, as we shall see. Here, instead of looking for 
a number x which minimizes a function ], we seek a function x(t) 
which minimizes a functional ](x(t». Thus for example we want a 
scalar function x(t) for which the number J produced by 

tf 

](x(t» = f x(s) ds 
to 

is minimized. 

Example 

Consider the performance functional 

3 

](x(t» = f (x(s) - s)2ds 
o 
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If xes) = s2, for instance, then lex) = 1/12. Obviously, the 
minimizing function is xes) = s. 

Let us consider a simple functional of a scalar function 

tf 
!(x(t» = J F(x(s»ds 

to 

and suppose that we consider a minimizing function x#(t) and an 
increment of that function h(t), i.e. x(t) = X#(t) + h(t). Then provided 
to and tf are fixed 

tf 
!(X#+h) = J F(x#(s) + h(s»ds 

to 

~[ dF d2F ] = J F(x#) + dx h + d2x h 2 + .. . ds 

For h 'small' 

tf[ dF ] 
!(X#+ h) ::::; J F(x#) + dx h ds 

tf[dF ] 
::::; !(X#) + i dx h ds 

Since h(s) is arbitrary and can be chosen, it is clear that for !(X#) to 
be the minimum, 

dFl - -0 
dx X#(t)-

is necessary. 
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Proceeding similarly, consider the functional 

tf 
lex, u) = I F(x(s),x(s), u(s),s)ds 

to 
(26.31) 

We again form x# + ox, x# + ox, u# + ou, all functions, and form the 
increment 

tf 
l(x# + Ox, u# + ou) = I [F(x# + ox, x# + ox, u# + ou, s)] ds 

to 

from which we find immediately that 

and 

Itf [aF aF.] ° = to ax 0 x + ax 0 x ds 

Integrating this by parts gives 

tf[aF s aF 1 . ° = I -a· - I -a dt ox ds to X to X 

(26.32) 

(26.33) 

(26.34) 

Since ox can be arbitrary (and ox is its integral), we must have the 
term in [ ] identically equal to 0, so that 
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.4. aF aF - 0 
dt ax - ax - (26.35) 

This is the Euler-Lagrange equation for this problem. The boundary 
conditions, which come out of the integration by parts, are 

[ Vi F I to] ox(to) = 0 

[ Vi F I tf] OX(tf) = 0 (26.36) 

Since the problem often has a prescribed x(to), ox(to) = 0 is 
required and Vi F can be arbitrary at this point. Similarly, if xCtf) is 
arbitrary, then so is OX(tf) and hence (26.35) requires Vi F = 0 at 
t=tf. 

The next generalization we need is that of allowing for constraints. 
Thus we consider the problem of minimizing J where 

tf 
J= J g(x,x,u,t)dt 

to 

and subject to constraints x = rex, u, t) and x(to) = Xo. It turns out we 
can again use Lagrange multipliers but that this time they are 
functions rather than numbers. Hence define 

G(x, 'A,x, u, t) = g(x, x, u, t) + 'AT (x - f(x , u, t)) 

and find the extremum of 

tf 
J = J G(x,'A,x,u,t)dt 

to 

Considering the extended vector y defined by concatenating x and y, 
i.e. y = [xT 'AT]T, apply (26.31) to (y,u) instead of (x,u), use the 
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results of (26.35) and (26.36), and then separate the components of y 
to find the necessary conditions 

a[g-ATf] 
au = 0 

a[g - ATf] dA 
ax -d(= 0 

a[g+AT(X-f)] . 
aA = x - f = 0 

with boundary conditions 

x(to) = Xo 

A(tr) = 0 

26.5.2 Application to linear quadratic (LQ) problem 

For the standard example, we consider 

1 tr 
J = 2: J [xT(t) Qx(t) + uT(t) Ru(t)] dt 

to 

subject to x = Ax + B u and x(to) = Xo. 

(26.37) 

(26.38) 

This is the standard linear quadratic problem of optimal control and 
by assumption Q ~ 0 and R > O. For x# and u# to be optimum, they 
must satisfy the necessary conditions (26.37) and (26.38). Substituting 
the obvious functions g and f, 

u#(t) = R-l BT A#(t) 
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'i,#(t) = _AT ')..#(t) + Qx#(t) 

X# = Ax#(t) + Bu#(t) 

= Ax#(t) + BR-IBT')..#(t) 

with boundary conditions x#(t) = Xo and ')..#(tc) = O. 
The above is a standard result. It is notable that the system [xT ')..T]T 

must satisfy a two-point boundary-value problem (TPBVP) and that 
u# is a function of time - i.e. is an open-loop control - rather than a 
feedback law. In this instance, as in the discrete time case, we are able 
to exploit the linearity of the differential equations to achieve an 
optimal feedback law. 

We have 

~ [X] = [A BRBT] [X] 
dt ').. Q -A ').. 

Letting the transition matrix for this be $(t, t) as in 

[X(tf)] = [$ll(tf, t) $12(tf, t) ] [x(t)] 
J..(tf) $21 (tf, t) $22(tf, t) ')..(t) 

we can find 

')..(t) = -$22(t, tf) $21 (tf, t) x(t) 

so that the feedback law is 

u#(t) = - R-l BT $22(t, tf) $21 (tf' t) x(t) 

= K(t)x(t) 

Thus the optimal control law exhibits linear feedback with time­
varying gain. 
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The above is the hard way to find the gain. An alternative is to try 
~o find. H(t) such that A(t) = - H(t) x(t) which in turn requires 
A = - H x - H x. From the differential equations 

').. = Qx - AT A = Qx + AT Hx 

and 

- iIx - Hx = - Hx - H [Ax - BR-IBTHx] 

Since these hold and are equal for all x, it must be that 

Q +ATH =-H-HA+ HBR-IBTH 

which is usually written as the Riccati equation 

H = - Q _ATH-HA + HBR-IBTH 

Of course, from the definition of H we have 

u# = - R-I BTH(t)x 

We can show that 

I tf 

J# (t) = 2 J [x#'t(t) Qx#(t) + u#T(t) Ru#(t)] dt 
't 

xT(t) H(t)x(t) 
= 2 

in several ways. One verification is to show that both expressions 
have the same derivative with respect to t when H satisfies the above 
differential equation and u# is as given. Other proofs involve, for 
example, other derivation techniques. 
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26.5.3 Pontryagin's maximum principle for continuous 
time models 

The Pontryagin principle can be viewed as a variation of the classical 
theory in which the conditions 

dG I - - V G -0 
dU x#(t), u#(t), I..#(t) - [ u ] I X#(t), u#(t), I..#(t) -

are replaced by a local maximization of a function. Specifically, the 
statement is as follows. The control u#(t) which causes a system 

i = f(x(t) , u(t), t) x(to) = Xo 

to follow an admissible trajectory that minimizes the performance 
measure 

tc 
J(u) = h(x(tc),tc) + f g(x(t),u('t),t)dt 

to 

must necessarily satisfy the following conditions, expressed in terms 
of the Hamiltonian Jf'defined as 

Jf'(x(t), u(t), pet), t) == -g(x(t) , u(t), t) + pT(t) f(x(t) , u(t), t) 

1. .# dJf'1 x (t) =-
dP (x#(t), u#(t), p#(t), t) 

2. 

3. Jf'(x#(t), u#(t) , p#(t), t) ~Jf'(x#(t), u(t), p#(t), t) 
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4. The boundary conditions satisfy 

[~h I # - p#(lr)] OXf + 
aX (x (tj) , lJ) 

r~(X#(t),U#(t),p#(l),t) + ~ht I # ]Otr=O t a (x (tr) , tr) 

In this, the modified condition is (3). It is tempting to view this as a 
recipe in a cookbook. We do so for some simple but instructive 
examples. 

Example 

Consider the trajectory shaping for an extra-atmospheric missile of 
constant mass and thrust. The state is described by vertical and 
horizontal positions y and x. The thrust attitude is \jI, so the dynamics 
are 

x = Tcos \jI )i = T sin \jI- g 

Defining the extended state vector 

z=[x x y y]T 

and taking thrust attitude \jI as the control variable u gives the state­
space model 

i2 = T cosu 

Z3 = Z4 

i4 = T sinu - g 
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The object is to minimize time to achieve the state transition, so this 
is a time optimal problem. From this we have 

2'(Z,U,A,t) =-1 + ATf(z,u,t) =-1 +AIZ2 +A2Tcosu 

+ A3Z4 + A4 T sinu - A4g 

From the basic rules, 

z = fez, u) 

0 

~= 
-AI 

0 
-A3 

The latter two of these relationships give 

so that 

Al = AI(tO) 

A3 = A3(tO) 

A2 = A2(tO) + AI(tO) (t - to) 

A4 = A4(tO) + A3(tO) (t - to) 

This is the basic 'bilinear tangent law' of rocket steering which has 
been used to motivate some trajectory designs in actual missile flights; 
the special case in which down range position is not fixed (x(tc) free) 
gives the result that AI(tC) = 0 = AI(tO) and hence a 'linear tangent 
steering law'. Although the parameters could in principle be sought as 
solutions of the TPBVP, they will ordinarily be found using other 
methods. 
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Example 

A simpler example than the above, and one in which we may discuss 
solution methods, is that for which 

x = u II ull :::; I x(O) = Xo X(/f) = 0 

The objective is minimum time control of the system. Using state­
space models in which ZI = x and 22 = X we have 

and hence%(z, u,p) = -1 + PI Z2 + P2U. We find immediately that 

For the control 

means that u# must take its maximum positive value when p~ is 
positive and smallest value when p~ is negative. Since the constraint is 
that -1 :::; U :::; 1, this means 

u#(t) = sgn [ p~(t) ] 

The solution of the system has p~(t) = p~(O) + p1(O)t so that 

u#(t) = sgn [p~(O) + p1(O)t ] 

Notice that so far u# is open-loop, i.e. a function of time. To learn 
more about it, we look at trajectories. 
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First we see that u# may start at -1 and stay there, start at -1 and 
switch to + 1, start at + 1 and switch to -1, or start at + 1 and stay at 
that value; these are the only possibilities admitted by the expression 
for u#(t), except for the very special case when p~(o) = p1(t) = O. We 
consider what trajectories look like in Fig. 26.2, which show Z2 = it 
versus Zt, a type of graph called the phase plane. 

(a) 

(b) 

1---l---i-+-iii--+--+-cI---H--I---I z ,=X 

Figure 26.2(a)-(b) Development of optimal switching curves for 
minimum time transition to origin of example problem: (a) possible 
(upward moving) trajectories with u = +1; (b) possible (downward moving) 
trajectories with u = -1 . 
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(c) 

(d) 

:r:r ::r::'::·i:~t:::: 
TT r ·· r· f\0 

~2~'~~'~~'--O~-+'--+' --+-~2 x 

':::::[:::::1::::::[::::: :.S\:::1-:::.:t:::: · . . . · . . . · . . . · . . . · . . .. . 
•••• • L • • • • • J • • • ••• 10. •• ••• • ••• •• I. •••• • J •••••• L • ••• · .. .. . · " .. . 

: : : ,2: : : 

(9) 

Figure 26.2(c)-(e) Development of optimal switching curves for 
minimum time transition to origin of example problem: (c) and (d) 
patching together curves from (a) and (b) to reach origin; (e) the switching 
and final approach curves (solid lines) and possible trajectories to reach 
switching curves (dotted). 
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One can show that 

• when u = + 1, then Zl = z~ /2 + C for a constant C; and 
• when u = -1, then Zl = -z~ /2 + C for a constant c. 

It is clear from the diagrams that to finish at z = 0, the trajectory must 
arrive from the second quadrant along a u = -1 curve, or it must 
arrive from the fourth quadrant along a u = + 1 curve. Then from any 
position above those lines, a u = -1 command is needed to reach the 
fourth quadrant terminal line, while a u = +1 is needed from below 
these lines. 

From the above arguments and some thinking and manipulation of 
the signs, one convinces oneself that 

u = -1 when ZI + IZ21 Z2/2 > 0 

u = +1 when ZI + IZ21 Z2/2 < 0 

u = sgn ZI when ZI + 1221 Z2/2 = 0 

Hence one defines a switching line 

and uses + 1 below this line and -1 above the line, and sgn (Zl) on the 
line. The control law is then 

with the implementation/interpretation that u#(z) = sgn(zl) when 
ZI + IZ21 Z2 /2 = O. 

26.6 ENGINEERING OF SOLUTIONS 

The optimal control theory so far has produced two-point boundary­
value problems (TPBVPs) in the state and the Lagrange multipliers as 
the direct solutions. Producing feedback solutions from these has 
required further knowledge and manipulation, and implementation 
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may require even more effort. Alternatively, even obtaining two­
point boundary-value solutions may require numerical methods such 
as will be seen in Chapter 27. We comment below on various 
engineering aspects of the optimal control solutions. 

26.6.1 Implementation of switching lines 

The examples have already indicated trajectory shape considerations in 
one instance and switching lines in another. Either case may, with a 
bit of cleverness, be implemented with a digital computer. We show 
this with the switching line example. 

Example 

We saw in sections 26.4 and 26.5 examples in which the control is 
bang-bang in nature; sampling the data did not affect the nature of the 
control law. It is clear, however, that switching must take place 
precisely at the instant when Zl + I Z21 Z2/2 = 0 for the origin to be 
reached. For the digital computer to do such a thing, it must predict 
when this instant will occur and either count down internally or set an 
external timer. 

To predict time, we notice that since Z2 = u = ± 1, it must be that 
for anyone arc segment, tl.T = II tl.z211. We consider ,the trajectories 
which start with u = -1 (i.e. above the switching lines) and observe 
they are described by 

while the u = + 1 switching curve is 

These intersect at the switching time tg (time to go) for which 
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1 (Z~(O) ) Zl(tg)=2 -2- +ZI(O) 

From this we establish that 

The control command is to measure Z and compute 

(Z~ )! 
tg = Z2 + "2 + Zl 

This number is 'time to go' from when the measurements were taken, 
and is used as the basis for loading the timer, which should count 
down its parameter and cause a switch when it has reached O. 

26.6.2 Choices of weighting matrices and solutions of 
linear quadratic problems 

Setting of the matrices S, Q, R in the performance index is rarely an 
obvious matter, even for problems in which penalizing state errors or 
control commands in a quadratic manner appears natural. One way 
(Bryson and Ho, 1969) is to choose 

S = I (lJ(n x maximum allowable {xT(N)x(N)}» 

Q = I (lJ(nN x maximum allowable {x TU) xU) }» 

R = I (lJ(mN x maximum allowable {uT(i) u(i)} » 
where Sand Q are n x n, R is m x m, and the process has N stages; 
the changes for a tracking problem are obvious. 
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A variation on the above is that, if the ith element of x(k) has an 
allowable maximum of Xi,max' then let 

Q = diag (1/xi,max' l/xlmax,' ... , l/x~,max) 

and similarly 

R = diag (lIuI,max' lIu~ , max' ... , lIu~,max) 

S = diag (1/xI.max(N), l/x~ ,max(N), ... , lIx~, max(N» 

More detailed discussions are presented by Anderson and Moore 
(1989) and by Maciejowski (1989). They particularly emphasize the 
control magnitude/state error trade-off, noting that high control 
penalties relative to the state error penalties tend to allow an open­
loop appearing system (if it is stable) while relatively low penalties 
force the appearance of poles near values determined by the steady­
state gain (which depends upon the structure of Q and R). 

26.6.3 Properties of linear quadratic regulator (LQR) 
controllers 

We have observed that the gain K(t) in LQ problems becomes constant 
when the situation is not time-varying and there is a long 'time to go'; 
the LQ optimization problem with infinite upper limit for the integral 
or summation cost function is called the linear quadratic regulator 
(LQR) problem. The solution to this problem is of the form 

u =Kx 

where, in the discrete-time case 

K = -[R + BTPB]-l BTPA 

P =Q+ATPA-ATPB[R+BTPB]-lBTPA 

and in the continuous-time case 
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K =_R-1BTH 

HBR-1BTH _ATH - HA - Q = 0 

The expressions for P and H are called algebraic Riccati equations. 
The resulting transfer function of the system is 

G(q) = C (ql - A - BK)-l B 

where q is either the Laplace transform operator s or the z-transform 
variable z. G(q) can also be written in terms of the open-loop transfer 
function K(ql - A)-l B or the return difference 1- K (ql - A)-l B. 

Some of the many interesting facts about the approach and the 
control law are as follows. 

1. For any K, there exist weighting matrices Q and R such that K is 
an optimal controller. (Strictly, there exist Q and R such that 
K(ql - A)-lB is obtained.) 

2. For the continuous-time case, when R = pI, there is at least 60° 
of phase margin in each input channel. This is somewhat less 
(down to very small) in the discrete-time case. 

3. The system is robust against some types of model errors. For 
example, a single-input system remains stable for non-linear gain 
variations <p(e) which are sector bounded by 

0.5 e < <p(e) < £-1 e 0<£<2 

26.7 COMPUTER AIDS 

Computer packages can usually solve the LQ problem and variations 
of it. The LQR problem is solved in the Control Systems Toolbox of 
MATLAB® and by Ctrl-C, for examples. 

26.8 SUMMARY 

Optimal control is the theory associated with finding the best control 
according to a mathematical criterion, and may be compared, not 
always favourably, to the control laws generated by the traditional 
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techniques such as root locus, frequency domain methods, and even 
manual tuning. The latter have tended to be the laws of choice in 
process control, while optimal control is more associated with the 
aerospace industry. 

In this chapter we have presented an introduction to the Pontryagin 
and related theories for designing optimal control laws, and two 
important types of results of applying those theories to linear systems. 
The two results are for the time optimal (or minimum time to traverse 
from one state to another state) problem, for which the result is that 
the control will usually be 'bang-bang' in nature, and the quadratic 
performance index, for which the result is that the control law is 
linear in the state; all problems are occasionally subject to intervals 
called singular arcs in which the control is not defined by the first 
level arguments here. 

26.9 FURTHER READING 

Further reading on Pontryagin methods perhaps best starts with 
Pontryagin et aI. (1962). Bryson and Ho (1969) and Lee and Markus 
(1967) are old standbys. Very accessible introductions appear in 
many standard textbooks at second course level and above, including 
those by Kuo (1980) and Shinners (1992). One very readable and 
more specialized text is the relatively early book by Kirk (1970) while 
a compendium of results on linear quadratic problems is given by 
Anderson and Moore (1989). Somewhat broader coverage, including 
industrial examples, is given by Grimble and Johnson (1988). 
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Other optimal control 
methods 

Chapter 26 discussed Lagrange multiplier methods of converting 
constrained optimization problems to unconstrained problems, with 
the particular application being control system problems in which the 
state is to traverse an optimum path subject to the constraint that the 
equations of motion (usually the laws of physics) are not to be 
violated. There are other methods, and we look briefly at some of 
them in this section. 

27.1 SYNOPSIS 

There are many more methods than Pontryagin and calculus of 
variations approaches to designing optimal control laws. The first 
method we look at has its origins in transfer function theory. Given a 
model 

A (z) Y(z) = Z-k B(z) V(z) + AC(Z) V(z) 

one seeks a control such that the variance of y(mT) is minimized for 
any m if {v(mD} is a noise sequence. The solution has 

{ G(z) } 
V(z) = - B(z) F(z) Y(z) 

where G(z) and F(z) are related by 

e(z) = A (z) F(z) + Z-k G(z) 
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A second approach is to choose parameters in a structured situation so 
that a criterion is optimized. This may involve algebra or numerical 
techniques such as mathematical programming or simulation. 

A third approach uses dynamic programming, based upon the 
(Bellman's) Principle of Optimality, which states roughly that 
an optimal control law is optimum for any state reached, and is 
independent of how that state was reached. It is applied to the 
problem of minimizing 

N-l 
J({u(k),k=D, 1, .. . ,N-l },xQ,N) = h(N,x(N» + L g(x(i),u(i),i)] 

;=0 

subject to the dynamics 

x(k+ 1) = j(x(k) , u(k), k) xeD) = XQ 

The result is that the optimum cost from state x at stage k, J#(k,x) 
satisfies 

J#(N,x) = h(N,x) 

J#(k,x) = min [J#(k+ 1,f(x, u,k» + g(x, u, k)] 
u 

for k = N -1, N - 2, ... , O. This is applied to the linear-quadratic (LQ) 
problem as an illustration, and of course it gives the same result as the 
Pontryagin approach. 

Finally, we look briefly at the essence of some numerical 
approaches used alongside the optimal theory when the theory does 
not give closed-form solutions. These trajectory determination 
methods include the methods of neighbouring extremals and steepest 
ascent. 

27.2 MINIMUM VARIANCE CONTROL 

One attractive performance indicator for optimization is the variance 
of the output, where the output (or its measurement) can be viewed as 
being random. One way to treat this is based on classical and transfer 
function ideas, rather than state-space. 
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27 .2.1 Basic result 

One form of SISO control that is intuitively appealing is minimum 
variance control, similar to ISE control, in which the designer 
seeks a control law which minimizes the integral of the squared error 
between an input and an output. We consider one such method, 
following Astrom (1970). 

Consider the system modelled by 

A (z) Y(z) = Z-k B(z) U(z) + AC(Z) V(z) (27.1) 

where {yen)} is the output variable sequence, {u(n)} is the input 
variable sequence, and {v(n)} is a sequence of random variables, i.e. 
disturbances and noises input to the system. A(z), B(z), and C(z) are 
all taken to be polynomials which, with no loss of generality, all have 
the same order. Thus 

n 
A(z) = 1 + L aiz-i 

;=1 

n 
B(z) = L biz-i 

;=0 

n 
C(z) = L CiZ-i 

;=0 

The object of the control law is to minimize the variance of y(m1) for 
any m, i.e. to find a control law which yields 

ming"[y(m1) - g"[y(m1)]2 (27 .2) 

The solution of the problem is to set 

{ G(z) } 
U(z) = - B(z) F(z) Y(z) (27.3) 

where F(z) and G(z) are defined as 
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k-l 
F(z) = L Ii Z-i 

i=O 

n 
G(Z) = L g i Z-i 

i=O 

and have the property 

e(z) = A (z) F(z) + Z-k G(z) 

In implementation, (27.3) becomes 

(27.4) 

(27.5) 

1 n-l 1 n+k-l 
u(mT) = -fi b L gi y(mT - iT) -fi b L Piu(mT - iT) 

o 0 i=O 0 0 i=l 

where 

PI =/I + b I , 

P2 = h + II bi + b2, etc. 

Finding F(z) and G(z) is reasonably straightforward. One way is to 
expand (27.5) and match coefficients. Another is to let F(z) be 
C(z)IA(z) with G(z) the appropriate remainder. 

It is noteworthy that if k = 1 and e(z) = 1 = Co, then 

n 
G(z) = (1 - A(z»z = - I. ai Z-i+I 

i=l 

Thus the control simply cancels the effect of the dynamics in 
propagating past values - presumably measured - of the output and 

Y(z) = A. V(z) 

which is random. 
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We remark that if the system is non-minimum phase, i.e. has zeros 
outside the unit circle, then the control law will be unstable because 
B(z) is in the denominator of (27.3). 

27.2.2 Justification 

Rearranging (27.1) gives 

A(z) B(z) 
AV(Z) = C(z) fez) - Z-k C(z) U(z) (27.6) 

Then, if we substitute for C(z) in (27.1) using a form 

C(z) = A (z) F(z) + Z-k G(z) (27.7) 

and solve for fez) we find 

B(z) G(z) 
fez) = Z-k A(z) U(z) + AF(z) V(z) + AZ-k A(z) V(z) 

Replacing the last term on the right-hand side using (27.6) and 
rearranging gives 

G(z) 
fez) = "AF(z) V(z) + Z-k C(z) fez) 

-k {~ B(z) Qill -k} + z A(z) - A(z) C(z) z U(z) (27.8) 

Now, using (27.7), it can be shown that 

B(z) B(z) G(z) -k _ B(z) {C(Z) G(z) -k} 
A(z) - A(z) C(z) z - C(z) A(z) - A(z) z 

B(z)F(z) 
= A(z) 
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This simplifies (27.8) giving 

G(z) B(z) F(z) 
Zk Y(z) = ').,Zk F(z) V(z) + C(z) Y(z) + C(z) U(z) 

In the time domain, this becomes 

k-l 
y(mT + kT) = ')., L. Ii v(mT + kT - iT) 

i=O 

"2"'-1 [B(Z)F(Z) U(z) + G(z) Y(Z)] 
+.z, C(z) 

where.%-1 is the inverse z-transform. For the system to be causal, the 
highest indices within the inverse transform must be y(mT) and 
u(mT), whereas the lowest in the first sum on the right is v(m T + T). 
Hence the expected values of the cross-terms in squaring the right­
hand side are 0, and we have 

[
k-l 1 !5' {y2(mT + kT)} = ')..,2!5' ;L, f7v2(m T + kT - iT) 
Z=O 

(27.9) 

The two terms are independent and non-negative. Only the second 
term depends on the control {u(mT)} sequence. Hence, the only way 
to minimize the mean-square value of yO is to choose the control to 
make the second term on the right zero, i.e. to choose 

{ G(z) } 
U(z) = - B(z) F(z) Y(z) 

This is an interesting proof (an alternative demonstration is given by 
Tzafestas, 1985) in that we chose a pair of functions F(z) and G(z) 
satisfying certain conditions and then found the optimal control in 
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terms of those functions . It is a legitimate thing to do, but one always 
wonders how anyone would have dreamed up the functions to use. 
Clearly (in hindsight) part of the key was to isolate the disturbances 
from the input and output (in (27.9)). 

27.2.3 Application 

We may well know from physical arguments that in the absence of 
disturbances the system is modelled by 

BI(Z) 
fez) = Z-k Al (Z) V(z) 

If, in the absence of input commands, the output has spectral density 
<1>(co) (see Appendix C), this can be factored into 

where A2(Z) and CI(Z) have all of their zeros inside the unit circle. 
Our complete model is then 

k Bl(Z) CI(Z) 
fez) = z- Al (Z) V(z) + ').. A2(Z) V(Z) 

where {v(kT)} is white, zero-mean, unit-variance gaussian noise. If 
we define 

A(z) = AI(Z)A2(Z) 

B(z) ::: BI(Z)A2(Z) 

C(z) ::: C1 (z)A 1 (z) 

we end up with the form of (27.1) 

A (z) fez) ::: Z-k B(z) V(z) + ')..C(z) V(z) 
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Example 

Let a system have dynamics given by 

A(z) = l-z-I -Z-2 

B(z) = 1 

c(z) = HI + Z-I) 

k = 2 

which implies a basic system driven by its input plus a moving average 
noise process. Then (27.4) and (27.5) imply we need 

HI + Z-I) = (1 - Z-I - Z-2) (fo + It Z-I) + Z-2(gO + gI Z-I + gzz-Z) 

This may be solved to yieldfo = !,fI = 1, gO = ~, gI = 1, gz = 0, and 
hence from (27.3) the minimum variance control law is 

u(kT) = - 2u(kT - T) - 3y(kT) - 2y(kT - T) 

27.3 OPTIMUM PARAMETER SETTING 

An alternative which is not really optimal control in the modern sense, 
but rather is parameter optimization with a prescribed control law, 
has already been mentioned in another context (Chapter 19 for 
prototype pole placement to ISE, etc. criteria.) Here one chooses a 
form such as 

bo + bIZ- I + ... + bpz-p 
H(z) = 1 - Z-I 

for U(z)IE(z) where E(z) may be the transform of the error involved 
(e(k) = y(k) - Yd(k». Then for a fixed number of steps and a 
particular reference signal, one chooses (probably numerically) the 
parameters, here bo, bI, .. . , bp, which minimize a criterion such as 
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k=O 

Optimum parameter setting 653 

in which u# is the steady-state value of u(k) for the given reference 
signal. The computations are in the realm of mathematical 
programming. 

Example 

Consider a motor with transfer function 

G(s) __ ...:.;..a­
- s(s + a) 

which is to be controlled in a unity feedback structure, using gain only 
and a zero-order hold. 

The criterion is to be 

00 

J = L e2 (iD 
i=O 

for a step applied at time O. By simulation of the discrete-time 
equations with transfer function 

[ T 1 - e-aT ] 
H(z) = K z=---T - a(z - e-aT) 

a curve of J versus K can be developed as in Fig. 27.1. Also shown 
there are step responses resulting from using optimal and non-optimal 
gains and mis-modelled systems. 

The simulations were done for a = 10, T = 1, and summation over 
100 steps. The optimum step response illustrates a damping 
coefficient (in continuous-time terms) of about ~ :::: 0.61. 
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Figure 27.1 Optimal parameter setting for motor control example. 
(a) Cost J as a function of gain K. (b) Step responses for the optimal gain 
K = 1.09 and another gain K = 2. (c) Robustness of optimal control gain 
K = 1.09 shown by step responses for designed system (a = 10) and 
erroneous system (a = 3). 
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27.4 MINIMUM TIME PROBLEMS USING LINEAR 
ALGEBRA 

The deadbeat control problem (Chapter 21) can also be considered a 
minimum time problem, and we here look at it in this way with the 
goal of illustrating the use of linear algebraic methods to derive a 
control law. 

The problem here is most easily stated as one of finding a control 
sequence {u(k)} such that an arbitrary initial state x(O) is driven to 
another arbitrary state Xf (without loss of generality this final state can 
be zero, but we choose not to impose that restriction at this point) in 
the minimum number of stages N, i.e. such that x(N) = Xc, when the 
system is described by 

x(k+ 1) = Ax(k) + Bu(k) (27.10) 

In fact we would much prefer a feedback law u(k) = f(x(k» or 
preferably u(k) = f(y(k» where 

y(k) = Cx(k) 

but we shall ignore this at first in looking for insight. We saw in 
Chapter 26 that seeking an initial condition dependent time sequence 
and then a control law is not uncommon in optimal control theory, 

Consider the solution to (27.10), given as usual by 

k 
x(k) = Akx(O) + L Ai-lBu(k-i) 

i=l 

For our desired N value, 

N 
t"x(N) = x(N) - ANx(O) = L.. Ai-lBu(N-i) 

i=l 

will be arbitrary, because x(O) is arbitrary. Hence, the right-hand 
side sum must be such that, by proper choice of u(k), k=O, 1, ... ,N-l, 
it can take on any value. For this to happen, there must be among the 
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Nm columns of the N matrices Ai-1 B, i = 1,2, .. . ,N, n columns which 
are linearly independent, i.e. whose sum can form any possible n­
vector. It is known (from the Cayley-Hamilton theorem) that An 
depends upon {Ai, i=O, 1, ... ,n-I}, so it follows that N < n. In fact, if 
we look back at the controllability theory (Chapter 22) N is the 
controllability index and (A, B) must be controllable for us to have 
the time-optimal control required. 

We consider first the case Xf = 0 and let the control variable u(k) be 
a scalar quantity at each time instant. For convenience we denote 

K = [I ° ° ... 0] [An-1 B ~ An-2B ~ ... ~ AB ~ B ]-1 (27.11) 

i.e. K is the first row of the indicated inverse n x n matrix. Notice 
that the inverse exists if the system is controllable (Chapter 22). Then 
we contend that if 

u(k)=-KAnx(k) k=O,I, .. . ,n-1 (27.12) 

then x(n) = O. The demonstration of this is instructive, so we shall 
pursue it briefly. We argue that the n column matrices An-l B, 
An-2B, ... ,AB, B must span the n-dimensional space. Hence any n­
vector, and in particular Anx(k), must have a representation in terms 
of these vectors, i.e. there must exist real numbers ai, i = 1,2, .. . , n, 
such that 

Anx(k) = An-1Ba1(k) + An-2Ba2(k) + ... + ABan_1(k) + Ban(k)(27.13) 

Choose u(k) = -a1(k). Then 

x(k+ 1) = Ax(k) - Ba1(k) 

implies 

An-1x(k+ 1) = Anx(k) - An-1Ba1(k) 

= An-1Ba1(k) + An-2Ba2(k) + ... + ABan_l(k) 

+ Ban(k) - An-1Ba1(k) 
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Thus 

But, from (27.13) 

Anx(k+ 1) = An-l Bal(k+ 1) + An-2Ba2(k+ 1) + ... 

+ ABan-l(k+ 1) + B an(k+ 1) 

so we notice that an(k+ 1) will be zero. From this observation it 
follows that if we start at k = 0, then 

an(1) = an(2) = ... = an(n) = an-l(2) = an-l(3) = ... = an-len) = 

an-2(3) = an-2(4) = ... = an-2(n) = ... = al(n) = ° 
Thus, provided that we keep choosing u(k) = -al(k), we will obtain 

Anx(n) = 0 (27.14) 

The calculation of al (k) is easily done from the matrix representation 
of (27.13), i.e. from 

Allx(k) = [A"-1B ~An-2B ~ ... ~AB ~B] (27.15) 

Thus provided the inverse exists, al(k) is given by the first element of 

[AIl-lB : A"-2B ~ ... l AB ~ B ]-1 Allx(k) 

which, with the minus sign, is the same as the control given by (27.12) 
when the gain K is given by (27.11). 
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The above arguments have given us a feedback law for driving x(O) 
to 0 in n steps, and we note that generally we cannot expect to require 
fewer steps than this. Rather than a feedback law, a sequence {u(k)} 
can be derived from noting 

n-l 
x(n) = Anx(O) + I A iBu(n - 1 - i) 

i=O 

yielding for x(n) = 0 the sequence 

u(O) 
u(1) 

u(n-l) 

= - [ An-1B 1 An-2 B 1 ... 1 B ]-1 A nx(O) (27.16) 

We might argue that our feedback control law amounts to resetting 
the time origin and recalculating (27.16) each cycle and transmitting 
only u(O) from the computation; this approach is called open-loop 
feedback. Alternatively, one computation of the above yields the 
entire sequence {u(k)} to accomplish the task, which is pure open-loop 
control. 

In the above, the control law was a linear gain independent of time, 
and when applied the law would always lead to the origin in n or 
fewer stages (or time steps). Applying the same techniques to a 
situation with Xf"# 0 changes this. In the batch or precomputation 
case, the fact that x(n) = Xf is desired leads to (following (27.14) and 
(27.15)) 

u(O) 
u(1) 

u(n-l) 

=_[An-lB ~An-2B ~ ... ~B ]-1 [Xf-Anx(O)] 

This is fairly straightforward. In the feedback case, however, it may 
be shown by the same methods as used earlier that if 
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u(k) = - K [Anx(k) - Akxf] 

then x(n) = Xf, where we have assumed that the system starts at x(O) at 
time O. The varying nature of the feedback is of course due to the 
dynamics, which 'move' the 'target' Xf depending upon the number of 
stages remaining. 

The demonstration of the above notes, as in the previous derivation, 
that if 

then 

Hence 

n 
Anx(k) - Akxf = L ai(k) An-iB 

i=l 

An-1x(k+ 1) = Anx(k) - An-l B al(k) 

n 
= Akxf + L ai(k) An-iB 

i=2 

n 
Anx(k+ 1) - Ak+lxf = L ai(k)An-i+lB 

i=2 

n 
= L ai(k+ 1)An-iB 

i=l 

with an(k+ 1) = 0 and after n stages 

An [ x(n) - xc] = 0 

which is the desired result. 
When we have more than one input variable, the situation is 

straightforward but notationally messy. In fact, we will need in 
general q stages, where q is the controllability index. 
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27.5 DYNAMIC PROGRAMMING FOR OPTIMAL 
CONTROL 

Dynamic programming was made famous in the 1950s by Richard 
Bellman, but the underlying ideas were known well before that. 
Bellman stated them in his Principle of Optimality and generated 
numerous examples at a time when there was a need for the methods. 

An optimal policy has the property that, whatever the initial state 
and initial decision are, the remaining decisions must constitute 
an optimal policy with regard to the state resulting from the first 
decision (Bellman and Kalaba, 1965). 

We might remark that the principle is concerned with the policy 
(control law) rather than the optimal path (trajectory). Thus the 
policy tells the optimal thing to do when one arrives in state..w at time 
T, regardless of how that point was reached. 

27.5.1 Basic approach 

The usage of the principle is straightforward: one finds the optimum 
from all points (say ..w,9J, 'e', ... ) at stage K to the end (stage N). One 
considers all points ~,tf, c, ... ) at stage K -1 and determines for each 
one the cost of going to (..w,9J, 'e', ... ) in one step. Then the cost from 
each of (a ,/', c , ... ) to the end is given by 

optimum cost (a ~ END) = 

(J=.s.(~,~, ... )(Cost (a ~Y) + optimum cost (J~ END») 

This is repeated for each i =a,/', c, .... From this we now know the 
optimum cost (and policy) from (a,/',c, ... ) to the end starting from 
stage K-l. 

Let us make the above specific to our needs by applying it to the 
generic control systems problem given by Chapter 26 and repeated 
here for convenience. 

J({ u(k), k= j, ... ,N -1 },x(j),N) = heN, x(N» 

N-l 
+ L g(x(i),u(i),i)] (27.17) 

i=j 
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subject to 

x(k+ 1) = f(x(k) , u(k), k) (27.18) 

Define j#(j, x) as cost in (27.17) when the control is optimal. 
Clearly for any final state x = x(N), 

.J#(N, x) = heN, x) 

Suppose we have arrived at state x at time N-I. No matter how we 
arrived there, the overall cost will be minimized by minimizing the 
last stage using our only remaining control, u(N -I). Thus 

j#(N-I,x) = min [h(N,x(N» + g(x,u(N-l),N-I)] 
u(N-l) 

and the seeming dependence on x (N) is removed by using the 
dynamics equation (27.18) to get 

j#(N-I, x) = min [h(N,f(x, u, N-l) + g(x, u,N -1)] (27.19) 
u 

By the principle of optimality, the optimum from (k, x(k» to the 
end is independent of how it was reached. In particular, this is true 
for (N, x(N» and thus (27.19) becomes 

j#(N-I,x) = min [j#(NJ(x,u,N-I» + g(x,u,N-I)] 
u 

If the functions are differentiable, then the optimum u# is found 
where 

a ([j#(N,f(x, u,N-I» + g(x, u,N -I)]) _ 0 
au -

Frequently this can be solved explicitly for u#, which will be then a 
function of x. We denote this as u#(N - I, x) and see that regardless of 
how it was obtained, j# can be written 
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J#(N-I,x) = J#(N,f(x, u#(N-I,x),N-l) + g(x, u#(N-I,x),N-I) 

We can continue in this same vein to find J#(N -2,x), then 
J#(N-3,x), ... ,J#(O, x). The generic expression, often called 
Bellman's equation, is 

J#(N-k,x) =min [J#(N-k+ I,f(x, u, N-k» + g(x, u, N-k)] 
u 

= J#(N-k+ I,/(x, u#(N-k),x),N-k)+g(x, u#(N-k ,x),N-k) 

k=l,2, ... ,N 

where the boundary condition is 

J#(N, x) = heN, x) 

The original problem has the optimum cost J#(O,x(O» and the 
control sequence is 

u(O) = u#(O,x(O» 

u(l) = u#(l,f(x(O), u#(O,x(O», 0» 

u(2) = u#(2,f(x(1),u#(1,x(1», 1) 

In fact we have a closed-loop control law, because with k stages 
remaining, if we know the state x, then the control to command is 
u#(N-k,x). The cost remaining is J#(N-k,x). 

27.5.2 Application to a special case: the LQ problem 

Let us specialize further to the LQ problem, i.e. the problem of 
minimizing 

N-l 
J =! xT(N) Sx(N) + ! I. [xT(i) Qx(i) + uT(i) Ru(i)] 

i=O 
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with dynamics 

x(k+ 1) = Ax(k) + Bu(k) x(O) = xo 

Defining J# as before, we find 

J#(N,x) = !xTSx 

Continuing with stage N= I, we derive 

J#(N-I,x) = min! [xT(N) Sx(N) + xTQx + uTRu] 
u 

= min! [(Ax + BU)TS (Ax + Bu) + xTQx + uTRu] (27.20) 
u 

Taking the vector derivative 

O _ d[(Ax + Bu)TS (Ax + Bu) + xT Qx + u T Ru] 
- dU 

= BTS (Ax + Bu) + [(Ax + Bu)TSB]T + Ru + [uTR]T 

Provided S and R are symmetric, which is the usual assumption for 
matrices used in quadratic forms and is one made without loss of 
generality, and the inverse exists, this requirement becomes 

(BTSB + R)u + BTSAx = 0 

and then 

u#(N-I,x) = - (BTSB + R)-l BTSAx 

Substituting this in (27.20) yields 

J#(N-I,x) =! {[Ax - B(BTSB + R)-lBTSAx]T 

x S [Ax - B(BT SB + R)-l BT SAx] + xT Qx 

+ [(BTSB + R)-l BT SAx]TR(BTSB + R)-l BTSAx} 
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After considerable algebra this becomes 

where 

P=Q+ATSA 

+ [(BTSB + R)-lBTSA)TBTSB[(BTSB + R)-lBTSA] 

+ [(BTSB + R)- lBTSA)TR[(BTSB + R)-lBTSA] 

- [(BTSB + R)-lBTSA)TBTSA 

- ATSB[(BT SB + R)-lBTSA] 

Using symmetry of the R, S, and inverse matrices then gives 

P = Q + ATSA - ATSB(BTSB + R)-lBTSA 

Calling this P(N-I) and letting peN) = S, we can find by exactly the 
same steps that 

u#(k,x) = - (BTP(k+ 1) B + R)-l BTP(k+ l)Ax (27.21) 

and 

P(k) = Q + ATP(k+ l)A 

- ATP(k+ l)B(BTP(k+ I)B + R)-lBTP(k+ l)A (27.22) 

with 

]#(k, x) = 1xTP(k)x 

We note that the control law (27.21) is linear in x but with time­
varying gain. That the result is the same as found in Chapter 26 is not 
surprising; we note that this approach gave the feedback form of the 
control without intermediate steps. 
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The discussion of the previous chapter about letting N ~ 00 and 
achieving a constant regulator gain also applies, of course. We 
elaborate upon that briefly. 

If we have the problem of the linear digital regulator, given as the 
LQ case with N ~ 00, 

00 

J=tL {xT(i) Qx(i) + uT(i) Ru(i)} 
i=O 

with dynamics 

x(k+ 1) = Ax(k) + Bu(k) and x(O) = xo 

(27.23) 

then heuristically, if the pair (A; B) is controllable we can take 
x(k) ~ 0 in a few steps and stop controlling. Hence, J ~ constant. 
However, in this case the Riccati equation (27.22) must for sufficiently 
small k (remember the computation 'starts' with large k=N and works 
toward smaller k) take on a steady-state solution P, given by the 
solution of the matrix quadratic equation, or algebraic Riccati 
equation, 

P=Q+ATPA 

-ATPB(BTPB + R)-lBTPA 

The optimal performance value J and the control law are given by 

J =1x6 PXo 

u*(k,x) = _(BTPB + R)-lBTPAx(k) 

= -Gx(k) 

where G is a constant. 

(27.24) 
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Example 

Let x(k+ 1) = ax(k) + u(k) with 

00 

J =! L {x2(i) + ru2(i)} 
i=O 

From (27.24), we find the optimal control is 

* pax(k) 
u =- p + r 

where p is the positive root which solves the expression given by the 
Riccati equation 

a2p2 
p= 1 +a2p--­p + r 

or its more convenient form 

p2 + (r - 1 - a2 r) p - r = 0 

We see that for very small r, u* ::::: -a x(k), the solution ~ 0 in one 
step, and p = 1. For large r (u penalized), u* ::::: 0 and 

1 
P ::::: 2 = 1 + a2 + a4 + ... + a2n + ... 1 - a 

reflecting that control is not applied and the state simply tends to 0 as 
an. 

27.5.3 Numerical dynamic programming 

Dynamic programming, like most optimization methods, is seldom 
able to produce closed-form solutions. The method lends itself well to 
numerical methods, however, except for the 'curse of dimensionality', 
which we will meet below. 

The essence of the numerical implementation is straightforward. 



www.manaraa.com

Numerical methods and approaches 667 

1. We form a grid:§' in state space by discretizing the state 
variables, so that:§' is the array of size mn if each state variable 
can take on m values and the system has dimension n. Then for 
each point i E :Y on the array, we associate a state ix. 

2. For each i E :Y, initialize J#(N, ix) = heN, ix). 
3. For each remaining stage k = 1,2, ... , N, calculate for each i E :9' 

J#(N-k, ix) = m~n [J#(N-k+ l,f(ix, U, N -k» + g(ix, u, N-k)] 

Since table lookup is involved, J#(N-k+l, jUx, u, N-k» may 
require interpolation or other approximation. In any case, store 
for future use the minimizing control u#(N-k, ix). The optimal 
cost array J#(N -k, ix) is needed for the next stage, but 
J#(N - k + 1, ix) could if necessary be discarded or stored. 

The problem with the technique becomes readily apparent here and 
has two aspects. First and most obvious is the size of the grid, which 
for a three-dimensional system with 1 % discretization (101 numbers) 
requires more than 106 elements in each array of J# and u#. Second, 
the minimization in step 3 requires that the new grid be computed for 
mn starting states, and since the search may cover most of the target 
grid, needs a numerical check of up to mn points for each. These two 
problems quickly turn a simple approach into a huge computational 
problem, and they constitute the curse of dimensionality. 

Many useful results have been obtained with the principle of 
optimality, but ordinarily much engineering insight and many 
approximations are needed to make the computational burden 
bearable. 

27.6 NUMERICAL METHODS AND APPROACHES 

Few optimal control problems have a useful explicit solution, so we 
are often in the position of needing to find numerical solutions. In 
section 27.5 .3 we looked briefly at numerical dynamic programming. 
In this section, we look at two methods: direct optimization using what 
is called steepest descent; and solutions of the two-point boundary­
value problems from the Pontryagin approach using neighbouring 
extremals and quasi-linearization. We first introduce the basic ideas 
of these in the next section. 
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27.6.1 Basics 

One of the recurring problems with Pontryagin and related optimal 
control solutions is that we must solve two-point boundary-value 
problems. In the simplest cases, for example, the initial state vector 
x(O) and the final Lagrange multipliers/co states A(tr) must take on 
certain values. To solve these, we have a choice of two iterative 
numerical methods: 

1. find, among the state and costate histories which satisfy the 
boundary conditions, the functions which satisfy the system 
differential equations; and 

2. find, among all functions which satisfy the differential equations, 
those which satisfy the boundary conditions. 

To understand a method called quasi-linearization which applies 
to the first of these, we consider the problem of finding a function 
x(t) which satisfies 

x(t) = !(x(t) , t) (27.25) 

and boundary conditions 

(27.26) 

It is assumed that dim(co) + dim(cr) = n = dim(x). We will develop 
an iteration for the solution by creating a sequence xCi, t) of functions 
such that we hope x(k, t) ~ x(t) as k increases. Let xCi, t) satisfy 

Box(i,O) = Co and BrxCi, tt) = Cr 

If xCi, t) also satisfies (27.25) then we are finished. If not, then we 
observe that 

x(t) = !(x(t), t) = !(x(i, t), t) 

+ af~x t) I (x(t) - (x(i, t» 
oX x(i, t) 

+ higher-order terms 



www.manaraa.com

Numerical methods and approaches 669 

This may be rearranged to appear as 

. () a(x, t) I ( ) xt""") xt 
oX x(i, t) 

[ E,( (')) a[(X,t)1 (. )] + J' X " t - a 0 x " t 
X X(/, t) 

Thus it is reasonable to take the next guess of x(t) as 

. (. 1 ) a[(X,t)1 (0 1 )) Xl+,t =") Xl+,t 
oX xCi, t) 

[ E,( (')) a[(X,t)1 (0 )] +J,Xl,t - '"\ ,Xl,t 
oX X(/, t) 

(27.27) 

Since when the time function x(i, t) is inserted the partial 
derivatives also become time functions, the non-linearity of the 
differential equation has been removed and the above is a forced time­
varying linear differential equation. We may find its solution by 
computing the transition matrix ~(i+ 1, t) using 

~(i+l,t)=a[~x,t)1 ' <1>(i+l,t) and <1>(i+l,O) = 1 (27.28) 
x X(/, t) 

and the computation is done by either perturbation or by n 
integrations with the successive initial conditions 

[1 0 0 .. 0 0 ]T, [0 I 0 0.. O]T, ... , [0 0 0 .. . 1]T 

Another numerical integration is done using the forcing function 

[f(X(i, t)) - a[~X' t) I 0 xCi, t)] 
x X(/, t) 

and zero initial conditions to yield the particular solution xp(i+ 1, t). 
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Then the initial conditions for xCi + 1, t) are chosen to solve 

Box(i+ 1,0) = Co 

Bf($(i+I,tf)x(i+I,O) + xp(i+I,tf»)=cf 

The iteration continues until x(i+ 1, t) Z x(i, t). 
An alternative approach is to guess at initial conditions x(i, t), 

ensuring that they satisfy Box(i, t) = Co, and then integrate (27.25) to 
find x(i, tf). If this satisfies (27.26), we are done, but if not, then 
another initial condition set must be chosen. We again linearize in the 
vicinity of xci, t) using the transition matrix (27.28). We know that 

dBfx(i + 1, te) _ B Ih(· 1 ) 
dx(i+I,O) - f'l'l+ ,tf 

The change !!.x(i + 1,0) required is then clearly given by the n 
equations in n unknowns 

Bo!!.x{i+ 1,0) = 0 

Be$(i + 1 ,te) fl.x(i + 1,0) = Cf - Bfx(i,tf) 

We are finished when !!.x(i + 1,0) = 0, or nearly so. 
The above are in many respects similar. The difference is that in 

the first, a solution x(i,t) satisfies a linear differential equation (27.27) 
and the boundary conditions (27.26), while in the second case, the 
solution satisfies the nonlinear differential equation (27.25). 

Steepest descent (or ascent) is, in contrast to the above, an 
optimization method in which we attempt to find a vector x# which 
minimizes a function g(x). Using Taylor series, we write for a guess 

x(i), with Vxg(x) = [~r, 

g(x#) = g(x(i» + V xg I xU) (x# - x(i» 

+ (x# - x(i»T {~ d2g~}1 . (x# - xU» + ... 
ox/ox} x(z) 
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If (x# - xCi» is 'small', then 

g(x#) ::::: g(xCi» + V xg I x(i) (x# - xU» 

If we choose 

(27.29) 

then we have, for a small enough for the higher-order terms to be 
ignored, that 

g(x#) ::::: g(xCi» - a(V xg) (V xg)T 

~ g(xCi» 

Rearranging (27.29), it seems reasonable to choose 

x(i+ 1) = xCi) - a Vxg I:(i) 

as a better approximation to x#. We repeat that it is required that the 
parameter ex. be small enough that the linear approximation holds, but 
the scheme is readily modified to incorporate constraints on the step 
size (x(i+ 1) - xCi»~ and side constraints such as h(x)=O. 

27.6.2 Quasi-linearization 

The basic conditions resulting from the maximum principle are of the 
form 

x(k+ 1) = f(x(k), u(k), k) 

A(k) = af(X,;~k),k) A(k+ 1) 

u(k) = u(x(k), A(k» 
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In differential equation form, which is often more useful to us and 
which has easier notation, 

x = j(x, u, t) 

. ~ 
A = - V xHT = - dx A 

u = u(x,A) (27.30) 

with boundary conditions (for free end point x(tr» 

x(O) = Xo 

Defining the extended vector Y 

gives, because u is a function of x and f.., 

[
fey, t) 1 

y = _ ~ A = g(y,t) 

with boundary conditions 

yeO) = [;0] (27.31) 

where ? denotes unknown and unspecified values. Now choose 
functions x(t) and A(t) which satisfy x(O) and A(tr) respectively; they 
could be constants, for example. This constitutes the initial guess 
yeO, t). We keep adjusting these functions until the differential 
equations are satisfied. The iteration follows from 
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y(i + 1, t) :::: g(y(i, t), t) + {Vyg} T (y(i + 1, t) - y(i, t» 

for which a particular solution solves 

YP = g(y(i, t), t) - {Vyg} y(i, t) yp(O) = 0 

and the homogeneous solution follows from 

4>(t, 0) = {V yg} 4>(t, 0) 4>(0, 0) = I 

Then 

y(i + 1, t) = 4>(t, 0) Yh(O) + yp(t) 

and the initial conditions Yh(O) are chosen so that the boundary 
conditions (27.31) are satisfied. 

27.6.3 Variation of extremals - the shooting method 

The above may seem a difficult method to find a solution to the 
differential equations, and it can be so. An alternative is to choose 
initial conditions, run out the solution to (27.30), and then check the 
final conditions. We modify the initial conditions available (here 
1..(0» systematically until the final conditions are satisfied. Each 
solution in the iteration is then optimal for the set of boundary 
conditions it satisfies (even if they are the wrong ones) and, since the 
iteration tends to work in a region of the state space, the method is 
called that of variation of extremals. 

The simplified method of doing this is to choose x(O) = Xo and some 
1..(0), run out trajectories to find x(t) and A(t) and particularly X(tf) 
and A(tf), find (perhaps by perturbation) the values dX(tf)/dA(O) and 
dA(tf)/dA(O), and make appropriate adjustments in A.(O) along the lines 
of 
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A(i+ 1,0) = A(i, 0) + [~~~ri~ll (~es(i,tf) - A(i,tf)) 

where 

~es(i, tf) = -vi h(x(i, tf), A(i, tf)) 

The problem with this is that it can be very sensitive to the values of 
A(O), which may range over several orders of magnitude. 

Linearization methods have been proposed for this problem, also, 
but are beyond the scope of this book; see Kirk (1970). 

27.6.4 Steepest descent in the calculus of variations 

One early and successful method of determining the optimal 
trajectories (but not necessarily the closed-loop feedback law) was the 
method of steepest descent applied to the calculus of variations 
(Bryson and Denham, 1962). 

Consider again the basic problem: find a function u(t) (actually we 
would prefer the function u(x)) which minimizes 

tr 

J = h(xCtf)) + J g(x(t), u(t),t) dt 
to 

subject to 

x = I(x, u,t) 

with x(to) specified and tf specified. 
From the calculus of variations, the first variation of this 

(essentially the first derivative) is 

+ l { [V ,(g + AT f) + d~ Y d, + [V.(g + AT f)]T dU} dt 



www.manaraa.com

Summary 675 

Suppose u is arbitrary but that we force 

x = j(x, u,t) x(O) = xo 

to hold. Then 

tf 

~1= f [V~lMu]dt 
to 

If V u H = 0, we are finished in that the first variation is zero and 
hence we have an extremal of the problem. Otherwise, we choose 

~ u = uCi+ 1,t) - uCi,t) = -a [VuH] 

If a is 'small enough', this will lead to ~1 < 0, i.e. a decrease in the 
performance functional 1. The iteration process continues until the 
result is 'good enough' . 

27.7 COMPUTER AIDS 

Computer aids for the techniques presented here are not standard, as 
each problem seems to have its peculiarities. Some simulation 
packages, such as PSI, have the capability to find good parameter 
values and hence implement section 27.3 for special cases. 

27.8 SUMMARY 

We have only touched on some important techniques and results: 
minimum variance control as a transfer function design problem, an 
alternative approach to minimum time (deadbeat) control, dynamic 
programming, and numerical methods for trajectory design problems. 
All except occasionally dynamic programming are outside the realm 
of the usual introductory courses in control theory; they are presented 
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here to indicate some results and philosophies that the control engineer 
may fmd useful even if not a theory specialist. 

27.9 FURTHER READING 

Parameter selection is among the topics covered by Iserman (1981). 
Textbooks on optimal control theory usually have at least some of 
these techniques in more detail. A quite readable old book is Kirk 
(1970), while an ageing classic with a very helpful treatment of 
numerical methods is Bryson and Ho (1969). More advanced texts 
and monographs are many and varied: a quite different point of view 
related to their industrial experiences is presented by Grimble and 
Johnson (1988). 

Old papers in the research literature, such as Bryson and Denham 
(1962) using steepest descent and the many articles co-authored by 
Bellman using his principle are also interesting both for the results 
and style of presentation. 
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There are a number of signal processing approaches called filtering: 

1. signal frequency content shapers, including notch filters for 
removing power line noise and band-pass filters for extracting 
desirable signals such as AM radio broadcasts from the 
environment; 

2. detection filters such as matched filters for indicating the 
presence or absence of certain signal types, such as radar pulses 
and discrete symbols in communication networks; and 

3. state estimation filters for inferring estimates of signal states 
from available measurements and noise. 

Of these, the first two are predominantly the realm of 
communications, except for the analogue guard filters sometimes used 
with sampled data. The third, however, is of critical interest to 
control systems for two applications: for plant monitoring and event 
reconstruction, and with state feedback controllers. In both cases, 
state estimates are used because the entire state vector of a physical 
system is seldom directly measured. 

State estimation filters are philosophically different from signal 
extraction filters, even though similarities can be shown. The object is 
to process measurements {y(t)} made of a system with state vector 
x(t) in order to derive a 'good' estimate x(t) of the state. We have 
already met deterministic observers, which constitute one approach to 
this task. In this section, we consider the famous Kalman-Bucy filters 
for linear systems and meet some of the extensions of the ideas to non­
linear systems. We also present observers for noisy situations. 

28.1 OVERVIEW 

The basic theory is associated with the problem of deriving a state 
estimate x(kT) of the state vector x(kT) of a system with dynamics 
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x(kT + T) = Ax(kT) + Bu(kT) + v(kT) 

from the measurements 

y(kT) = Cx(kT) + w(kT) 

or, more precisely, from a set of measurements such as Y (k) = 
{y(O),y(T), ... ,y(kT)}. The quantities v(·) and wO are taken as 
white noises (see Appendix C) with means 0 and autocovariances 

Qk = .%'[v(kT)vT(mT)] = Cvv(kT,mT) ~hm 

Rk = .%'[w(kT)wT(kT)] = Cww(kT,mT) Okm 

The noises are assumed uncorrelated with each other, and with the 
(random) initial condition on x, so that 

.%'[v(kT)wT(mT)] = 0 

.%'[x(O)] = Xo 

Lo = .%'[x(O) - xo] [x(O) - xo)T 

o = .%'[x(O) wT(kT)] 0 = .%'[x(O) vT(kT)] 

Under these circumstances, the Kalman-Bucy filter given by the 
calculations 

x(k+ 11k) = Ax(k) + Bu(k) 

r(k+ 11k) = Ar(k)AT + Qk 

K(k+ 1) = r(k+ 11k) CT [C r(k+ 11k) CT + Rk+l]-l 

x(k+ 1) = x(k+ 11k) + K(k+ l)(y(k+ 1) - Cx(k+ 11k» 

r(k+ 1) = [I - K(k+ 1)C] I(k+ 11k) (28.1) 

is optimal in several senses, including the best (minimum variance) 
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linear unbiased estimate, the maximum likelihood estimate, and the 
minimum variance Bayes' estimate. The equations are computed for 
each k as the measurements y(k) arrive (although in fact L(k+ Ilk), 
K(k+ 1), L(k) could be computed in advance). The algorithm is 
clearly a straightforward one. 

A similar result is obtained by modifying observers to consider 
noise explicitly, and the optimal such observers are under certain 
circumstances the same as Kalman filters. 

28.2 A LINEAR UNBIASED MINIMUM VARIANCE 
ESTIMATE 

The Kalman filter may be derived in several ways and justified in 
several more. We choose here to do a justification as a best linear 
unbiased estimate (BLUE) of the state, given the received data. It is 
appropriate to linear systems driven by un correlated noises and with 
measurements corrupted by uncorrelated noises. We will not pursue 
the many extensions or alternative derivations. 

28.2.1 Linear combinations of estimates 

The basic idea of the Kalman filter can be expressed from many points 
of view. Here we consider the following situation as motivation: let 
Xl and X2 both be unbiased estimates of an unknown vector X, with 

g"[xd = g"[X2] = X 

COV(XI) = II 

We attempt to find a linear combination of Xl and X2 such that the new 
estimate, call it X3, is also unbiased and so its expected square error 
g"[X3- x]T (X3-X) is minimized. Since this latter quantity is 
tr[W(X3-X)(X3-X)T] = trace of covariance of X3, we will seek to 
optimize the latter. Thus we seek matrices A and B such that 
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and tr(cov(x3» is minimized. Imposing the mean value condition 
first, 

x = g'[X3] = Ag'[XI] + Bg'[X2] = Ax + Bx 

For this to hold regardless of x requires A = I - B. With this 
constraint, COV(X3) is given by direct computation as 

COV(X3) =g'[(I-B)XI +BX2-X][(I-B)XI +BX2-x]T 

= g'[(I-B)(XI-X) + B(X2-X)][(I-B)(XI-X) + B(X2-X)]T 

= (I-B) cov(xl)(I-B)T + BCOV(X2)BT 

+ Bg'([X2 - X][XI - x]T)(1 _B)T 

If the errors in X2 and in Xl are uncorrelated, the last term is zero and 
this becomes 

COV(X3) = (I-B) LI (I-B)T + B L2 BT 

= LI- BLI- LIBT + B [LI + L2]BT 

By any of several methods (see Appendix B), minimizing the trace 
of this with respect to the matrix B (and it is a minimum because LI 
and L2 are, like all covariance matrices, at least positive semi-definite) 
yields that the optimum must satisfy 

Using a matrix pseudo-inverse if necessary, or the inverse if possible 
(we assume the latter) 

from which it follows that 
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and that x3 may be written several ways, including 

X3 = Xl + LILLI + L2]-1 (X2 - Xl) 

= I2[II + I2]-1 Xl + Il[II + I2]-I Xl 

With some manipulation 

COV(X3) = I2 [II + I2]-t II [It + I2]-1 I2 

+ It [L,t + I2]-1 I2 [It + I2]-1 II 

= I2 [L,t + I2]-1 It = It [II + I2]-I I2 

where extensive use has been made of the symmetry property of 
covariance matrices. 

The combining of two estimates linearly to give a better Olle (the 
covariance of the sum is less than the covariance of either individual 
term) is fundamental to us. The filter just becomes a matter of 
organizing the two estimates to combine. For this we will in effect 
use an estimate based upon past data combined with some noisy new 
data, in effect a second estimate. 

28.2.2 Application to state estimation 

Consider a linear system with state vector X, input vector u, and 
measurement vector y, described by the dynamics equation 

x(k+ 1) = Akx(k) + Bk u(k) + Gk v(k) (28.2) 

with the measurements taken according to 

y(k) = Ckx(k) + w(k) 

where {w(k)} and {v(k)} are noise sequences with the properties 
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g[w(k)] = 0 

cov(v(k» = Qk 

g[v(i)VT(j)] = QJ)ij 

g[w(k)vT(j)] = 0 

g[x(O)] = Xo 

g[v(k)] = 0 

cov(w(k» = Rk 

g[w(i)WT(j)] = RiOij 

cov(x(O» = La 

where Oij is the Kronecker delta (which equals 0 for i i: j and 1 for 
i = j). The problem is to generate a 'good' estimate x(k) of x(k); 
good is taken to mean 

1. g'[x(k)] = g[x(k)]; 
2. L(k) = cov(x(k» is as small as possible, in that its trace is 

minimized; and 
3. the estimate is generated using linear operations. 

Assume that at some step k we have a 'good' estimate x(k) and that we 
progress to step k+ 1 and take a new measurement y(k+ 1). Then 
from step 3, we attempt to generate a new estimate x(k+ 1) as 

x(k+ 1) = Fx(k) + Hy(k+ 1) + Ku(k) 

We first apply condition (1) and the effect of g[ ] on (28.2) to find 

g'[x(k+ 1)] = g[x(k+ 1)] 

= Akg[x(k)] + BkU(k) 

= F .%'[x(k)]+ HCk+lg[x(k+ 1)] + Ku(k) 

= Fg[x(k)] + HCk+1 {Akg[x(k)] + Bku(k)} + Ku(k) 

Rearranging gives 

[F - (I - HCk+l) Ak]g(x(k» - (I - HCk+l) BkU(k) + KU(k) = 0 

The choices F = (I - HCk+l)Ak and K = (I - HCk+l)Bk ensure that 
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the new estimate is unbiased if the old one was. Using these, the 
estimator becomes 

x(k+ 1) = AkX(k) + Bk u(k) + H(y(k+ 1) - Ck+l (AkX(k) + Bk u(k») 

(28.3) 

For convenience we define 

and rewrite (28.3) as 

x(k+ 1) = x(k+ 11k) + H (y(k+ 1) - Ck+lX(k+ 11k» 

The quantity x(k + 11k) may be interpreted as the prediction of x(k+ 1) 
based upon x(k). Our new estimate is now to be a prediction based 
upon old data, updated by a linear weighting of the difference between 
the new measurement and the predicted new measurement. The goal 
is to find a good weighting H. 

We assume that cov(x(k)-x(k» = I(k) is known. Defining 

I(k+ 11k) = cov(x(k+ 11k) - x(k+ 1» 

we compute 

I.(k+ 11k) = COV(AkX (k) + BkU(k) - AkX(k) - BkU(k) - Gkv(k» 

= COV(Ak (x (k) - x(k» - Gk v(k» 

~ T T = Ak.t ... (k)A k + GkQkGk 

We are able to compute I(k+ 1) from 

I(k+ 1) = cov(x (k+ 1) - x(k+ 1» 

= cov(x (k+ 11k) + H (y(k + 1) - Ck+l x(k + 11k» - x(k+ 1» 

= cov( x (k + 11k) - x(k+ 1) + H (Ck+l x(k+ 1) + w(k+ 1) 

- Ck-lX(k+ 11k» 
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Evaluating and using the lack of cross correlation between the 
measurement noise {v(k)} and the dynamics noise {w(k)} 

Notice that this holds for any gain H. Minimizing the trace with 
respect to H shows that the optimum H is given by 

This is usually called the Kalman gain and written 

Using this, one of the many possible expressions for I(k+ 1) is 

I(k+ 1) = [I - K(k+ 1)Ck+Il I(k+ 11k) 

In summary, the algorithm is 

Step 1. Initialize x(o) = xo, L(O) = Lo 
Step 2. Cycle as follows, for k = 0, 1,2, ... 

(a) Take measurement y(k+ 1) 

(b) Predict x(k+ 1) as x(k+ 11k) 

x(k+ 11k) = AkX(k) + Bk u(k) 

(c) Compute I(k+ 11k) and gain K(k+ 1) 

I(k+ 11k) = AkI(k)AI + GkQkGI 

K(k+ l)=I(k+ IIk)CI+l [Ck+l I(k+ llk)CI+l + Rk+l]-l 

(d) Compute x(k+ 1) and update I(k+ 1) 

x(k+ 1)=x(k+ IIk)+K(k+ 1) (y(k+ 1)-Ck+l x(k+ 11k») 

I(k+ 1) = [I - K(k+ I)Ck+tl L(k+ 11k) 
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The algorithm is clearly straightforward. We now consider some 
properties and examples, since perhaps this is the best way to illustrate 
Kalman filtering. 

Example 

We choose to consider a simple system 

x(k+ 1) = [-0~63 /6] x(k) + [~ ~] v(k) 

y(k) = [1 0 ] x(k) + w(k) 

This may be interpreted as a system with stable poles (at 0.9 and 0.7) 
driven by noise affecting both 'position' Xl and 'velocity' X2. 

Measurements of the position are taken, but they are noisy (due to 
w(k)). We are assumed to have no information concerning initial 
condition mean Xo and covariance matrix 2:(0). Various noise 
covariances Q and R are to be studied, with R '# O. 

Some simulation runs showing component errors and bounds 
resulting from the standard deviations Plj are shown in Fig. 28.1 for 
i= 1,2. 

We remark that in the example the gains K(k) and covariance 
matrices 2:(k) appear to become near constant, in a way that is similar 
to, although reversed in time from, the optimal control situation 
(Chapter 26). This useful property can lead to a quite useful sub­
optimal but justifiable and easily computed state estimation filter. One 
of the many formulations of this property assumes 

2:(k+ 11k) -7 2: = constant and K(k) -7 K = constant 

in which case they must satisfy 

2: = A2:AT - AICT(C ICT + R)-IC2:AT + GQGT 

K = ICT(C2:CT + R)-l 

Matrix manipulations allow other representations. 
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Figure 28.1 Operation of the Kalman filter. (a) and (b) Error in 
estimates of states Xl and X2 (solid lines) and bounds determined from error 
covariance matrix (dash-dot lines), (c) Kalman gain elements KI and K2. 
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28.3 EXTENDED KALMAN FILTERING FOR NON· 
LINEAR SYSTEMS 

The Kalman-Bucy filter applies only to linear systems, albeit time­
varying systems are allowed. The general theory for non-linear 
systems simply does not exist. The popular engineering alternative is 
to linearize the Kalman filter where necessary and retain the non­
linearities where possible, and even this has several variants. We 
review the most popular, called the extended Kalman filter, and then 
indicate how the others work. 

Let the system be described by dynamics 

x(k+ 1) = f(x(k) , u(k), v(k),k) 

and measurement equations 

y(k) = g(x(k), w(k), k) 

where x is an n-dimensional state, y is an m-dimensional measure­
ment/output, and v and ware noises, presumably white with 
covariances Q and R respectively. Let x(k) represent a 'good' 
estimate of x(k). 

Recall that the structure of the Kalman filter is 

x(k+ 1) = x(k + 11k) + K(k)(y(k+ 1) - Cx(k+ 11k» 

where x(k+llk) = Ax(k) + BU(k) and A,B,C, have the usual 
meanings. x(k+ 11k) is, in words, the best estimate of x(k+ 1) given 
data up to time k; x(k+ 1) is the best estimate of the same quantity 
given data to time k+ 1. 

It seems reasonable to use a similar structure for the non-linear 
situation. Doing this, a good guess appears to be 

x(k+ 11k) = f(x(k), u(k), 0, k) 

and 

x(k+ 1) = x(k+ 11k) + K(k+ 1) (y(k+ 1) - g(xCk+ llk),O,k+ 1) 

with gain K(k+ 1) to be determined. 
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In the linear case, K (k) results in essence from a ratio of the 
covariances of y(k) - essentially depending on the co variances of i(k) 
and v(k) - and of i(klk-l) - depending on i(k-l) and w(k-l). Our 
problem is to find those covariances for the non-linear case; the 
approximate solution is to use linearization, and the particular 
character of the extended Kalman filter is bound up in the fact that it 
linearizes about its estimate rather than about some nominal. 

Hence we define 

A(k) = d[(X,:~V,k) I 
(x(k), u(k), 0, k) 

B(k) = d[(x, u, v, k) I 
du (x(k), u(k), 0, k) 

G(k) = d[(x, u, v, k) I 
dV (x(k), u(k), 0, k) 

C(k) = dg(X, w, k) I 
dx (x(k),O,k) 

We use the definitions 

I,(klk) = cov(i(k) given k measurements) 

I,(k+ 11k) = cov(i(k+ 11k) given k measurements) 

To approximate the second of these, we see that 

x(k+ 1) = j(x(k), u(k), v(k), k) 

::::: j(i(k) , u(k), 0, k) 

dj(x, u, v, k) I 
+ dX (x(k),u(k),O,k) (x(k) - i(k» 

d[(X, u, v, k) I ((k) 0) 
+ dV (x(k),u(k),O,k) v -

A A 

::::: i(k + 11k) + A (k)(x(k) - i(k» + G(k) v(k) 
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Provided the estimator is working well, we have 

W(x(k+ 11k» = x(k+ 1) = f(x(k), u(k),O,k) 

and hence 

I(k+ 11k» = W[x(k+ IIk)-W(x(k+ 11k»] [x(k+ llk)-W(x(k+ llk»]T 

is given approximately by 

W[ A(k)(x(k) -x(k»-G(k)v(k)] [A(k)(x(k) -x(k»-G(k)v(k)]T 

Hence an approximation is 

,.. " ,.. "" 
I(k+ 11k) = A(k)I(klk)AT(k) + G(k) Q(k) GT(k) 

from which 

A A A 

K(k+ 1) = I(k+ 11k) CT(k) [C(k+ 1) I(k+ 11k) CT(k+ 1)+ R(k+ 1)]-1 

Proceeding similarly 

I(k+ llk+ 1) = [I - K(k+ 1) C(k+ 1)] I(k+ 11k) 

The filter thus linearizes about its current estimates, and has a clear 
potential to wander away from the 'actual' trajectory, although then 
the differences {y(k) - g(x, 0, k)}, called the innovations, would be 
expected to become large. 

Extended Kalman filtering via linearization, either about the 
nominal (which gives an ordinary Kalman filter) or about the 
computed actual trajectory (which gives the extended filter) is a 
common and useful method. In it lie the seeds of problems, however. 
Extended Kalman filters may in operation diverge badly from the 
actual trajectory: residuals are monitored and the filter restarted in 
one type of fix; gains are kept artificially high in another type. Once 
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again the engineer is taken from using nice formulae into the real 
world of applying these, with both judgement and experience among 
his guides. 

28.4 OPTIMAL OBSERVERS FOR NOISE SUPPRESSION 

We have already considered observers for situations modelled as 
deterministic (Chapter 25). Now we will consider noise explicitly in 
the observer approach to estimation. For a system, we now allow 
time variation, i.e. 

x(k+ 1) = Akx(k) + Bk u(k) + v(k) 

y(k) = Ckx(k) + w(k) 

where the initial condition xeD) is random, as are the 'noises' v(k) and 
w(k). They are all assumed normally distributed and are independent 
of each other. Our notation is as follows: 

x(O) - N(xo, LO) 

v(k) - N(O, Qk) 

w(k) - N(O, Rk) 

As we saw in Chapter 25, the system 

z(k+ 1) = Tk+l Ak Pk z(k) + Tk+l Ak V k y(k) + Tk+l Bk u(k) 

x(k) = Pk z(k) + V k y(k) 

is an observer for the original system provided that 

Defining the error 

e(k) z x(k) - x(k) 
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we can show that 

e(k+ 1) = [I - Vk+l Ck+l] Ake(k) + V k+l w(k+ 1) 

+ [Vk+lCk+l-l] v(k) 

e(O) = [I - Vo Co] [x(O) - xo] + Vo v(O) (28.5) 

Clearly, if X(O) = Xo then g { e(O)} = 0 and hence, because of (28.5), 
g {e(k)} = O. We assume the initial X(O) is so chosen. Then the 
covariance of e(k), Lk, satisfies 

T 
+ V k+l Rk+1 V k+l 

LO = [I - VoCo]Lo[1 - VoCo]T + VoRo V6 (28.6) 

We wish to minimize the covariance of the error by proper choice of 
V. Hence we take (not rigorously, but easily made rigorous) 

1 dLk+l T T 
2 dVk+l = Vk+l [Ck+dAkLkAk + Qd Ck+l + Rk+l] 

- [AkLkAI + Qd CI+l 

=0 (28.7) 

Any Vk+l for which this holds is optimal and may be denoted VZ+l. If 
either 

or 

(28.8) 

or if their sum happens to be positive definite, then Vk+l is unique and 
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is given by 

(28.9) 

The resulting Lk+I is given by (28.6) and (28.9) as 

(28.10) 

The gain turns out to be the Kalman filter gain expression ((28.1) and 
(28.4». This may be seen in part by looking at the expression and in 
part by noticing 

x(k+ 1) = Pk+I z(k+ 1) + V k+l y(k + 1) 

= Pk+I Tk+I Ak Pk z(k) + PhI Tk+l Ak V ky(k) 

+ Pk+l Tk+I Bk u(k) + V k+l y(k + 1) 

= Ak x(k) + Bk u(k) 

+ Vk+l [y(k+ 1) - Ck+I {AkX(k) + BkU(k)}] 

is generally true for the observer, regardless of V k+I. 
If the relationships (28.8) do not hold, then the choice of optimal V 

is not unique. One possible design is to obtain the minimal order 
observer (smallest dimension of z(k», a problem addressed by 
Yoshikawa and Kobayashi (1972). For their results, suppose we want 
an observer of rank p = n - m2, where m2 = dim(y(k», and 
rank(Q(k» = mI$ m2. We assume R is partitioned as 

[ RIO] 
R= 0 0 

where RI > 0 has rank m}, and that 
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[ CllCk) C12Ck) 1 [WCk)] 
y(k) = C21(k) C22Ck) x(k) + 0 

with C22, which is m2 x m2, having full rank and thus being 
invertible. Then for any vZ, i.e. any V satisfying (28.7), we partition 
it as 

and can show that if 

# then the observer is given by V k and, for any invertible Lb 
A# # A # 

p#(k) = PkLk and Tk = L"k1Tk. 

Example 

Once more we consider the system of the first example of Chapter 25, 
but this time with noisy measurements. 

x(k+ 1) = [~ ~] x(k) + [~] u(k) 

y(k) = xl(k) + w(k) = [1 0] x(k) + [1] w(k) 

We assume that w(k) - N(O,4) and x(O) - N(xQ, 25). Then the 
optimal filter has gain (28.9) 



www.manaraa.com

694 State estimation in noise 

[
011 + 012 + 021 + 022] 

021 + 022 

V k+ 1 = -0"-11-+-0-1-2-+-0 -21-+-0-2-2-+--'--1 

where Lk = { oij } and from (28.10) 

_ [ 011 + 012 + 021 + 022 

Lk+1 - 021 + 022 

[
1 _ [ "11 + "12 ~ "21 + "22 "22 ~ ""]] 

011 + 012 + 021 + 022 + 4 

and LO = diag [25, 25]. This can be arranged into another form if 
desired. It is noteworthy that the gain is time-varying even though the 
system is time invariant. 

28.5 CONTINUOUS-TIME KALMAN FILTERS 

Although derivable by limiting arguments, the Kalman filter for 
continuous-time systems requires more mathematical sophistication to 
derive than does that for discrete-time systems. We simply summarize 
the results here. 

For the continuous-time system described by 

x(t) = Ax(t) + Bu(t) + Gv(t) 

yet) = Cx(t) + wet) 

where the noises have the properties 

W[v(t)] = 0 

cov(v(t» = Qo(t) 

W[x(O)] = xo 

W[w(t)] = 0 

cov(w(t» = Ro(t) 

cov(x(O» = Lo 
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the optimal state estimate x(t) is given by the solution of 

where 

x(t) = Ax(t) + Bu(t) + K(t) [yet) - Cx(t) ] 

x(O) = xo 

K(t) = L(t) CTR-l 

L(t) = ALCt) + L(t) AT + GQGT - L(t)CTR-ICI(t) 

L(O) = LO 

If the error is defined as e(t) = x(t) - x(t), it can be shown that ~[e(t)] 
= 0 and cov(e(t» = L(t). As with the discrete time filter, all of the 
matrices A, B, G, C, Q, and R may be time-varying in the above. It 
is necessary that R be non-singular, which has the implication that 
there are no noise-free measurements; the singular case is treated in 
the literature, however. In practice, Lo may be made 'large' and Xo 
may be taken to be 0 if no other information is available. Constant 
gains and covariances are possible after an initial transient with time 
invariant plants. Then the derivative of L(t) becomes zero and we 
find the constant value of L(t) = L is the solution of 

0= AI. + LAT + GQGT - LCTR-l CL 

and the resulting constant Kalman gain is K = ICTR-l. 

28.6 COMPUTER AIDS 

Kalman filters are very easy to program for the basic algorithm; 
engineering is involved in choosing the Q and R matrices (particularly 
Q, as it represents 'noise' in disturbances, modelling errors, etc., and 
in any case is often selected to keep the Kalman gain from vanishing 
and hence ruining the filter's ability to track the measurements.) CAD 
packages should have little difficulty with the computations; the 
steady-state gains are computed with standard toolbox outputs of such 
progams as MATLAB® and Ctrl-C. 
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28.7 FURTHER READING 

We have only introduced a few basic ideas of Kalman filtering. Books 
such as Meditch (1969) treat the linear case very thoroughly. 
Applications are explored by Gelb (1974), while both basic and 
advanced ideas are presented by lazwinski (1970) and Anderson and 
Moore (1979). 

Examples of extended Kalman filtering are given by Gelb (1974). 
Variations of the above schemes include linearization about a nominal 
state history, thus yielding predetermined gains, and iterations of x to 
attempt to reduce the measurement residuals; see lazwinski (1970). 

We should remark that the justification above is only one possible 
approach to derivation. Other proofs yielding similar results may be 
derived as maximum likelihood estimates, best estimates with gaussian 
noises. The ideas may also be applied for optimal smoothing, in 
which state x(kT) is estimated when data from y(kT + mT) is 
available for m > 0, and optimal prediction, when the state 
x(kT + m T) is predicted for times far ahead of available data 
{y(O),y(T), ... ,y(kT)}' m > 1. Another variation is the 'moving 
window' estimate, which always uses only a fixed interval of data 
around the moving time of interest. 

A recent discussion of the state estimation problem for linear 
systems is presented by Grimble and 10hnson (1988). 
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estimates 

• uSIng state 

Modern optimal control laws, whether state feedback or open-loop 
feedback in nature, almost invariably have the control commands 
based ultimately upon the state variables. In addition, state-space 
design methods such as pole placement are most easily done using full 
state feedback. The full state is rarely measured, however, so it is 
necessary for the engineer to modify the design. A very useful 
approach to doing this modification is to use state estimates in place of 
the state variables, with the estimates coming from an observer or 
Kalman filter. In this chapter we consider some implications of this 
approach. 

29.1 SYNOPSIS 

State feedback controllers are sometimes relatively easy to design. In 
pole placement with linear systems 

u(k) = Kx(k) 

is the relationship of feedback control to state, while in the linear 
quadratic problem 

u(k) = K(k)x(k) 

i.e. the gain is time-varying. More generally, we may have 

u(k) = g(x(k);k) 

as the solution to a control problem. When we have only an estimate 
i(k) of the state available, the usual engineering solution is to 
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substitute this, i.e. to make 

u(k) = g(x(k);k) 

the operational law. This is 'correct' in two cases. 

1. In linear systems with no noise, pole placement controllers, and 
an observer as the state estimator, the control algorithm for 

is 

x(k+ 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) 

x(k+ 1) = (A - GC)x(k) + Gy(k) + Bu(k) 

u(k) = Kx(k) 

where the eigenvalues of (A - GC) and (A + BK) are chosen to 
meet design specifications. 

2. In linear systems, influenced by gaussian white noise, in which 
the control is optimal according to a quadratic criterion, the 
system 

x(k+ 1) = Ax(k) + Bu(k) + Gv(k) 

y(k) = Cx(k) + w(k) 

has control law of the form 

x(k+ 11k) = Ax(k) + BU#(k) 

x(k+ 1) = x(k+ 11k) + G(k+ l)(y(k+ 1) - Cx(k+ 11k» 

u#(k) = K(k) x(k) 

where K(k) and G(k) are respectively the optimal gains for the 
deterministic optimal control problem and the Kalman filter 
problem. 
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This chapter demonstrates these claims and introduces some of the 
tenninology of the issue. 

29.2 INTERACTION WITH STATE ESTIMATORS -
SEPARATION 

If the state is needed for the feedback control law, there are a number 
of possibilities in structuring the control algorithm. 

If the state is in fact available, we have a deterministic situation. 
The system is noise-free and its parameters are known. Using optimal 
or other control theory, the control law is found to be 

u#(t) = <l>(x(t), t) (29.l) 

When the state is not available, then we must either use a measurement 
feedback law in which u(t) = 0(y(t),t), a possibly difficult design 
task, or attempt to use a state estimator. This latter has three 
possibilities: certainty equivalent, separation and dual control. 
Suppose first that we have a case, possibly stochastic, i.e. noisy, in 
which it turns out that the best control law has the form 

u#(t) = <l>(x(t), t) 

x(t) = g'(x(t) I Yet), U(t» 

yet) = history of measurement = {yes); s::; t} 

U(t) = history of commands = {u(s); s < t} 

where <l> is the same function as in (29.1). Then it is said that the 
certainty equivalence (CE) property holds. Now, consider the 
optimal control law which has the form 

u#(t) = 'I'(x(t) , t) 

where x is defined as above, then the separation property is said to 
hold. Clearly separation is weaker than certainty equivalence, because 
'I' may be different from the control law of the deterministic case. 
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Finally, when 

u#(t) = r(x(t),p(t),t) 

where p are elements of a hyperstate, and represent indicators of the 
uncertainty in x(t), we have dual control. 

Certainty equivalence has considerable appeal to engineers, for they 
have reasonably workable methods for finding the deterministic 
optimal control law (e.g. Pontryagin principle, Chapter 26) and the 
conditional mean of the state (e.g. extended Kalman filters, Chapter 
28). If CE holds, the controller may be built as a filter and optimal 
control law in cascade. It is known to hold for the linear optimal 
control problem with quadratic payoff and gaussian noise (LQG) 
problem (as is argued below) and certain extensions to non-linear 
measurements and non-additive noise in which the control does not 
affect the covariance of the conditional mean estimate (i.e. there is no 
dual effect on second order statistics), but in general it cannot be 
expected that even separation, let alone CE, will be optimal, and in 
fact the true optimum in most cases involving both noise and 
optimization of a performance index is not known. 

We will show the optimality of CE for the LQG problem in section 
29.4. The simpler problem of determining the effects of using a 
deterministic observer (Chapter 25) with a pole placement controller 
(Chapter 23) is discussed in the next section. 

29.3 COMBINED USE OF OBSERVERS AND POLE 
PLACEMENT CONTROLLERS 

We have seen that state feedback allows all of the poles of a 
controllable linear system to be placed at the designer's discretion. 

Although the obvious thing to do is use an estimate of the state 
instead of the full state in the feedback, as in Fig. 29.1, the question is, 
what does this do to system stability and to all of those carefully 
chosen poles? We will show that the closed system will now have the 
set of poles consisting of the designed poles from the state feedback 
design done independently and the designed poles from the observer. 
To show this we take the simple but useful case of an identity state 
observer. 
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+ u(k) PLANT 
Uc(k)~+ or T x(k+1)=Ax(k)+Bu(k) 

K State Feedback Gain 

MEASUREMENT 
y(k) = C x(k) 

Figure 29.1 Structure of controller using state feedback with observer 
estimate of state. 

Suppose a state feedback gain K has been selected such that the 
eigenvalues of 

x(k+ 1) = Ax(k) + Bu(k) 

u(k) = -Kx(k) + ue(k) 

(29.2) 

are located at AI. A2, ... , An. Furthermore, assume the gain G in the 
identity observer 

x(k+ 1) = (A - GC)x(k) + Bu(k) + Gy(k) 

is chosen so that the observer's eigenvalues are ~ 1, ~2, ... , ~n. 
When the observer state estimate x(k) is used instead of the state 

x(k) in (29.2), the resulting system has a state of dimension 2n 
modelled by 
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A similarity transform 

[X(k)] = [X(k)] 
e(k) P x(k) 

where 

corresponding to a change of variables to x(k) and e(k) = x(k) - x(k) 
converts this to 

This system, which has the same eigenvalues as the original because 
of the nature of similarity transforms, clearly has eigenvalues which 
are the solution of 

det«AI - (A -BK»(AI - (A -GC») = 0 

This requires that one of 

det(AI - (A -BK» = 0 

det(U - (A -GC» = 0 

must hold. These of course are the eigenvalues of the design for the 
pole placement feedback state controller, 1"1,1.,2, ... , An, and of the 
design for the state observer, ~l, ~2, . .. , ~n respectively. 

The messages of the above are that: 

1. the closed-loop system which uses the identity observer has 2n 
eigenvalues (n for the plant and n for the observer); and 
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2. the use of the observer does not move the designed poles from 
the pole placement algorithm. 

Example 

As an example of the above we consider the very simple system 

y(k) = [1 0] x(k) 

This is observable, controllable, and unstable. We first design a state 
feedback controller 

u(k) = -Kx(k) 

to place poles at to.5. This is easily found to require 

Since the state is not available, we next design an identity observer 
with poles at to.2S. This turns out to require a gain of 

G~[ ~ 1 

The entire control system is now described, for external commands 
ue(k), by 

x(k+ 1) ~ [~ n x(k) + [ ~ lO(k) 

y(k) = [I 0] x(k) 
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uCk) = [ -~ -2] xCk) + ueCk) 

i(k+ 1) = [~i~ ~] ilk) + [ ~ ] y(k) + [~l u(k) 

Substituting for uCk) and yCk) in the system and observer equations 
yields the closed-loop system description 

1 1 0 0 2: 

[0] [X(k+ 1)]- 0 I -3 -2 T xCk) I 
1 [i(kJ + ~ u,(k) xCk+ 1) - 2 0 -1 2 

15 0 -27 -I 8 8 

[ X(k)] 
yCk) = [I 0 0 0] x(k) 

Direct computation of the eigenvalues of the 4 x 4 matrix shows that 
they are at ±0.5, ±0.25 as expected. 

The result is readily extended to using reduced-order observers. In 
fact it may be stated that: if a system is completely observable and 
controllable with m linearly independent outputs, a composite system 
may be designed in which 2n - m eigenvalues are chosen arbitrarily. 

29.4 THE LINEAR-QUADRATIC-GAUSSIAN CONTROL 
PROBLEM 

We have in previous chapters considered the problems of optimal 
control of a deterministic linear system with a quadratic performance 
index and of determination of a state estimate of a linear system 
subject to random noise added to both the dynamics and the 
measurements. The results were a linear state feedback control law 
and a Kalman filter, respectively. We now consider the problem of 
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optimal control of a linear system subject to noise in which only a 
linear function of the state is measured and the performance index is 
quadratic. 

The system is taken to be described by 

x(k+ 1) = Ax(k) + Bu(k) + v(k) 

y(k) = Cx(k) + w(k) (29.3) 

where as usual the state at sample k (or time kT) is represented by the 
n-vector x(k), u(k) is the m-vector of commands, and y(k) is the 
p-vector of measurements. The noises w(k) and v(k) are taken to be 
gaussian with mean value 0 and covariance matrices cov(v(k» = Qn 
and cov(w(k» = Rn. The initial state x(O) is assumed to have gaussian 
distribution with mean x and cov(x(O» = La. The random variables 
w(k), w(j), v(k), v(j), x(O) are assumed to be un correlated for all k 
and j, k:t j . 

The object is to find an optimal control law u*(-) for which the 
performance index J is minimized, where 

{ 
N-l } 

J =! ~ xT(N)SPIX(N) + to [XT(i)Qplx(i) uT(i) RpIU(i)] (29.4) 

The mean value is taken because the state x(k) is a random variable; 
if it were not random, the problem would be that of Chapter 26. 

To attack this problem, we use two fundamental facts from 
probability and matrix theory. 

1. If x = S' { x}, then 

S'{xTMx} = S'{ (x-x)TM(x-x)} + xTMx 

= xTMX + S'tr {M(x-x)(x - x)T} 

= xTMX + tr{Mcov(x)} 

2. S'{x} = S'{S'{xly}} 

(29.5) 

(29.6) 
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Our control law is required to be causal, so that u*(k) = f(Y(k), k), 
where Y (k) denotes the entire set of measured data to time k, e.g. 
Y(k) = {y(k),y(k-I), ... ,y(O)}. 

We first apply (29.6) to (29.4) to obtain 

1 = ~ S"{ S" {x T(N)SPI (N) I Y (N) } 

N-I 
+ L [S"{xT(i)QPIX(i)IY(i)} + S"{uT(i)RPIU(i)IY(i)}]} 

i=O 

We now apply (29.5) to this on a term-by-term basis, use the 
notation x(k) for the conditional mean S" {x(k)IY (k)}, and note that 
u(k) is not random as far as our selection is concerned. 

1 N-l 
21 = S" XT(N)SPlX (N) + L [xT(i) QpI x(i) + uT(i) RpI u(i)] 

i=O 

+ tr{Scov{x(N)IY(N») + ~: tr{QpI COV{X(i)IY(lm} 

(29.7) 

We write this as 21 = 2J + 21cov where 

f N-l } 
100v = S"ltr(Scov (x(N)IY(N») + ~ tr(Qplcov(x(i)IY(i»)) 

so that we may emphasize the following two observations, distilled 
from our studies of the Kalman filter. 

1. The expansion (29.7) is general. Hence, u* may be expected to 
depend upon conditional covariances. 

2. In the case of the linear system (29.3), the covariances of x(k) 
are not dependent upon the control or upon the measurements, 
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but only upon the covariances Q nand R n of the system 
disturbances and the measurement noise. Hence minimizing J is 
equivalent to minimizing] in this special case. 

On the basis of the latter claim, we then consider the problem of 
minimizing] and immediately see that, because of the zero mean 
property of the noises, we have the problem of finding 

subject to x(k+ I) = Ax(k) + Bu(k). We know the solution to this 
(from section 26.3.3, for example) is 

u*(k) = - [RpI + BTP(k+ 1)B]-1 BTP(k+ I)x(k) 

P{k) = QpI + AT[P(k+ 1) 

- P(k+ I)B[RpI + BTP(k+ I)B]-l BTP{k+ I)]A 

peN) = SPI 

The conditional mean is generated from the Kalman filter (Chapter 
28) as 

x(k+ 11k) = Ax(k) + BU*(k) 

2.k+lIk = A LklkAT + Qn 

K(k+ I) = Lk+lIk CT [C Lk+1lk CT + Rn]-1 

x(k+ I) = x(k+llk) + K(k+ l)[y(k+ 1) - Cx(k+ 11k)] 

Lk+I1k+1 = [I - K(k+ 1)C] Lk+I1k 

The control is precisely that of the deterministic case except that the 
state estimate is substituted for the state in the computation. Also, the 
state estimator is not affected by the fact that a feedback control is in 
use. Hence, we have a case of certainty equivalence. 
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If the control somehow affects the covariances in JCOY , either 
directly or via the state, then the optimum control must account for 
this and at best we would have a possibility of separation and more 
likely we would need to account for a dual effect; see Chapter 31. 

Finally, we note that the noise levels indeed affect the performance 
index even though they do not affect the control law in this case. This 
is true because the noise levels affect JCOY' 

The structure of the controller is shown in Fig. 29.2. 

u(k) 

y(k) 

~(k) 
L...-_____ ~ Kalman Filter IE-~ 

Figure 29.2 Typical structure of certainty equivalent control system. 

Unfortunately, controllers of this type are not necessarily robust to 
model errors; see Anderson and Moore (1989) and Chapter 33. 

29.5 COMPUTER AIDS 

The algorithms for pole placement/observer design are so well known 
for the above problems that they are part of a number of CACSD 
packages. Steady-state Kalman gains and optimal control gains are 
also commonly available in such programs. Code for Kalman filters 
and LQ controllers is easy to write, which is part of the reason CE 
controllers are so attractive. 

29.6 SUMMARY AND REFERENCES 

The engineer's inclination is to split design into two parts: control law 
and filters. It is certainly arguable that this is suboptimal, as one 
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could expect that the filter response might interact with the control 
law. However, in some cases this approach has been shown to cause 
no loss in performance: 

1. in noise free cases of linear systems, state feedback pole 
placement is not affected by use of an observer's state estimate in 
place of the actual state; and 

2. with linear systems in gaussian noise using a quadratic cost 
criterion, an optimal controller is still optimal if its input is from 
an optimal (Kalman) filter rather than from exact state 
measurements. 

In this section, we demonstrated the former and justified the latter. 
The latter is proven in textbooks such as Meditch (1969); the issues of 
separation and certainty equivalence were addressed by Tse and Bar­
Shalom (1975). The matter is pursued more generally in the adaptive 
control1iterature; see Chapter 31. 

LQG controllers are discussed further in Grimble and Johnson 
(1988) and the controllers, the CE principle, etc., are addressed in 
Anderson and Moore (1989). 
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In previous chapters it was assumed that a model of the process exists 
and that the designer's task is to use that model in the creation of a 
feedback controlled system. In fact, although a model structure may 
exist, it is frequently the case that its parameters are unknown, or at 
least are not known to the required precision. Hence a motor model 
may be derivable from basic electromagnetics and physics, but the 
moment of inertia of a particular motor may be only approximately 
known; a missile's mass may decrease linearly with burn time of the 
rocket motor, but the rate and initial mass may be guaranteed to only 
a few per cent. This mayor may not be a problem - after all, the 
reason for using feedback control in the first place is to reduce errors 
due to such factors as imprecisely known parameters - but accurate 
estimation of the parameters is sometimes important. 

A more serious problem arises when the process is complex to 
model, as with a sequence of rollers in a steel rolling mill or the 
crushers in an are crusher, or is not even very well understood, as in 
chemical manufacture. Here it may be necessary to guess at the 
system's structural relationships as well as the parameters. 

In these cases, system identification methods are brought to bear. 
That these have received a great deal of attention is evidenced from 
the size of the literature, consisting of many papers and books dating 
back a number of years. The techniques of this chapter exemplify 
some of the approaches to system identification, with most being 
implicitly or explicitly parameter estimation techniques, including 
batch methods, incremental methods, special input (sinusoidal, step, or 
noise responses) and opportunistic methods. Most are suitable for 
linear shift-invariant (time invariant) systems, but will not of 
themselves yield even the system order, let alone the existence or form 
of a non-linearity. 

30.1 SYNOPSIS 

There are many methods (and books) about system identification. 
Most reduce to parameter estimation. One traditional class uses 
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frequency response data, in which one infers a system model from 
examining frequency response data such as in Fig. 30.1, using the 
knowledge of Bode plot construction such as in Chapter 20. 

Many time domain approaches develop from least-squares fits of 
input-output data. Here a system model 

n m 
y(k) = -L aiy(k-i) + L bju(k-j) 

i=l j=O 

is assumed. This is represented in a vector form as 

where 

y(k+ I) = <1>(k) e 

e = an 
bo 

<1>(k) = [-y(k-l) -y(k- 2) ... -y(k-n) u(k) u(k-I) ... u(k-m)] 

Then if we define 

yO) $(1) 
y(2) $(2) 

Y N = 
yO) 

ct>N = 
$(3) 

yeN) $(N) 

we can show that a best least-squares fit e of the data is 



www.manaraa.com

Identification of transfer function parameters 713 

~ 40 ~-<:~~:<~ ~,:.. 1 -
Q) ¥, 

"0 0 . -- --- -------------~ -- ---- ---- :"'-~- -- ---~- ------- ------------.a ~ .. ~ : 
·c ' ~, ~, 

~ : ~~ 
~ : " 

, " 
-40 .....• .. . . . .. .... . · ~ · · · · · · ···· · ·· ····· · r· ·······~:"V'<~~ 

0.1 10 100 
(J) - rad/s 

Figure 30.1 Identification from frequency response. 'Experimental data' 
is heavily dotted, while asymptotes are lighter. 

and hence this is a 'good' estimate of the parameters O. This basic 
result can be extended in many ways, including making it recursive, 
modifying the details of the recursion, and using a Kalman filter 
interpretation to achieve the same result. 

30.2 IDENTIFICATION OF TRANSFER FUNCTION 
PARAMETERS 

In the following short subsections we indicate and exemplify some 
common and effective methods for identification. The first two are 
particularly suited to 'black box' identification and the extraction of 
essential features of the input-output response characteristics. The 
third is a common and useful approach for finding numerical values 
of parameters which appear linearly in a model of known size. 

For some purposes a sophisticated mathematical model of a system 
may be required; it may even be the ultimate goal of the identification 
process to produce such a model. For many applications, however, it 
is arguable that only input-output information is needed and that the 
internal operation of the system is essentially irrelevant. This latter 
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end is particularly served by various simple schemes of relating output 
to input. All of these typically use one or more simple inputs and 
assume linearity and superposition so that the results are applicable to 
other inputs. The simple inputs are typically pulses, steps, or sets of 
sinusoids; the outputs are then pulse responses, step responses, or 
frequency responses. These mayor may not be further associated 
with mathematical models. 

Thus a system may have a pulse response as in Fig. 30.2(a), a unit 
step response as in Fig. 30.2(b) and a frequency response as in Fig. 
30.2(c). Notice that all of the graphs in Fig. 30.2 can in principle be 
easily established experimentally, although some inputs may not be 
allowed with some plants for operational reasons. In this section we 
look briefly at several simple identification schemes. These are 
useful, but could hardly be called profound. Their characteristic is 
that they involve little manipulation of the data, and the response data 
is virtually the model. 

30.2.1 Frequency response - a batch special input 
modelless approach 

The ideas of frequency response batch identification methods are 
straightforward: one obtains the Bode plots of the system under study 
and fits linear constant-coefficient transfer functions to the data. The 
fit may be done manually or by computer (using e.g. least-squares); 
the plots may be obtained by using sinusoidal input signals and finding 
the magnitude ratio and phase shift of the output, or by using a long 
sequence of noise-like inputs and computing the discrete Fourier 
transform of the output signal. The method can be done by any 
undergraduate with a signal generator and oscilloscope, but has at least 
two very important faults. 

1. Because only steady-state operation is assessed, transients and in 
particular delays are likely to go undiscovered unless special care 
is taken. Non-linearities may manifest themselves with obvious 
clipping or harmonics in the outputs. 

2. With real equipment, and particularly large processes, one may 
not be able to do the experiments. 
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Figure 30.2 Possible types of data for identification purposes: (a) pulse 
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Example 

From Fig. 30.1, the rolloff of 20 dB/decade at lower frequencies and 
40 dB/decade at higher ones indicates a pole excess of one in the lower 
region and two in the upper. In the absence of further information, 
this indicates a model of the form 

K 
G(s) = s('ts + 1) 

Then the intersection of the asymptotes at frequency 00; implies that 
't = 1/00;, while the value of K is given by evaluation of the above at 
some frequency w. The value of K is given, for low frequency 
0.1 rad S-l, say, by the fact that 

2010g[(0~1)] =: IG(0.1j)1 

as read from the graph; in this case the results are that K =: 13 and 
't =: 0.7. 

A variation of the explicit frequency response method is to excite the 
system with a random noise signal and get frequency response using 
Fourier transform methods. Thus let 

Y(z) = H(z) U(z) 

be an input-output relation in which H(z) is unknown, and in which 
we have implicitly assumed the system is linear. The power spectral 
density (Appendix C) of the output is 

<I>y(w) = S"[Y(eiwT) Y(e-jwT)] 

= H(eiwT)H(e-jwT) S"[U(eiwT) U(e-jwT)] 

=H(eiw1) H(e-jw1) <I>u(w) 

= IH(eiwT) 12 <I>u(w) 
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If {u(m)} is a white noise sequence, then Cl>i co) = constant = N and 
we have 

where the spectral density of y, <l>y(co), can be estimated using the 
discrete Fourier transform (DFf) of {y(m)}. The details of this are 
sometimes subtle and are found in the digital signal processing 
literature. Notice that the phase of the transfer function is not given 
from these data and must be otherwise established. 

30.2.2 Step and impulse responses - batch or on-line 
special input methods 

This method is similar in ease of concept to the frequency response 
methods. One makes a step or impulsive change in the input signal of 
the system under study and observes the output. For machinery, the 
step change might simply be a change in the operating set point; in 
medicine, a (near) impulsive change can be provided by an injection 
of a drug. A single experiment can be sufficient for the method, but 
therein lies its problem: lack of data. A step response as in 
Fig. 30.2(b) has perhaps half-a-dozen parameters readily visible (rise 
time, delay, overshoot, settling time, oscillation frequency, damping 
(Chapter 13)) so one can at best extract a similar number of unknown 
parameters. Even more than with frequency response, the method 
relies upon matching known responses with the unknown one. This is 
done by proposing a system model structure and adjusting its 
parameters until the model's step response approximates the observed 
data. 

Example 

The data of Fig. 30.3 were obtained as an impulse response and could 
for example represent a gradual using up and also excretion of a drug 
after injection. We examine it by a method sometimes called 'peeling 
off' . In this, we first consider only the tail and, assuming this is due 
to only a single slow effect (such as excretion, say), we fit a curve 
a exp (-~t) to a few points; to do this it is convenient to take the 
logarithm of the output and fit a straight line to the tail, by which 
from Fig. 30.3(b) we establish that a ::::: 0.33 and ~ ::::: 0.16. We then 
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Figure 30.3 The 'peeling off' of tails of the impulse response: 
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(shown as solid line); (c) data after subtraction of term fitted in (b); and 
(d) logarithm of points in part (c), with heavy line fit. 
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subtract this, yielding Fig. 30.3(c), and repeat the process on this 
curve for the curve yexp(-ot), obtaining y z 0.33 and 0 z 0.33. This 
could be repeated if necessary, but subtracting this function leaves a 
very small remainder. Thus we obtain the approximate transfer 
function 

G(s) = s ~ ~ + ~ = 2 I 
6s + I + 3s + 1 

and proceed, if desired, to make interpretations as to physical effects 
(e.g. drug usage and excretion in the medical case). 
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30.2.3 Auslander's method 

One of the simplest approaches, but an intuitively appealing one for 
which the presenters (Auslander et at., 1978) claim many extensions 
and refinements have been worked out, results from careful 
examination of the step response of the plant in question. Since the 
step response at time nT is the sum of the pulse responses pUT), 
i = 0, 1, ... , n, one can find the pulse response (and therefore a complete 
characterization of a time-invariant linear system) by, in effect, 
differentiating the step response. More particularly, consider Fig. 
30.4. 

y 

t 

Figure 30.4 Unit step response and definition of parameters for 
Auslander's method. 

The pulse transfer function, from the above arguments, is simply 
given by 

After a useful number of samples, this can be ended with a term of 
the form 



www.manaraa.com

720 System identification 

which has an asymptotically zero pulse response. The alternative 
form of G(z) is, with gO taken as gO = 0 for causality, 

blZ-1 + b2Z-2 + ... + bnz-n 
G(z) = 1 - pZ-l 

which is a system with n -1 zeros and one pole, where 

bi = gi - pgi-l i =2, 3, ... ,n 

The pole p is determined from the plant gain. Thus for a unit step, 
if the steady-state plant output is k, then 

n-l gn 
k=Lgi+~ 

i=l P 
or 

gn 
p = 1 - n-l 

k -Lgi 
i=l 

The above equations yield an input-output model of the plant. A 
state-space form may be written directly as 

x(k+ 1) = Px(k) + qU(k) 

y(k) = cTx(k) 

using the definitions 
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0 1 0 0 0 gl 

0 0 1 0 0 g2 

0 0 0 1 0 0 g3 
p= q= 

0 0 0 0 0 1 gn-l 

0 0 0 0 0 p gn 

cT = [1 0 0 ... 0] 

Using these models of the system, control laws and controllers may 
be developed in standard ways (Auslander et ai., 1978). The examples 
therein indicate a certain robustness of the approach. 

30.2.4 Cauer form identification - on-line with successive 
models and sequences of steps and impulses 

More sophisticated versions of the above have been proposed, 
including the method of Shieh et al. (1971). This method is rather of 
an experimental type, in that it involves a sequence of tests of a 
compensated system, with the compensation leading to knowledge of 
the original system model. 

We consider a standard sampled-data transfer function, as in 

bo z m + bIZ m -1 + ... + b m 
H(z) = 1 zn + a 1 Zn- + ... + an 

we must first rewrite it as 

H(z) 
cm + cm-) (z-l) + cm 2(z-1)2 + ... + Co (z_1)m 

dn + dn-I(Z-l) + dn_2(z-1)2 + . .. + (z-l)n 

where the easy coefficients are 

cm = bo + bI + b2 + ... + bm 
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and the others are somewhat more difficult to write in general form. 
The Cauer second canonical form for this in terms of (z-l) is 

1 
H(z) = -------.1----

hI + ~ 1 
--+----~--
(z-l) 1. 1 

"'3+ h 1 
__ 4 _ + ------::---
(z-l) 
~ 
(z -1) 

Since a unit step response in steady-state is given by 

Yss = lim H(z) 
z~l 

and a unit pulse response by 

Yss = lim (l-z-I)H(z) 
z~l 

it is obvious from the above that we can obtain hI from the unit step 
response of the original system, which is 11hI. If in our experiment 
we connect the now known gain hI with the (unknown) system H(z) as 
in Fig. 30.5, we find that the result has transfer function HI(Z) given 
by 

HI(Z)=~+ 1 
(z -1) ~ + 1 

~+_1_ 
(z -1) : 

The unit pulse response of this clearly, from Yss defined above, has 
steady-state value h2. With this known, we now experimentally 
configure the system as in Fig. 30.6, which can be shown to have 
transfer function H2(Z) given by 
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1 
H2 (z) = 1 

h3 + h4 1 
--+­
(z -1) : 

This is of the same form, so we can find h3 from its steady-state 
step response, feed back h3 as we did hI earlier, find h4 from its unit 
pulse response, etc. 

h1 ~ 

+ + 
/ ..... H(z) 

Figure 30.5 Feedback of first element in Cauchy expansion identification. 

z - 1 

+ 

Figure 30.6 Feedforward of second element in Cauchy expansion 
identification. 

The unravelling of the coefficients in particular cases is of course 
much easier than trying to come up with a general representation of 
the coefficients. It is clear that this is an experimental, as opposed to 
data processing, form of 'peeling off' of coefficients. 
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30.3 DIRECT PARAMETER ESTIMATION FOR 
POSTULATED MODELS 

The above techniqes tended not to require a priori knowledge of the 
model size, but only of its general nature (as a model of a linear 
system). The more common alternative, especially for on-line 
recursive techniques, is to postulate a model which is linear in its 
parameters and then estimate the values of those parameters. 

30.3.1 Least-squares data fits for transfer function 
models: batch form 

In cases in which either there is no system model available or 
parameters of a linear system are unknown, it may be possible to use 
an input sequence {u(k)} to generate a set of measurements {y(k)} 
and from these to compute a set of parameters which are consistent 
with this information. To do so, we conjecture that the data fit a 
model 

n 111 

y(k) = - L aj y(k-i) + L bju(k-j) 
i=l j=O 

and that the coefficients {aj} and {bj } are to be determined. To do 
this it is convenient to define the vectors 

al 

a2 

9= an 
bo 

bm 

<j>(k) = [-y(k-l) -y(k-2) ... -y(k-n) u(k) u(k-l) ... u(k-m)] 

for which we observe that y(k) = <j>(k) 9. 
If we only have an estimate (} of e, where 
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al 
a2 

a= an 
ho 

hm 

then at any time kT we will have 

Ypred(k) = <I>(k) e 

and with proper choice of a the error 

e(k) = y(k) - Ypred(k) = <I>(k) [a-a] 

will be small. We choose to select a such that the sum square error 
over a number of samples is minimized, i.e. minimize IN where 

N 
IN = L e2(k) 

i=l 

To do this, it is most convenient to use matrix notation, remembering 
that {y(k)} and {u(k)} are known to us. Define 

y(l) 
y(2) 

y(3) 

yeN) 

<PN = 

<1>(1) 
<1>(2) 
<1>(3) 

<I>(N) 

where Y N is N x 1 and <PN is N x (n + m + l). Then clearly IN can be 
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written as 

(30.1) 

To minimize this with respect to the unknown e, we take the first 
derivative, or gradient, with respect to e and set it to O. Then 

which has the solution, when the inverse exists (otherwise use a 
pseudo-inverse) 

(30.2) 

and in any case gives the normal equations of least squares. We 
notice, incidentally, that 

so that we indeed have a minimum. 

Example 

Suppose we have the data in the following table: 

k 

y(k) 
u(k) 

1 
o 

1 2 

1.25 
1 

3 4 

0.75 0 
0.1667 -0.5 

5 

1.5 
2 

We conjecture that there is one lagged value of y and the present value 
of u contributing to the output, i.e. that coefficients a(1) and b(O) are 
to be found. Using the data, we can set up that 
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1.25 -1 1 

0.75 -1.25 0.1667 [a(I)] . 
= Y N -<l>N9 

0 -0.75 -0.5 b(O) 

1.5 -0 2 

is the error to be minimized. Then 

T [3.125 0.833] 
<l>N<l>N = 0.833 5.278 

T [-2.1875] 
<l> NY N = 4.375 

and the result is that 

so that a(1) = -0.5 and b(O) = 0.75. It is easy to calculate that the 
resulting J is approximately 0, indicating a good data fit. 

30.3.2 Least-squares data fits for transfer function 
models: recursive form 

The above can be done in recursive form, which is particularly handy 
in real time. This form is derived below using matrix manipulation. 

When more data are taken after an estimate e is computed, one can 
simply recompute the estimate using (30.2) with the new value of N. 
An alternative is to combine the old estimate with the new data in a 
manner which can decrease the amount of computation needed. To 
see this, we define eN as the estimate after N data points {y(k),u(k)} 
are taken: 

(30.3) 

Now consider taking one more data point. We have 
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(30.4) 

We note, however, that 

Hence by substitution in (30.4) we find 

Using a standard matrix inversion identity (Appendix B.l) which 
states 

(A + BBT)-l = A-I - A-I B(I + BT A-I B)-l BT A-I (30.5) 

and identifying A = (<I>~<I>N) and B = <j>T(N+ 1) = <j>T gives 

Noticing (30.3) and using a small amount of manipulation yield 
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It is convenient to make the definition 

and then to notice that from the identity (30.5) it follows easily that 

where 

A A PN cpT A 

eN+l =eN+ 1 + cpPNcpT [y(N+I) -cpeN] 

PN+l = PN - PNcpT (1 + cpPNcpT)-l cpPN 

PNcpTcpPN 
=PN- 1 + cpPNcpT 

cp = cp(N+I) 

= [-y(N) -y(N-I) ... -y(N-n) u(N+I) u(N) ... u(N+l-m)] 

This constitutes a recursive algorithm for 8. Initial conditions may 
be derived by taking a small batch of data at the start and using the 
estimate (30.3) and its associated P N matrix, or alternatively by 
selecting a guessed 8 along with an initial P matrix; e.g. the latter may 
be a diagonal matrix with large elements. 

30.3.3 Variations - weighted least squares 

Of the possible variations to least-squares fits, we mention the 
weighted least squares method. Here, the cost function J allows the 
errors in various predictions to have differing weights, so that 

N 
IN = L w (i) e2(i) 

i=1 

Defming the matrix 

(30.6) 
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W = diag (w(I), w(2), ... , weN»~ 

we find (30.1) becomes 

and the solution (30.2) becomes 

One particularly attractive version of this, philosophically, is the 
case in which wei) = A,N-i with 0 < A, ~ 1. Here A, is a 'forgetting 
factor', as it is clear from (30.6) that early errors have less influence 
on J than those with larger indices. This allows the technique to 
incorporate slowly varying parameters and, in the recursive case, to 
'forget' initial condition errors, particularly in Po. It is easy to 
incorporate this type of weighting into the recursive form, which can 
be shown using the methods of the previous section to become 

T 
where now PN denotes (<I>N W<I>N)-l. 

The above forgetting factor uses a time-varying weighting matrix 
W, as can be seen by the nature of the weighting factor A,N-i = wei). If 
we use the matrix 

W N = diag (w(1), w(2), ... , w(N» 

then the recursive form can be shown to be 
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where PN denotes (<l>1WN<l>N)-1. We remark that both weighting 
schemes have the intuitively satisfying characteristic that 'disbelieving' 
recent data in the sense of a small weN + 1) or large A yields a 'small' 
gain and eN+I ::::: eN. 

30.3.4 Kalman filtering for parameters when state 
measured 

Suppose we have a system with input sequence {u(k)} and output 
sequence {y(k)} and hypothesize that they are related by 

n In 

y(k) = - 2, aiy(k-i) + 2, bju(k-j) 
i=l j=O 

with nand m known. Define a state vector 

8(k) = [al a2 ... an bo ... blll]T 

and an estimated state 8(k) 

where £lI(k) is the estimate of the unknown parameter ai at step k, etc. 
Further, define a measurement matrix C(k) by 

C(k) = [-y(k-l) ... -y(k-n) u(k) ... u(k-m)]T 



www.manaraa.com

732 System identification 

Then in Kalman filter terms we have dynamics 

8(k) = 18(k-I) 

with scalar measurements 

y(k) = CT(k) 8(k) 

Then a recursive filter for e is, if we assume some noise on the 
measurement model (not unreasonable) of variance, and on the state 
model (less reasonable) of covariance matrix Q, . 

8(k) = 8(k-1) + K(k)(y(k) - CT(k) 8(k-I» 

K(k) = I(k) C(k) ,-1 

I(k) = [(I(k-l) + Q)-l + C(k) CT(k)/r]-l 

Presented this way, it is arguable that choosing Q is an art form, 
but in fact we may let Q ~ 0 without too much trouble provided that 
the initial estimate I(O) of cov(8(0» is reasonably large. This 
technique amounts to a recursive least-squares estimate of 8 in this 
context. 

30.3.5 An adaptive observer for on-line parameter 
estimation with state measurements 

Another approach to parameter identification of multiple-input­
multiple-output (MIMO) systems is based upon observer ideas and 
illustrates also the use of Lyapunov functions. We hypothesize a state­
variable form for the system 

x(k+ I) = Ax(k) + Bu(k) 

y(k) = Ix(k) 

and attempt to determine A, and B from input-output data, i.e. the 
sequences {u(k)} and {x(k)}. Thus define (Kudva and Narendra, 
1974) 
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A(k) = estimate of A at time k 

B(k) = estimate of B at time k 

9=[A;B] 

8(k) = [ A(k); B(k)] 

z(k) = [:::;] 

x(k+ 1) = A(k+ I)x(k) + B(k+ l)u(k) 

e(k) = x(k) - x(k) 

A 

0(k) = 9(k) - 9 

Using this, and noting that z(k) is a known quantity, we find 

e(k+ 1) = 8(k+1)z(k) 

For application of the Lyapunov theory, we define the functions 

V(k) = tr [8Ck) 8 T(k)] 

= " (a· - a· .)2 +" (b · . -b· .)2 L... I,j I,j L... I,j I,j 

i,j i,j 

d V(k) = V(k+ I) - V(k) 

We wish to find a scheme by which the quadratic V(k) ~ 0 as k 
becomes large. We propose the form 

A A Peek) zT(k-l) 
9(k+ 1) = 9(k) - ex zT(k-1) z(k-l) (30.7) 

and attempt to find a scalar ex and matrix P such that d V(k) < 0 for all 
k. With considerable algebra, it can be shown that 
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~V(k) _ eT(k) [aP-21]Pe(k) 
- a zT(k-l) z(k-l) 

This is less than or equal to zero provided a [aP - 21] P is negative 
semidefinite, or equivalently 

1. 0<a<2 

2. P> 0 (positive definite) 

3. IIPII < I (30.8) 

Thus under conditions (30.8) the algorithm (30.7) will find A and 
B in the sense that A(k) -j A and B(k) -j B. 

A potential application of this was presented by Woo and 
Rootenberg (1975), but use of real data for their problem presented 
difficulties for Bates (1976). 

30.3.6 The general form for recursive parameter 
estimation 

For the many forms of parameter estimation for linear systems, with 
various approaches, it has been argued (Ljung and Soderstrom, 1983) 
that a general form is possible. The basic stmcture is 

8(k) = 8(k-l) + y(k) P(k)11(k) [y(k) - y(k)] 

in which 8(k) is the parameter estimate at time k, y(k) is the measured 
data, and y(k) is the predicted data based upon the measurements up to 
time k -I. The technique-dependent features are the scalar sequence 
{y(k)}, which should go to zero or a small value as k increases, the 
matrix P(k) derived from measurements up to time k, and the vector 
(if y(k) is a scalar) or matrix 11 (k) which is derived from the 
measurements and typically is related to the gradient of y with respect 
to 8. We may readily identify in the recursive least-squares approach, 
for example, that 
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y(k) = ~(k) 8k-1 

y(k) = 1 

ll(k) = ~T(k) 

P(k) = «f)I~ (f)k_l)-l 
1 + ~(k)(f)k-l (f)k-l )-I~T(k) 

The basic recursive algorithm in the reference is 

E(k) = y(k) - y(k) 

A(k) = A(k-l) + y(k) [E(k)ET(k) - A(k-l)] 

R(k) = R(k-l) + y(k) [",(k)A-I(k) ",T(k) - R(k - l)] 

9(k) = 9(k-l) + y(k)R-I(k)",(k)A-I(k)E(k) 

~(k+ 1) = A(9(k»~(k) + B(9(k»z(k) 

[ Y(k+l)] A 

col ",(k+ 1) = C(9(k» ~(k+ 1) 

A rough interpretation of this - helpful here is Ljung (1981) - with 
details depending upon the version of the algorithm, is that 

y(k) = measurement vector 

y(k) = predicted measurement vector 

e(k) = parameter estimate vector; dimension np 

z(k) = [ 
y(k) 1 
u(k) 

u(k) = system input (or command) vector 

(k) . f dF(k) . 1 2 'II = matnx 0 d9j ,1 = , , .. . , np 



www.manaraa.com

736 System identification 

~(k) = filter for y(k) and \jI(k) 

R(k) = search direction adjustment matrix 

A(k) = relative error weighting matrix 

A(k), B(k) = generalized dynamics equation matrices, derived from 
system dynamics, but extended to generalized state ~(k). 

A considerable amount is known about the convergence of such 
algorithms and their properties. It is presented here only to guide the 
reader into this branch of the literature. 

30.3.7 Partitioned adaptive filters 

An interesting variation which keeps arising, partly because computer 
power is becoming so inexpensive, is the partitioned adaptive filter 
approach. In such systems, the philosophy is straightforward even if 
some of the theory is not. 

Assume the system is modelled by a form such as 

x(k + 1) = Ae x(k) + Be u(k) + Ge v(k) 

y(k) = Ce x(k) + w{k) 

where the defintions are the usual Kalman filter ones (Chapter 28), 
with state vector x, input u, measurements y, and noises v and w. If 
o were known precisely, there would be no problem in forming a state 
estimate x of x using a Kalman filter, and it would be expected that 
the errors y(k) - Ce x(klk-l) would be 'small' and white noise-like. 
If 0 is not known, then a Kalman filter based upon a guessed value 9 
would have such errors be large or small depending upon how good 
the guess is. The technique may be summarized as follows: set up 
several Kalman filters, each designed based upon a different 
parameter vector OJ E e, a set of candidates, and select as the correct 
estimate of 0 that vector whose filter gives the smallest, whitest 
errors. 

The algorithm is basically, for N vectors OJ E e, as follows. 

1. Initialize: for r = 1,2, ... , N 

Per(OI-l) = cov(x(O» 
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1 
p(Srl ... ) = N 

XSr (0) = 0 

2. Kalman filter: for r = 1,2, ... , N 

Ks,(k) = Psr Cklk-1) C~r[CerPs,(klk-l)C~, + R]-l 

PsrCklk) = PsrCklk-l) - Ks,Ck) Ce,Ps,(klk-l) 

T T 
Ps,(k+ 11k) = As, Ps, Cklk) As, + Gs,Qs,Gs, 

xs,Cklk-l) = As,xs, Ck-1) + Bs, uCk-l) 

xs,Ck) = xs,(klk-l) + Ks,CyCk) - Cs,xs,Cklk-l) 

3. Non-linear decision mechanism 
Ca) Calculate likelihood ratios, for r = 1,2, ... ,N 

e,Ck) = yCk) - Cs,xs,Ck) 

T Pe, = Cs,Ps,(klk-1)Cs, + R 

L s, = IPs,(klk-l)I-! exp [-~II e,(k) II t~ 

(b) Calculate a posteriori probability densities, for 
r = 1,2, ... ,N 

Lb; 
pCS,IYCk» = N pCSrIYCk-l) 

L LS,p(Si IY (k-l) 
i=l 

If desired, a state estimate may be calculated as 
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N 
x(k) = L p(9 j I Y(k»xe,(k) 

i=l 

Given this simple idea, which is in some ways like the matched 
filter methods of communications, it is possible to show that 
p(9d Y(k» -t 1 for the 'closest' 9 j to the actual 9. Furthermore it is 
straightforward to manipulate the set e by adding and deleting 
members until a good estimate of 9 is found; this is done by replacing 
9 j for which p(9 j IY(k» < £ with a different and hopefully better value 
and restarting the process. 

The partitioned adaptive filter is traceable to Lainiotis (1976). A 
discussion under the name multimodel identification is presented by 
Anderson and Moore (1979). Search algorithms were added by Lamb 
and Westphal (1979). 

30.4 COMPUTER AIDS 

There are system identification packages with MATLAB® and other 
commercial software. These tend to contain algorithms of the 
recursi ve least -squares fami I y. 

30.5 SUMMARY AND FURTHER READING 

We have only touched the surface of a small part of the systems 
identification topic. There are a number of books on the topic, dating 
back to the 1970s; among the more recent works are those of Ljung, 
including Ljung (1981) and Ljung and Soderstrom (1983). Quite 
readable is the book by Graupe (1972). In addition, texts such as that 
by Franklin, Powell and Workman (1990) have chapters on 
identification. The issue is also a portion of one approach to the 
problem of adaptive control, discussed in Chapter 31, and is being 
attacked by the methods of artificial neural networks (Chapter 32). 
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Adaptive and self-tuning 
control 

Feedback control was introduced for the purpose of compensating for 
variability in components and raw materials, so that the quality of 
product output could be improved. A properly designed feedback 
control system is expected to be rather insensitive to plant errors, 
component drift, and input disturbances and variability. Furthermore, 
the system should be stable, robust, and cost effective. Traditional 
techniques have usually been satisfactory for these purposes. 

In some special circumstances, there is a desire for accuracy or 
productivity that is difficult to provide with traditional fixed 
controller methods. In a space launch, for example, the variability in 
rocket motors, even if only a per cent or so of thrust acceleration, 
may lead to a several ms- l error in orbital injection velocity which 
would take considerable satellite fuel to correct the resulting orbit. In 
a ship autopilot, the variability in operating conditions of the ship may 
mean that a loss of several per cent in either speed or fuel will result 
unless the autopilot is carefully tuned to exact water depth, wave 
conditions, wind conditions, and desired speed. In a number of 
processes, raw material variability may make the output product vary 
by an undesirable amount if a fixed controller setting is used. Even 
the time taken to tune controllers on plant start-up can induce an 
expense which operators would like to eliminate if possible by making 
the loops self-tuning. 

For reasons such as the above, there has been interest for a number 
of years in so-called adaptive control, in which the controller appears 
to recognize the actual plant parameters and adjust itself accordingly. 
The increasing availability of relatively inexpensive computing power 
has made such schemes more and more attractive financially, and 
control engineers find the concepts stimulating and entertaining, with 
a flavour of artificial intelligence and expert systems drifting into the 
field from other specialties. We should be aware of two facts, 
however. 
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1. Performance improvements have been shown to be obtainable, 
but sometimes the amount of improvement is of the order of a 
few per cent; larger improvements may be due more to 
inadequacies or oversimplifications of the original fixed laws 
than to the introduction of adaptive laws. 

2. The schemes ultimately reduce to a rather complicated non-linear 
control law for which stability and robustness may not be 
guaranteed. 

With these comments always at the back of our mind, we introduce 
adaptive control in this chapter. Because adaptive control theory is 
the meeting point of many of the other aspects of control theory, 
particularly control law design, non-linear stability, and state and 
parameter estimation, there exist many schemes for 'adapting' the 
control to the situation. We look at only a few here, to give the 
flavour of the specialty. 

31.1 SYNOPSIS 

There are many different approaches to adaptive control, and in fact 
there are many different definitions of adaptive control. In addition, 
there are several ways of classifying adaptive control approaches. 
One useful distinction is between direct adaptive controllers, in which 
control law parameters are determined directly from the sensed data, 
and indirect laws, in which the system is identified and the control law 
parameters are determined in terms of the identified mode. An 
alternative used here is to group and discuss several approaches on the 
basis of the system structure. 

Gain scheduling is a possibility when a single set of parameter 
values is not sufficient for the entire range of operating conditions. 
The concept is straightforward and arguably open-loop. 

More advanced are optimalizing schemes, which assume that for 
each set of operating conditions, there is an optimal gain set. The 
controller then searches for this optimum. Thus an index of 
performance (IP) is chosen and assumed to vary with operating 
conditions. The controller searches systematically for the optimum. 

We have already studied various control law design methods, both 
classical and modern, both ad hoc and optimal, and found that they are 
in principle straightforward to find if the controlled plant is well 
modelled. We have also looked at system identification techniques. It 
seems obvious that if we identify our system in its operating regime, 
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we can then use that information to choose controller parameters. 
That is the principle of the adaptive approach often called self­
tuning. Self-tuning amounts to a separation of the adaptive problem 
into two obvious parts: identification and control. The problem is to 
be certain these do not interact strangely. 

Model reference automatic control (MRAC) can be 
implemented in a number of ways. The idea is to have a model of the 
plant and to attempt to make the actual plant behave in this way. 
Hence an aircraft controller may have a desired 'feel' to it, in that 
pilots like a certain stick deflection to produce a certain attitude rate; 
the gains are adjusted so that the aircraft has this feel, regardless of 
the actual dynamics. There are many forms of model reference 
controllers, of which Fig. 31.6 shows only a basic one. The heart of 
the system, of course, is the 'controller adjuster'. 

The final approach we mention is the optimal control with uncertain 
parameters, or stochastic optimal control, approach. This is in 
some ways the purest adaptive controller, but results are few. Its 
block diagram is the simplest because the structure is at its core a 
gestalt - a unified one. 

In the following sections, all of the above ideas are pursued further. 

31.2 DEFINITIONS AND CONCEPTS 

'Adaptive' is not a rigorously defined term, although many authors 
have made attempts. When all is said, done, and analysed, most 
adaptive controllers either make internal changes to their parameters 
(such as gains) or change plant parameters (such as damping) in 
response to changes in operating conditions (such as aircraft flight 
regime - subsonic high altitude, landing, etc.). As such, they can be 
considered just another kind of control law, albeit perhaps non-linear 
and complicated. 

The usual definition assumes certain controller parameters are to be 
selected by the 'adaptation' process. This adaptation is associated with 
information processing, and an adaptive controller is one which 
'learns'. The conditions are non-a priori quantities in probability 
densities associated with the plant or measurement subsystems. With 
this in mind we consider a few of the many proposed definitions, 
including a formal mathematical definition (item 6). 

1. Adaptive in common usage means 'tending to fit [itself] to new or 
different conditions' (Davis, 1970). 
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2. An adaptive system is one which measures its performance 
relative to a given index of performance and modifies its 
parameters to approach an optimum set of values (Eveleigh, 
1967). 

3. An adaptive system is any physical system which has been 
designed with an adaptive viewpoint (Truxal, 1961). 

4. Adaptation is the ability of self-adjustment or self-modification in 
accordance with changing conditions of environment or structure 
(Aseltine et at., 1958). 

5. Adaptation is a process of continual optimization in the face of 
complex and time-varying environmental effects (Jarvis, 1975). 

6. A system A is adaptive with respect to a family {Sg}, g E G, of 
input sets Sg = {U(t)}, where each U(t) is a vector of inputs to A, 
if the performance function P(g) obtained when Sg is applied to A 
is acceptable, i.e. belongs to the set W of acceptable performance 
function values. More briefly, A is adaptive with respect to G 
and W if it maps G into W. 

Thus a process/controller system is called adaptive with respect 
to a specified set of environmental changes, external disturbances, 
etc., if its performance function is acceptable for all such 
changes. 

Without defining adaptive directly, Tsypkin (1971) described some 
characteristic features of adaptation. 

The most characteristic feature of adaptation is an accumulation 
and a slow usage of the current information to eliminate the 
uncertainty due to insufficient a priori information and for the 
purpose of optimizing a certain selected performance index. 

We see from the range of definitions and properties - from an 
adaptive system is 'one that performs satisfactorily' through 'one 
designed from an adaptive point of view' to 'one which measures and 
tries to optimize its index of performance over a set of parameters' -
that the issue is undecided. We tend to like a definition which includes 
'learning' about the system, but for our purposes perhaps Truxal's 
definition is as good as any and better than some. 

An input to a partly known plant will often demonstrate the dual 
effect first cited by Fel'dbaum (1965): 

1. it will cause the output to move toward a desired value, and 
2. it will cause the output to change in a manner which, if measured, 
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will allow us to determine something about the unknown 
parameters of the system. 

In many systems, this requires a control law trade-off, as explicit 
dual control is almost impossible to do optimally. It will frequently 
require the occasional application of a probing signal to aid the 
adaptation. 

In the following sections, we will elaborate upon several adaptive 
control schemes. They are presented as if the boundaries between 
them are distinct, but of course they are not. In addition, some are 
more or less adaptive depending upon the definition of 'adaptive' 
which is used. 

31.3 GAIN SCHEDULING 

All engineers should be aware of gain scheduling as a possibility when 
a single set of parameter values is not sufficient for the entire range of 
operating conditions. The concept is straightforward, as shown in 
Fig. 31.1. 

Operating region 
determination 

Table 
~~ lookup 

~------------~ 

Figure 31.1 Structure of control law for adaptation using gain 
scheduling. 

Gain scheduling can be seen to be one step removed from having 
gains selected from tables by human operators; the switching is done 
on the basis of sensed data. Conceptually, the operating regimes are 
based upon a partitioning of the state space (or more properly 
measurement space), as in Fig. 31.2. 
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Regime III 

Regime I 

Regime II 

Regime IV 

Sensor 1 

Figure 31.2 Operating regimes using different gains with gain 
scheduling. 

We try to clarify and motivate the idea of gain schedules using 
aircraft autopilots as an example. It is no surprise to find that the 
autopilot and other gains are very different, perhaps crucially so, 
between a landing configuration (gear and flaps down, altitude and 
speed low, etc.) and a cruise configuration (gear and flaps up, altitude 
high, speed fairly high, etc.). In the latter configuration, for example, 
the airframe will respond much more rapidly to a given elevator 
deflection, so to keep pilot 'stick feel' constant, the stick-to-elevator 
gain must be decreased in going from landing configuration to cruise 
configuration. A computer can be programmed to check altitude, 
attitude, airspeed, throttle, etc. select the proper gains from a table 
stored in memory for that configuration, and implement those gains in 
the autopilot loops. 

We remark that the scheme is little different in principle from 
having human operators change the gains according to tables of 
operating conditions, and it has been argued that gain scheduling is not 
truly adaptive. 

31.4 OPTIMALIZING CONTROLS 

Optimalizing controls, also called extremum adaptive controls, had 
their principles first presented by Draper and Li (1951) and Li (1952) 
and have been extensively examined. The underlying concept is that 
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the available controller parameters are adjusted to find an extremum 
(optimum) of an index of performance (IP). 

Optimalizing schemes assume that for each set of operating 
conditions, there is an optimal gain set. The controller then searches 
for this optimum. Thus an IP is chosen and assumed to have the form 
such as Fig. 31 .3 for each possible operating condition. 

~ .- .. .. ......... .. 
~.... .. .. 

•••••••• 
/...... \ .. PI3 

•••••• -- •• , PI2 \ 
~' , . 

.... PI ' I 

:' /···V···· * - ..... :../~. ./ 
',' ,' " / : ",', : :' .. ,/ >: Search path 

......... . .. , 
""" . 

....... .. ............. .. ............ Gain 1 

Figure 31.3 Contours of an Index of Performance PI, PI! < Ph < PI3 , 
showing a search path for the miniminum. The contours may not be known 
explicitly, in which case the controller must 'bindly' seek decreases in the 
cost. 

In the simplest versions, in which adjustment uses gradients, the 
partial derivatives alP/as j are found, perhaps numerically by 
perturbation and measurement, and then, for a gain K, 

S(m+ 1) = SCm) + KVsjIP 

For example, the IP might be 

IP = L. (r(m) - y(m»2 
m 

and the derivatives found by perturbation of the parameters 
successively, with the sum taken over some number M of samples. In 
fact, the early implementations were more subtle and used more basic 
engineering knowledge of the underlying system than this. One 
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famous example was the Draper and Li (1951) carburettor adjuster, 
with structure as shown in Fig. 31.4. 

ADJUSTMENT RATE 
r----.,---t SOURCE 

I RATE DETECTOR I 
1\ -

Figure 31.4 The Draper and Li optimalizing controller. The gain is 
increased or decreased at a constant rate, depending upon whether the IP 
computed or inferred from the data is increasing or decreasing. 

Here the system parameter to be optimized was steady-speed torque 
of an internal combustion engine, and the control parameter was 
carburettor adjustment. The carburettor adjustment was varied at 
constant rate, either up or down, and the rate of change of engine 
torque was measured. The adjustment was changed in sign whenever 
the rate of change of torque changed sign, so that change continued 
while torque increased, but changed sign when torque started to 
decrease, the latter indicating that peak (optimum) torque had been 
passed. In experiments, the system tended to 'hunt' around the 
optimum. 

Alternative applications and details are summarized by Aseltine et 
al. (1958). One scheme, for example, injected a small sinusoidal 
command which would, at optimum parameter setting, be filtered out 
by the system dynamics and not appear in the output; hence the 
amount of sinusoid in the output served as an IP. 

A survey of the issues involved with the search for the optimum is 
given by Jarvis (1975). 

31.5 SELF-TUNING REGULATORS 

The principle of the adaptive approach often called 'self-tuning' is that 
the system is identified (using a method as in Chapter 30) and this 
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information is used to design the parameters of a controller by a 
method such as in Chapter 8, Chapter 23, or Chapter 26. The 
resulting structure is shown in Fig. 31.5. 

r - - - -- - - --- - - - - - - - - - - -- --- - - -- - - - - - . --. -- -- - - - - - - - - - -- - - - - - - - - - -- - - - _., 

~ Adaptive / Self-tuning Algorithms 

Parameter mapping 1---., 

Control parameters 

Figure 31.5 Structure of the adaptive/self-tuning algorithm. This is an 
indirect adaptation, because it relies on system identification. 

Self-tuning amounts to a separation of the adaptive problem into 
two obvious parts: identification and control. The problem is to be 
certain these do not interact strangely. 

This alternative to computerized tables, which in principle can 
always yield a good choice of gains, was pursued by Astrom in the late 
1960s and has been studied by many researchers since then, with 
commercial implementations now available. Self-tuning regulator 
laws entail a system identification (often of the Kalman filter type, 
Chapters 28 and 30) for the system parameters Sl, S2, ... , S L and then 
the mapping of these parameters into the control parameters 
Pl,P2, ···,Pk by some known function, e.g. Pi = fi(sj;j= 1,2, ... ,L) . 

An example should help clarify the concepts involved. 

Example 

Suppose a plant is known to be described by the transfer function 

1 fez) 
G(z) = (z - a) (z - b) = V(z) 
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where 0 < a < b < 0.8. The feedback controller is chosen to be a 
simple gain K, so that u(k) = K(Ydeg(k) - y(k)). The closed-loop poles 
are to have as fast an oscillation as possible within the constraints that 
K > 0 and pole magnitude ~ 0.8. 

A quick root locus sketch shows that the closed-loop poles will be at 
the intersection of the vertical line bisecting the a-b interval on the 
positive real axis with the circle of radius 0.8. Thus 

where 

Zp = 0.8 eicoT 

a+b 
Re(zp) = 0.8 cos (roT) =-2-

The closed-loop poles are at the solution of 

Z2 - (a + b) z + ab + K = 0 

for which the real parts yield 

IZpl2cos(2roD - (a + b) IZpl cos (roD + ab + K = 0 

Substituting the requirements IZpl=0.8 and cos (roT) = (a+b)/1.6 gives 

ab - 0.64 + K = 0 ~ K = 0 .64 - ab 

Thus a reasonable thing to do in a self-tuning regulator is to have an 
identifier (such as in Chapter 30) with output a and b as estimates of a 
and b respectively and to set the controller gain at 

K = O.64-ab 

The above example demonstrates the ideas involved with the self­
tuning regulator: identification of parameters followed by a mapping 
of the estimates into controller parameters. The mapping is an 
equation (or setthereot) rather than a table look-up procedure. If the 
estimator is wrong about the plant parameters, of course, the whole 
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scheme could go terribly wrong. For example, if ever the identifier 
should give numbers such that ab = 0.64, then K = 0 and no inputs 
will be applied to the plant; without input, the identifier may be 
unexcited and stall at the improper values. Thus logic checks, 
minimum and maximum gains, etc., may be needed in the 
implementation, and significant simulation efforts may be required to 
verify proper operation. 

Industrial self-tuners often are based upon a PID regulator 
formulation. Reasonable rules of thumb exist for PID controllers, 
such as Ziegler-Nichols, Cohen-Coon, and variations (see Chapter 8). 
In one variation, the regulator finds three parameters, the system gain 
K, the delay before response td, and the time constant 't of the plant by 
having the controller open the feedback loop and apply a small change 
in input to the plant. The measured K, td, and't are used along with an 
appropriate rule to compute gains for a PI or PID controller. 

The self-tuning philosophy can be applied to many different 
combinations of estimators and control laws and can be done on start­
up only, periodically, or on command from a supervisor. Control 
laws studied have included pole placement controllers, minimum 
variance controllers, LQG controllers, and phase and gain margin 
controllers. Estimators have included least squares and some of its 
extensions, instrumental variables, extended Kalman filters, and 
maximum likelihood methods. A variation which can save some 
calculations in the real-time situation is the implicit self-tuner, in 
which the estimated parameters feed directly without mappings into 
the controller computations. 

31.6 MODEL REFERENCE ADAPTIVE CONTROL 
(MRAC) 

The MRAC scheme dates back to the late 1950s and the work of 
Whittaker at MIT (Whittaker et al. 1958; Whittaker, 1959a; 1959b). 
The structure of the approach is shown in the block diagram of 
Fig. 31.6. 

There are many forms of model reference controllers, of which the 
figure shows only a basic one. The heart of the system, of course, is 
the 'controller adjuster'. The idea is that the controller parameters 
are adjusted so that the controlled process 'behaves like' a model 
system. 

The regulator in Fig. 31.6 is characterized by a number of 
parameters in a vector e. The adjustment rule, a supervisory 
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,- - - -- ---- -- - - - ----------- - -- --- - -------- - -- - --- - - - --- - -- - - - .--- -- -

Input 

MRAC 

Desired closed 
loop model 

output 

~ ... Output 

Figure 31.6 The Model Reference Adaptive Controller (MRAC) 
structure. 

computer program, is allowed access to much information, including 
current parameter values, error between actual and desired output, 
and perhaps actual input, output, and command values. 

Given the structure of the model reference adaptive system (MRAS) 
as above, the adjustment rule becomes the important part of the design 
problem. Whittaker proposed the 'MIT rule' in which 

where 

de de 
dt = -ae de 

e = error = Yactual - Ymodel 

a is an algorithm gain parameter, and the gradient on the right can be 
generated either from the equations for Yactual and Ymodel or as solutions 
of an appropriate linear system. The algorithm is digitized as 
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S(m+ 1) = SCm) - (1.' e(m)~~ (31.1) 

e(m) = Yactual (m) - Ymodel (m) 

Example 

We explore some of the issues with an example. As done similarly by 
Astrom and Wittenmark (1989), let the system model be 

y(m + 1) = ay(m) + bu(m) 

and let the desired model be 

The goal of matching the responses can be met by using feedback 

u(m) = k,r(m) - kyy(m) 

provided 

bm a - am 
k, = band ky = b 

The problem with doing this is that a and b are unknown. Now 
using the nominated control law form 

y(m + 1) = ay(m) + bk,r(m) - bkyy(m) 

and since 

e(m) = y(m) - Ym(m) 

using z-transforms gives 
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Y(z) = + bk R(z) z - a y 

bk, 

E(z) = [ bk, - bm J R(z) 
z - a + bky z - am 

We then establish the z-transforms of the gradients of e with respect 
to the parameters ky and k, as 

[oe] b 
ok, (z) = z - a + bky R(z) 

[ oe] b2 k, b 
oky (z) = (z _ a + bky)2 R(z) = - z _ a + bky Y(z) 

These cannot be computed directly because a and b are unknown, so 
approximations are necessary before they can be used in the updating 
equations (31.1) Typically two assumptions are made. 

1. The system is close enough to zero error that the approximations 

!!m k, 'Z b 

hold and hence a - bky 'Z am. 
2. When used in (31.1) the gradients may be erroneous in 

magnitude by some amount with no deterioration because the 
gain a is essentially arbitrary. Hence there should be no problem 
(provided b and bm have the same sign) in assigning b = bm in the 
gradient. 

Given the above approximations, the MRAC parameter setting 
becomes 
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/~ /~ 

[t:,] (m+ I) = am [t:,] (m) + bmr{m) 

/~ /~ 

[::,] (m+ I) = am [ ;:,] (m)-bmy(m) 

e(m) = y(m) - Ym(m) 

y(m + 1) = amYm(m) + bm rem) 

/~ 

k,(m+ I) = k,(m) - f1. [;:,] (m)e(m) 

/~ 

ky(m + I) = ky(m) - f1. [;:, ] (m) e(m) 

and the control command becomes 

u(m) = kr(m) rem) - kim) y(m) 

The results of a simulation of this scheme are shown in Fig. 31.7 
for the case in which a = 0.9, b = 0.1, am = 0.5, bm = 0.5. The 
command signal r(m) was a square wave of period 20 steps, and the 
initial conditions had yeO) = Ym(O) = 0, kr(O) = 1, and kiO) = O. The 
'proper' values are kr = 5 and ky = 4, and convergence occurred in 
this case with a = 1. Smaller a gave slower response, while large a 
led to oscillations. 

The above example is illustrative of several aspects of the model 
reference approach. Three different aspects should be noted: the 
actual computations and approximations, the underlying unmentioned 
problems of stability, and the philosophical base. 

In the above example there was nothing special about either the use 
of the z-transforms or of the linear model. The partial derivatives 
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Figure 31.7 Example of MRAC: (a) the input signal; (b) actual response 
y (solid) and model response Ym (dashed) to input with no MRAC; (c) 
adapted (solid) and model (dashed) responses to input; (d) evolution of the 
adaptive controller gains; and (e) the system output error in response, 
showing decrease as adaptation improves. 
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could have been evaluated in the time domain, a simple exercise for 
the reader. In the worst case, the sensitivity of errors to parameter 
changes can be explored numerically, but in any case it does not 
require linearity of the mathematical models used. 

The MRAC approach often works, especially if a is small relative 
to the size of the input reference signal, implying a quite slow change 
of parameters and requiring that the initial parameter choice be close. 
The issue, since the control commands are clearly non-linearly 
dependent on the input reference {r(m)} , is that stability is very hard 
to establish. 

Philosophically, the MRAC attempts to make a real system behave 
like some desired model system. It overlaps heavily into what we 
have called self-tuning schemes if the parameter adjustment block 
actually identifies the real system. 

31. 7 STOCHASTIC OPTIMAL CONTROL THEORY 

All of the above schemes have had structure imposed upon them by 
the designers using heuristic arguments. For reasons varying from 
mathematical curiosity to hopes of yielding improved performance, 
researchers have sought a unified theoretical framework for such 
problems. The generic field name is stochastic optimal control, and 
the results are regrettably few. The structure is general, as in Fig. 
31.8. 

Input Controller PLANT Output 

Sensors t-E~ 

Figure 31.8 General system structure for stochastic optimal control 
studies. 

The problem is taken as one of finding a control, and preferably a 
feedback control law, which minimizes a loss function . This is so far 
similar to deterministic optimal control theory. The extra difficulty 
arises when randomness is introduced; this stochastic effect may be 
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due not only to noise in measurements, in initial conditions, and in the 
system dynamics, as in the Kalman filtering problem, but in the 
parameters of the system, both those of the physical equipment (time 
constants, etc.) and those of the probability distributions (covariances, 
biases, etc.). 

It is not even clear that in general a solution to this problem exists, 
i.e. conditions for existence of a solution are not known. If it does 
exist, however, a functional equation based upon Bellman's dynamic 
programming can be used to study it. All of the unknowns, both state 
and parameters of various types, are combined into a 'hyperstate' 
which is a probability distribution of the state from the measurements. 
This hyperstate is estimated in one section of the controller, and it is 
mapped into the control by a second section. The issues are illustrated 
in an example from Astrom (1983). 

Example 

Consider a scalar system described by 

yen + 1) = yen) + bu(n) + e(n) 

in which y is the output, u is the control, e is a white noise with mean 
o and standard deviation a e, and b is a random variable (constant) 
chosen from a normal distribution. The index of performance IP is 
taken as minimizing the mean square deviation of the output, i.e. 

IP = L y2 (k) 
k 

is to be minimized. 
It turns out that b can be estimated using a Kalman-type filter as in 

the system identification sections. The model is 

ben + 1) = ben) 

yen + 1) - yen) = Lly(n) = u(n)b + e(n) 

and the Kalman filter yields an estimate ben) with standard deviation 
a(n). 
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Introduce the N-step look-ahead loss function 

{ 
i+N } 

VN = min,w L y2(k) I Yi 
k=i+l 

where Yi is the data available at time i, i.e. 

Yi == {y(i),y(i-l), ... } 

The hyperstate for this problem, because b is gaussian with mean 
ben) and standard deviation cr(n), is {y(n),b(n),cr(n)}. Astrom uses 
the normalized variables 

~ _ ben) 
- cr(n) 

ub 
Jl- -y 

and argues that it can be shown VN depends only on 11 and~. In 
particular, the Bellman equation for increasing N is 

VN(l1,~)=mJn{ I + 112 [O-Jl)2 + (~y] 

+-1 VN-l(l1(1+Jl) + e ..JOF -PJl.21)2>, ..J(~2+Jl2112) -If)<1>(e)de} 

where <1> - N(O, 1) probability density. Minimization yields JlN(l1,~) 
and VN(l1, ~). The control is then, for fixed look-ahead interval 
length N, given by 

u(k) = - ~~~~ JlN(l1(k), ~(k» k=i,i+I, ... ,N+i-1 

If N becomes large (here N > 20 or so is 'large'), JlN becomes 
almost independent of N in that increasing N does not numerically 
affect Jl. The answer found by Astrom (983) was determined 
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numerically to be a complicated surface defined over the (11, P) plane. 
Astrom remarks that the certainty equivalence contro11aw is 

y(k) 
u(n) = - ~ 

ben) 

i.e. the known parameter optimal control is used with a substitution of 
the estimate b for the unknown parameter b. This amounts to )l = 1. 

Another approximation (see also Aoki, 1968) chooses 

~2 
)l = 1 + p2 

or 

1 (b(n))2 
u(n) = - ben) b(n)2 + cr2(n) yen) 

This is called 'cautious control' because the gain is small when b is 
not well known, i.e. cr(n) is large. 

Astrom's solution found that when b is poorly known, the control )l 
is large. This may be interpreted as a 'probe' of the system to find b, 
and is an example of the exploitation of the dual control property. 

There are two problems (at least) with this approach. First, the 
formulation and setup of the Bellman dynamic programming problem 
may be difficult. Second, the numerical solution for the control may 
require excessive computer time; Astrom states that 130 hours of CPU 
time on a V AX 11/780 were needed for the above example. 

31.8 COMPUTER ASSISTANCE 

It would seem that there are few standard algorithms for adaptive 
control design, and hence there are few general CAD programs. The 
best technique is perhaps simulation, and even these quickly become 
intricate. 
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31.9 COMMENTS AND FURTHER READING 

We have looked at a few approaches to adaptive control in the above 
sections. Issues hardly mentioned include the following. 

• Stability When all is said and done, the adaptive control laws are 
non-linear controllers. One would like to be assured the 
resulting systems are stable, but it is very difficult to demonstrate 
this. 

• Expert systems and artificial intelligence (Al) It would seem that 
the controller should be 'smart enough' to 'recognize' what the 
situation is and act accordingly, as perhaps a human operator 
might. This is a new research area. One particular area of 
research is neural networks for control, discussed briefly in 
Chapter 32. 

• Dual control and probing signals Given that the dual effect exists 
but is too difficult to handle optimally, it is useful sometimes to 
have probing signals to aid identification. This is sometimes done 
in practice, but we have barely mentioned it. 

• Adaptive filtering This is a specialty of its own, and it is 
particularly pursued by the signal processing specialists in 
communications. Many of the ideas overlap with those of 
adaptive control and system identification. 

To pursue the ideas further, a starting point is perhaps the survey 
article of Astrom (1987). Several books concerning algorithms are 
now appearing, including those by Astrom and Wittenmark (1989) 
and Goodwin and Sin (1984). 

We remark that adaptive controllers are real: they are being 
implemented in ship autopilots, where gain changes made according to 
water depth, wind, etc., can lead to increased operating efficiency 
worth thousands of dollars, and as parts of off-the-shelf control 
systems such as process controllers where typically the capability is 
for Ziegler-Nichols type automatic tuning of PID regulators. A 
number of applications are listed by Astrom (1987). Commercial 
self-tuning regulators are considered by Astrom and Hagglund (1988), 
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Adaptive control and system identification of the standard types 
usually reduce to parameter estimation. Since the control law is 
ultimately a mapping from the measurement history to commands to 
the plant, it is intriguing to consider attempting to establish an 
appropriate such mapping without using the specialized structure that 
the standard methods use. Several techniques have been suggested 
which, to a greater or lesser extent, self-learn or are taught the proper 
control. Among these are: 

• artificial neural networks, 
• functional learning, 
• expert systems, and 
• fuzzy systems. 

In this chapter we try to look at a the essence of each of these. 

32.1 SYNOPSIS 

There are several approaches to control law design in which the action 
of the controller might be said to show 'intelligence'. In artificial 
neural networks, the controller is configured as many similar 
elements, called 'neurons', which have fixed input-output relationships 

and typical functions for f are such as 

1 
fez) = 1 + e-Z 
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fez) = sat(z) = { ~ 
-1 

l:5:z 

-1:5: z:5: 1 

z :5: -1 

By connecting a great many such elements in parallel and series a 
very complex relationship between measurement vectors y and 
command vectors u can be implemented. If the elementary 
parameters ai are not known a priori, a supervisory routine 
somewhat like a mathematical programming algorithm can be used, 
along with a set of desired input-output pairs, to 'teach' the network. 
In 'learning' its parameters, the network might be said to show 
intelligence; in addition, the interconnection of the identically formed 
simple elements is rather like an animal's nervous system. For these 
reasons, the field is called artificial neural networks (ANN) or simply 
neural networks. 

A less tightly structured scheme in which the good control law is 
assumed representable by an unknown function U(y(t); t) where y are 
measurements may be foqnulated. If we use an algorithm Asuch that an 
estimate of the function U(y; t) is formed and such that U ~ U, the 
system can be said to learn to do good control, and hence to show 
intelligence. 

A completely different approach arises when humans 'teach' a 
controller by informing the controller, in a rough way suitable for 
teaching human operators, of their own operational rules. Since the 
rough way usually involves a lack of precision, at least in terms of 
usual computer algorithms, this is called fuzzy control and is based 
upon fuzzy set theory. The latter is a set manipulation algebra in 
which elements have a degree of membership of a set which is other 
than the binary degree (it belongs or it does not belong) in 
conventional set theory. The set theory allows the controller to be 
taught in terms such as 

IF {the speed is TOO HIGH} 
THEN {decrease the input current SLIGHTLY} 

A large set of such rules, when processed using the fuzzy set logical 
operations, yields a 'taught' control function U(y; t) . 

Related philosophically to fuzzy set applications because of its 
reliance upon experts, but usually utilizing standard logical processing 
of a set of rules, is expert systems theory. Here again the controller is 
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taught by experts to evaluate a situation and act accordingly. A typical 
rule is: 

IF {motor is on} AND {excess temperature is indicated} 
THEN {tum motor off} AND {sound alarm signal} 

We briefly look at each of the above, the two taught system 
approaches and the two self-learning approaches, in this chapter. We 
also indicate a couple of other schemes which show promise. 

32.2 ARTIFICIAL NEURAL NETWORKS (ANN) 

Artificial neural networks represent a confluence of ideas from 
biology and computing; users of the latter have a desire to do rapid 
computing using computers in parallel, while the former field suggests 
that brains operate by using highly interconnected brain cells called 
neurons, each performing relatively simple processes. The resulting 
methods all work by processing inputs through a simple set of quite 
structured computations to give an output; learning appears in the use 
of the inputs and desired outputs to derive the parameters of the 
structures. 

32.2.1 Some basic notions 

More specifically, and to take a simple example, let {e(k)} be an error 
signal input to the control law and let {u(k)} be the output command, 
as in Fig. 32.1. 

In this scheme, the function 10 is prechosen and is of a generally 
sigmoid character. For pattern recognition, for example, and also to 
correspond to notions of brain operation, the choice f(y) = sgn (y), or 
a scaled and biased version of it, is often made. Partly for reasons of 
ease of using some of the algorithms, the smooth function 

1 
fey) = 1 + e-Y (32.1) 

is frequently used. The control law is determined by choosing a 
structure such as this and then selecting appropriate parameters 
ai, ~ i, Yi, 3 for i = 1,2, ... , Nand N a chosen number of elementary 
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e(k) u(k) 

f(~e + ~J 

Figure 32.1 A simple SISO ANN structure with one layer. 

blocks. Because the blocks are entirely internal to the operation, they 
constitute a 'hidden layer' in the network; the inputs e are the input 
layer, and the outputs u are from the output layer of the computation. 
In the figure, it is clear that 

N 
u(x(k» = 8 + L y;f(Uie(k) + ~i) 

i=l 
(32.2) 

It is arguable that in the usual case there exists an ideal, but 
unknown, function u(x) which gives 'good' control and that the goal is 
to 'learn' this function. Such is the point of view of ANN models. 

Example 

An example used in this chapter is 

x(k+ 1) = (1 - x(k»2 - u(k) 

with the goal being to find a control law which would give one-step 
deadbeat control. 
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The claim often seen is that ANN methods can be used. We 
consider a one-hidden layer method for the above problem and 
generate an approximate solution using heuristics. The point is not to 
illustrate the learning, but the ANN structure and parameters which 
might give a control law. 

In this example, the input is x(k) at each stage. It is fed (with 
weight = 1) to a number N of neural elements with varying biases; 
these have outputs denoted by Yj, j = 1,2, ... , N. The control output 
u(k) is then given by 

N 
u(k) = L aiYi 

i=l 

Since the solution to the example problem is obviously 

u*(x(k)) = (1 - x(k))2 

the object is to find weights such that u(k) =:: u*(k) . 
We observe thatf(y) in (32.1) has 

f(O) = 0.5 f(-5) = 0.0007 =:: 0 f(5) = 0.993 =:: 1 

and decide to define 

1 
g(x,b,L'!.) = 1 + e-5(x-b)/il 

We then choose 

Yl = 1 - g(x, 0, 0.5) 

Y2 = g(x, 2,0.5) 

Y3 = 1 - g(x,-1,0.5) 

Y4 = g(x, 3,0.5) 

Y5 = I - g(x, -2, 0.5) 
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Y6 = g(x, 4, 0.5) 

Y7 = I - g(x, -3, 0.5) 

Y8 = g(x, 5,0.5) 

Ordinarily the b components would be chosen by the learning 
algorithm. 

With the above, the control 

is a rough but reasonable approximation to u*(k). As shown in 
Fig. 32.2, it shows errors up to about 0.5 over the range -3 ~ x ~ 5, 
and is almost exact for the integer values in this range. 

. : : u(x) : : , 
.. I t I. I • ' 
~ ...... -~ ............ ! ........................... -: ............ ~ ... ...... .. ~ .. ...... -:- .. ... ,,' 
..:: :::: " 

• I I '"' I, ......... ..,: ........... ~ ..................... ,.: ...... -.~ ............ ~ ........... :,... .. .. 

\ :: :: :: ... 
• I' "I I' 

......... I .......... ~ .......... 10· ...... .-: .... • .. • .... ~· .... ····~ .. ••••• & ....... . 

: ::: 
......... .,: .. .. ..... ; ....................... -:.- ..... ~ .. . ... ..... ~ .......... (. . ......... . 

, \. I' I " 
I.' I I ., I 

". I ., "" I .. , I I ,' .. ... __ ........ .. .. 4............ ......................................... .. .. ~ ........ .. 
, I",' \.: :::.': 
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... .... .. .. 00:-- ....... ............ ...... .. . -: ............. ~ ............ ... ...... ~ ...... .. 

I " I · I' t · . . · . . 

-3 o x 5 

Figure 32.2 Example of a possible ANN curve fit with only a few 
neurons. 

For the learning situation, a typical approach is to have a cost 
function f(a,~, y, 0) which is to be optimized by choosing 
a = (al,a2, ... ,aN), ~ = (~1,~2, ... ,~N), Y = (Yl,Y2, ... ,YN), o. A 
common such function is a quadratic motivated by 



www.manaraa.com

Artificial neural networks (ANN) 767 

k2 
f(a,~, y») = L (u*(x(k)) - U(X(k)))2 

k=kl 

which in this instance is 

Since the very reason for using this method is that u*(x) is unknown, 
the model must be developed further. One case in which the simplest 
calculations can work is when the system dynamics are 

x(k+ 1) = g(x(k)) + u(k) (32.3) 

The desired value xdes(k + 1 ;x(k)) is presumably known; for 
example, if we seek deadbeat control for any x(k), then we have 

u(x(k)) = xdes(k+ l;x(k)) - g(x(k)) 

With such a definition, we may operate the system, for we can 
measure x(k+ 1) and derive 

k2 
f(u,~, y, 0) = I. (xdes(k+ l;x(k)) - x(k+ 1))2 

k=kl 

With this as a measure of the efficacy of the proposed controller, 
we may proceed to determine improved parameters. The straight­
forward approach is a gradient descent method. With 8 = (a:~:y:o)T, 
find V'sf. Then, choose 

k2 
L18 = - ~ V'sf = 11 I. (xdes(k+ 1 ;x(k)) - x(k+ 1))(V' ex(k+ 1)) 

k=kl 

where scalar step size 11 is a parameter. 
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Continuing with the gradient descent, V ex(k + 1) can be found 
because of the special structures (32.3), (32.1) and (32.2). In 
particular, since 

N 
x(k+ 1) = g(x(k» + 0 + L yd(UiX(k) + Pi) 

i=1 

withiO given by (32.1), we can find 

dx(k+ 1) _ 1 
dO -

dx(k+ 1) -fi( . (k) A.) 
dYi - Ulx + PI 

dx(k+ 1) 
dUi = Yix(k)j(UiX(k) + Pi) (1- !(uix(k) + Pj» 

dx(k+ 1) 
OPi = Yd(UIX(k) + PI) (1 - !(uIx(k) + PI» 

Rather than batch processing the above, it is frequent that we choose 
kl =k2. In this way, the parameters are readjusted after each cycle of 
the process, with equations such as 

O(k+ 1) = O(k) -Il (xdes(k+ 1) - x(k+ 1) 

Yi(k+ 1) = Yi(k) -Il (xdes(k+ 1) - x(k+ 1) !(uIx(k) + Pi) 
ui(k+ 1) = ui(k) -Il (xdes(k+ 1) - x(k+ 1» 

x Yix(k) !(uix(k) + PD(1 - j(uix(k) + Pi» 
Pi(k+ 1) = PiCk) -Il (xdes(k+ 1) - x(k+ 1» 

x yi/(uix(k) + Pi) (1 - !(uix(k) + Pi» 
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32.2.2 Multilayers 

There are many variations of the above simple layout. The most 
obvious are to have multiple inputs, so that (32.2) becomes 

or multiple outputs, so that (32.2) becomes 

N 
ulx(k» = ~j + L Yji!(ujix(k) + Pj) 

i=l 

Another variation, and perhaps the most interesting, is to have 
multiple intermediate, or hidden, layers. In this case, with multiple 
inputs and outputs, one possible form is 

NN-l 
uj{k) = N-1Yj.NN+l + L N-1Yj.i N-Iyi(n) 

i=l 
j=1,2, .. . ,N 

j= 1,2, ... ,Ni 

i=1,2, ... ,Nl 

where N - 2 = number of hidden layers, Ni = number of nodes in layer 
i-I; Nl inputs and NN outputs are assumed. Also 

u/n) = output j of network at step n 

iy/n) = output of the jth node of layer i 

ix/n) = net input to the jth node of layer i 

iYj. k = weighting of input k to node j of layer i 

(32.4) 
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Although there is no necessity that the function 10 be the same for 
all nodes or that the sigmoid logistic function (32.1) be used, it is 
convenient because it has the property 

a[(x(a» I = I(x(a*» {I - I(x(a*»} ax(a) I 
aa a* aa a* 

(32.5) 

Using this, it is straightforward in principle, but tedious and 
notationally obscure, to find the various partial derivatives for the 
gradient descent or similar technique. We show this by the following. 

I NN 
fee) ="2 L L (Ui, des(n) - uiCn;e»2 

n i=1 

af(e) _ NN . aUj(n;e) ae --L ~(Ui,des(n)-uiCn,e» ae 
n z=1 

(32.6) 

Then we start enumerating the coefficients. For convenience, we 
choose n=l and suppress it in the notation. 

dUi{e2 { I j=l 
d(NYj,Nj+l) = 0 j:~i 

aUi(e) { N-1Yk j=l 
d(N"{j,k) = 0 j:ti 

In terms of the inputs to the previous layer, we have 

where we have used (32.5). Because of the definition of hk implied 
by (32.4), we have 
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dCN-1Yi,k) 

a(N-IX;) 
a (N-2xk) 

{
I 

- 0 
N-IYk 
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i=j and k=NN_l+1 
i:tj or k >NN-l + 1 
i=j and 1 ~k~NN-l 

We may continue backwards through the network, from output 
back to input, using analogous relationships. Now we apply this to the 
problem at hand by reconsideringf(8) from (32.6), specialized to this 
application. 

We see that 

af(8) { -(Uj,des(n) - uiCn;8» 
a(NYJ,k) - -(Uj,des(n) - uJCn;8»N-1Yk 

af(8) NN aUj(8) 
a(N-1YJ, k) = ~ (u i, des - ui(8» a(N-1YJ, k) 

NN NN-l 

k=NN-l+l 
l~k~NN_l 

- L(Ui,des -ui(8» L NYi,mN-1Ym(1- N-lYm)N-2yk o(m, k) 
i=l m=l 

NN 
= - N-lykCl - N-lYk)N-2YkL NYi,k(Ui,des - ui(8» 

i=l 
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The next stage can be computed to be 

afCS) NN 9 aUi(9) 
aCN-2YJ,k) = ~ CUi, des - UiC )) aCN-2Yj,k) 

NN NN- l aUj(9) NN- 2 aCN-lxm) aCN-2xu) 
= - ~CUi,des - ui(9)) L aCN-lx ) L aCN-2x) aCN-2'V. k) 

1=1 m=1 m p=1 p /j, 

NN NN-l 

= - L CUi, des - ui(9)) L NYi, mN-1Ym (1 _N-Iym) 
i=1 m=1 

NN- 2 
X L N- 1Ym,pN-2yp (1 _N-2Yp )N-3Yj O(p,j) 

p=l 

NN- l 
= - N-2Yj (1 - N-2yj)N-3Yj L N-1Ym,l-lYm (1 - N-l ym) 

m=1 

NN 

L NYi, mCUi, des - uj(9)) 
i=l 

We now define the 'effective error' at node j of level i as iJ..lj, with 

NN- l 

N-2J..lj = N-2Yj (1 - N-2Yj) L N- 1Ym,jN-l ym(1 - N-lym) X 
m=l 

NN 

L NYi ,m CUi, des - UiCS)) 
i=l 
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NN-l NN 

= N-2Yj (1 - N-2yj) L N-1Ym,j N-1Ym (1 - N-1Ym) L NYi, m NJli 
m=l i=l 

NN-l 
= N-2Yj (1 - N-2 yj) L N-1Ym , jN-l Ilm 

m=l 

The general tenn is then 

It is seen that 

A gradient descent on), will have in general 

with a constant 11 chosen such that the linearization approximation 
holds. Specifically, we have 

with 

NJli = (Ui, des - Ui (8)) 

Nk 
m-lJlj = m-1Yj (1 - m-1Yj) L mYi, j mlli 

i=l 

1 :S; k :S; Nm-l 

k = Nm-l + 1 
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and where the indices range over k = 1,2, ... ,Nm_1,j = 1,2, ... ,Nm and 
m = 2,3, ... ,N, as the adjustment algorithm for the parameters. This, 
because of the way in which the error sensitivities k/lj are generated, is 
called a backward propagation algorithm. It turns out to work 
fairly well, which can be considered a surprise for a technique which 
is basically a gradient descent algorithm of mathematical 
programming. 

Example 

The system described in the example of section 32.2.1 (page 764) may 
be arranged for back propagation, with an input layer (of the scalar 
x(n», a hidden layer with 21 nodes, and an output layer of the scalar 
udes(n), which was taken as x(n+ 1). The set-up had 

N 
u(k) = L 2Yi 2Yi + 2YN+l 

i=l 

Then the update equations were 

e = x(k+ 1) - u(k) 

2Yi = Zri + 11e 2Yi 

2YN+1 = ZrN+1 + 11e 

1Yi, 1 = 1Yi,l + 11' e 2Yi (1 - 2yi) x(k) 

1Yi,N+I = 1Yi,N+I + 11'e 2Yi (1 - 2yi) 

with 11' adjusted at each step so that the maximum value 

i= 1,2, ... ,N 

i= 1,2, ... ,N 

was limited (to keep the adjustments within the range such that the 
linearization held) to about 0.05. This was run with inputs from the 
range [-5,5], applied either systematically or randomly, and the 
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output error computed. Typically, the learning gain was about 0.05, 
and a nearly stable solution was reached after 5000-10000 trials, 
with the system incapable of achieving a fit closer than iO.5 -0.7 of 
ideal. 

32.2.3 Comments 

ANNs can be used for system identification by having their inputs the 
same as the system to be identified and their outputs attempting to 
match those of the actual system. The issue of system dynamics 
(memory) is handled by using state vector inputs or by putting delays 
into the network. An alternative puts the ANN in 'backwards', with 
system outputs as ANN input and attempts to have the ANN output 
match the actual system inputs (Fig. 32.3); then, of course, it is easy 
to find the system input which will give a desired system output. 

(a) 

u(k) I--!!"'"""'I"- y(k) 

(b) 

........ y(k) 

Figure 32.3 Structures for using ANNs: (a) for identification; and (b) for 
adaptive control. 
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32.2.4 Further reading 

Much of the neural network activity of interest to engineers has been 
in pattern recognition, as in recognition of printed characters. One 
starting point for studies of control systems which use artificial neural 
networks is the book by Narendra and Parthasarathy (1990). A now­
classical demonstration is of the inverted pendulum, or broom-stick 
balancing, control system, as given by, among others, Anderson 
(1989). Another demonstration is of truck-backing, described by 
Nguyen and Widrow (1990). 

Somewhat more general, with emphasis on basic terminology and a 
survey of methods and applications, is the introductory book of 
Simpson (1990). Engineering students may find the special issues of 
the IEEE Proceedings (Lau and Widrow, 1990) helpful. 

ANNs are the subject of intense research at this time, with some 
interesting applications being commercialized. The literature is thus 
rapidly expanding, with both research articles and textbooks 
proliferating. 

32.3 ADAPTATION OF NON-PARAMETRIC CONTROL 
LAWS 

When the control law for a system is treated as an unparameterized 
function, several advantages in implementation accrue. In this section 
the problem of determining such a law for an unknown system is 
considered and a learning scheme is proposed. An example 
demonstrates the operation of the scheme, and Lyapunov theory is 
presented which demonstrates the convergence of the law. 

32.3.1 Introduction 

The control theory literature contains many articles which in the 
opening stages define the feedback law for a system with state 
x E X k: Rn = set of n-dimensional real vectors, and measurements 
y E Yk: RP as a mapping such as U : X (or Y) x T ~ Rm, where T is 
the time interval, either [0, ttJ or {tl, t2, ... , tN}. A more common 
notation is u(x,t) (or u(y,t», with all of the sets, etc. suppressed. 
Few papers follow up this approach in its generality; the function 
quickly becomes a linear law such as u(x, t) = K x, or some other 
parameterized law, perhaps a dynamic one. 
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Suppose we decide to pursue the implications of the general 
formulatk 1. We would appear to accrue some advantages: 
implementation becomes table look-up rather than computation; the 
control function is 'learned' for an unknown system; the function is 
not constrained to be of any particular form, and hence the technique 
should be applicable for non-linear systems. 

32.3.2 The learning algorithm 

Suppose we are presented with a plant described by 

x(k+l) =/I(x(k),u(k),k) 

y(k) = Cx(k) 

for which /I is only partially known, its state x is an n-vector and 
measurements y are p-vectors. The control u(k) is taken for 
convenience to be scalar, and we seek a function 

u(k) = u*(x(k), y(k), xdes(k+ 1), xdes(k), k) 

= u*(s(k» 

where s(k) is a notational convenience indicating the information 
available and needed by the control law. We assume that u* has a 
representation 

u*(s) = JK(y,s)g(y)dy 
r 

for a known scalar kernel K(y,s), some unknown function g(y), and a 
known region r which contains s. Then we estimate u*(s) at stage k 
by u(k; s) and in particular send the command u(k; s(k» to the plant. 
The error at stage k + 1 is then 

e(k+ 1) = xdes(k+ 1) - x(k+ 1) 
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and the control function is improved by taking 

g(k+ 1;y) = g(k;y) + a K(y,s(k» Re(k+ 1) 

u(k+l;s) = J K(y,s)g(k+l;y)dy 
r 

where a is a scalar, R is a 1 x n matrix, and K(y, s) is a chosen 
'spread' function. 

The motivation for the algorithm is direct: from a certain position 
x(k) with required position xdes(k+ 1) (encoded as s(k» a command 
u(k) is selected by using a function u(k;s) evaluated at s = s(k). The 
plant then outputs x(k+ 1) which is erroneous by the amount e(k+ 1). 
To improve the function u(k;s) at the point s(k), a correction 
proportional to e(k+ 1) is made; in particular a Re(k+ 1) is added to 
the old function at point s(k). To 'spread' the knowledge so that better 
controls are also used in the vicinity of s(k), a 'spread function' 
G(s, s(k» derived from K(s, s(k» is used so that a Re(k + 1) also 
affects points s 'near' to s(k). 

32.3.3 Convergence and stability 

For analysis of convergence of the estimate u(k;s) to u*(s) and also 
for study of the stability of the system which has such an adaptive 
control, there appear to be a number of alternatives, mostly based on 
non-linear stability. We outline a Lyapunov demonstration of the 
convergence. 

We consider that the desired trajectory {xdes(k)} is known to be 
attainable for some unknown control function u*(x) and that this 
function has a representation 

u*(s) = J K(Y,s)g(y)dy 
r 

where K(y, s) is a known scalar kernel, g(y) is the unknown core 
function, and r is the finite region upon which the superstate s(k) is 
defined. We assume further that the original system is stable, and that 
e(k) = xdes(k) - x(k) satisfies 
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e(k+ 1) = f(e(k),xdes(k» + h(e(k),Xdes(k»Li(k) 

where liCk) is the scalar control error, defined by 

liCk) = u*(s(k» - Ct(k; s(k» 

where, with the definitions 

Ct(k;s) = f K(y,s)g(k;y)dy 
r 

g(k; s) = g(s) - g(k; s) 

we have 

Li(k) = f K(y,s(k»g(k;y)dy 
r 

We choose the algorithm 

g(k +1; y) = g(k; y) + aK(y, s(k» e(k+ 1) \:;j y E r 

from which it follows that 

g(k+ l;y) = g(k;y) - aK(Y,s(k»e(k+ 1) 

We now consider that we would like {Ct(k; s)} ~ u * (s) as a 
function, and would also like the sequence {e(k)} ~ O. We choose 
the functional 

V(k) = f g2(k; y) dy 
r 
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and examine its progression with k. For notational convenience, we in 
most places will drop the index when it is k. Then 

V(k+ I) = f g2 dy- 2a f K(y, s(k» g dyR(f + hu) 
r r 

+ a2 f K2 (y, s(k» dy(f + hu)TRTR (f + hu) 
r 

Using the definition of u(k) and defining for convenience 

:Jt2 = f K2(y, s(k»dy 
r 

puts this in the form 

V(k+ 1) = f g2dy- 2 auR(f + hu) 
r 

+ a2:Jt2(f + hu)TRTR(f + hu) 

which rearranges to 

~V = V(k+1) - V(k) = fT(a2:Jt2RTR)f 

+ 2u (a2:Jt2 h T RT Rf - aRf) 

We would like to find conditions which ensure that ~ V ~ o. Our 
degrees of freedom appear to be a R and the kernel K. We can look 
at three terms: 

Tl = fT (a2:Jt2RTR)f 

T2 = -2aRh + a2:Jt2hTRTRh 

T3 = a2:Jt2hTRTRf - aRC (32.7) 
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so that 

Clearly a minimal requirement for convergence is that T2 ::; O. This is 
obtained for 

2 
0::; aRh::; ,%2 

with the minimum of T2 at 

1 
aRh=,%2 

where the resulting minimum is 

(32.8) 

Since Re(k+ 1) can be interpreted as a weighting of the available 
state errors (with ri = 0 for Xi unavailable), these constraints help 
determine the magnitude of the weightings. aR can then be specified 
more or less well, depending upon the state of know ledge of h (s (k)). 

Having minimized T2, we survey the implications. In this case, this 
means (from (32.8) and (32.7)) that 

The final consideration is that Tl be small, as clearly Tl ~ O. This 
is essentially a need for the state error to have only a small dynamics 
contribution regardless of the control error, i.e. for f(e(k),xdes(k)) to 
be small. To assure this with unknown dynamics is difficult. A 
partial expedient may be to have the original system controlled in a 
feedback manner by a PID control, say, involving the error. Thus we 
propose that the system model 
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x(k+ 1) = /s(x(k» + hs(x(k»u(k) 

be replaced by 

x(k+ 1) = /s(x(k» + hsCx(k» {Kpe(k) + KDc(k) + ur(k)} 

so that the error equation is strongly stable even in the absence of 
ideal control. 

Example 

In this section we repeat the example of section 32.2.1 (page 764) 
involving a non-linear system. 

Recall that the scalar system has dynamics equation 

x(k+ 1) = (1 - x(k»2 - u(k) 

and the desire is that, for any x(k), xdes(k+ 1) = O. The required 
control is obviously 

u*(k) = - (1 - x(k»2 

In the simulation results, we have chosen 

K(y,s) = exp (- (I(o.~?:) 

g(O;s) = 5 I s I 

aR = 0.5 

and x is stored on a grid of size 41 elements: r = [-4,4]. 
Simulations were run from initial conditions x(O) chosen randomly 

and uniformly on [-3,3] and were run until the first of the conditions 
k=5 and Ix(k) I < 0.01 was reached. Unstable cases were limited to 
avoid overflow (the initial g was not sufficient to assure stability 
over r). 
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Simulation results are shown in Fig. 32.4, which shows the curves 
u(j,x) for j=l, 10, and 50. 

25 
<:::l 

... u - desired 
W . 
f- .. « 
:::2! 
i= 
(/) 
W 
-l 
0 
a: 
f-
Z 
0 
() 

0 
-4 0 4 

STATE - X 

Figure 32.4 Evolution of learning of control law for simple example of 
non-parametric learning. Shown are actual (but unknown) ideal law and 
the law learned after 1, 10, and 50 trials. 

32.3.4 Issues and discussion 

A number of issues become apparent when the technique is applied. It 
is clear that the method works for simulations of simple systems, but 
the theoretical underpinning at this time is weak. Little is known 
about stability and convergence, about algorithm parameters, control 
law information requirements in terms of the minimal vector s(k), or 
the rate of learning. 

The algorithm here has been reported by Westphal (1990). A 
related continuous time algorithm has been investigated by Messner et 
al. (1989, 1991), for learning the actual joint torques needed for 
attaining a desired robot motion sequence; in that application, 
convergence results and successful implementation were shown. 

Other methods of learning would seem to be somewhat related in 
philosophy but not detail to this one. Distantly related are the 
linearization methods of neighbouring optimal control (Chapter 27) or 
even optimalizing control (Chapter 31), with its efforts to optimize an 
unknown function by probing. A further possibility is the genetic 
algorithm approach, discussed for a robotic application by Davidor 
(1991). 
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32.4 FUZZY CONTROL 

The intent in using so-called fuzzy control is to attempt to encode the 
knowledge of expert plant operators, expressed in terms such as 

IF the temperature is high, THEN decrease the heat input a bit 

into algorithms suitable for the binary world of computers, so that the 
computer becomes a tireless expert operator. The key ideas are as 
follows. 

• Variables, rather than being processed in terms of their 
numerical values, are evaluated in terms of their degrees of 
membership of sets. 

• Logic describing the relationships of variables has degree of 
membership as an output rather than a binary TRUE/FALSE output. 

• The actual numerical output applied as a control to the plant is 
determined from the degrees of membership. 

32.4.1 Fuzzy sets and logic 

The basic notion of fuzzy logic is the concept of fuzzy set 
membership. Thus, for example, to say 'John is a tall person' or 'John 
belongs to the set of tall persons' in conventional set operations has a 
value TRUE (or 1) if HE I GHT(JOhn) > 1.83m (say) and FALSE (or 0) 
otherwise. It may be observed that the choice of the number 1.83 is 
perhaps arbitrary and in any case we might not be inclined to say 
'John is not tall' if HEIGHT(JOhn) = 1.82m. The problems carry over 
in an obvious way to plant operations, where 'temperature is high' or 
'speed is slow' have similar problems. 

Because of the above problems, the set membership evaluation is 
changed to allow a degree of membership (DoM) function to be 
defined. This function is selected to have a value 1 when the criterion 
is definitely met and a value 0 if it is clearly not met. Thus we define 
for any set a DoM function, as 
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when x is not in the set A 

when x is arguably almost in the set A 

when x is in the set A 

Some membership functions are shown in Fig. 32.5. 

j.1(X) 

r' _._.-.: .... ---
:/ ... 

(e) (b) ! 
I 

, , , , , 
I ,:' 

, 
.: (a) , , 

j .' 
--------~--~.~.~.----------------- X 

-1 0 

Figure 32.5 The degree of membership function: (a) typical fuzzy 
membership; (b) hard membership, with DoM = 1 for x ~ -0.2; and (c) 
hard membership for the single value x = -1. 

Having defined the DoM of sets and auxiliary operators such as 
VERY (by interviewing operators, for example), we then are in a 
position to perform logical operations on the fuzzy sets. The main 
operations are OR, AND, NOT when using a particular variable vector, 
and ~ (or linguistic implication, i.e. IF ... THEN .. . ) to relate different 
variables. 

• The OR (or + or u) of two fuzzy sets A and B yields a fuzzy set 
C, C = A + B, with membership function defined by 

!lA+B(X) = max (!lA (x); !lB(X» 

• The AND (or· or rl) of two fuzzy sets A and B yields a fuzzy set 
C, C =A·B, with membership function defined by 

!lA.B(X) = min (!lA(X); !lB(X)) 
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• The NOT (or complement or -,) of a fuzzy set A is a fuzzy set C 
with membership function defined by 

• If two sets A and B are defined over different variables x and y 
(as in x for an input measurement and y for an output command) 
then the fuzzy conditional statement IF A THEN B generates a 
relation R with membership function defined on these two 
variables. This relation can be denoted R = A x B, and its 
membership function is defined as 

!lR(X,y) = !lAxB(X,y) = min(!lA(x); !lB(Y» 

Finally, a composition rule of inference is needed, so that the logic 
can be used. (The composition rule of inference is the rule by which 
we establish inferred information. For example, if we have a rule 

IF a person is short THEN that person is a jockey 

then the rule of inference tells us that the particularization 'John is 
short' allows us to claim 'John is a jockey'. Note that the rule need 
not be correct for the argument to be valid.) 

Formally the composition rule is: if the fuzzy set A takes on value 
A' with membership function !lA'(X), then the corresponding value of 
B, call it B', is defined by a membership function !lB'(Y) computed as 

!lB'(Y) = max min [!lA'(X); !lAoB(X,y)] 
x 

In our application, the measurement of a variable will amount to 
defining a DoM which has value 0 except for x = measurement; the 
output will still be a function, however. 

32.4.2 Application to control 

With these definitions, plus the agreement that a rule such as 
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IF temperature is high AND flow rate is low 
THEN pump power is increased 

is encoded as 

IF temperature is high THEN 
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IF flow rate is low THEN pump power is increased 

we are in a position to develop a fuzzy control law. In particular, for 
each output command variable, we develop rules in the format such as 

IF fluid temperature is high THEN 

IF flow rate is low THEN pump power is increased 
OR 

IF fluid temperature is low 
THEN pump power is NOT increased 

OR 
IF pump is overheating THEN pump power is decreased 

etc. The next step is to take numerical values of the input quantities 
(by reading instruments) and evaluate the above using the composition 
rule of inference. 

When this is done, we will have a DoM for the output variable, such 
as perhaps in Fig. 32.6. 

I 

: I .. 
V . 
/: 

.' \ 
I : 

I (c) 

o 
Output Variable x 

Figure 32.6 Inferring a value of an output variable is relatively easy if its 
DoM is single modal, as in (a). (b) shows two modes and is contradictory, 
(c) has a flat function and is ambiguous, while (d) is so low as to be 
indeterminate. 
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With the output variable's DoM established for the particular inputs 
supplied, the final step is to choose the command to be given. Advice 
on this varies, although provided there is a dominant value the result 
may not be too different for the candidates. The typical rule is to 
choose either the maximizing value or the centroid value 

Ymax = arg {m ax [J..lcommand(Y)} } 
y 

f O'Jlcommand( 0') dO' 
Ycentroid = f 

~command( 0') dO' 

The latter's particular appeal lies in its averaging of controls in which 
the maximizing value is not unique. Usually one would examine the 
rules further if contradictory or indeterminate results were indicated. 

Example 

We demonstrate with a trivial example. Measurements T of 
temperature are taken, and a change in heater command u is given. 
The logic relations of the operators are reduced to the following: 

IF {T is very high} THEN {decrease u a lot} 
OR 

IF {T is low} THEN {increase u somewhat} 
OR 

IF {T is about right} THEN {u is unchanged} 

The first step is to encode the T and u phrases above. 
For T we choose the forms shown in Fig. 32.7. Although direct 

numerical work with the graphs is possible, these are encoded as the 
functions 

A: ~A(n = {T is very high} = I + eXp(~5(T -33» 

B: ~B(n = ~{Tis low} = I + eXp(-~.25(T-22» 
c: ~c(1) = ~{T is about right} = exp(-2.5(T -26)2) 
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( 

Very high 

\ About right 

OL---~\~~~~~"~--~---')--~--~ 
20 36 

Temperature T - deg. 

Figure 32.7 DoM describing the temperature T for text example. 

and it is assumed 20 ~ T ~ 36. For u, we have 

1: 

2: 

3: 

1 
Jll(.6.U) = Jl{decrease u a lot} = I + exp{-16.33{ilu+0.6» 

Jl2{ilu) = Jl{increase u somewhat} = exp{-50{ilu+0.4)2 

{ I ~u=O 
Jl3(.6.u) = Jl{u unchanged) = 0 ilu:;tO 

with ilu defined over the range -1 ~ ilu ~ 1, as shown in Fig. 32.8. 
The rules are then encoded as 

IF A THEN 1 
OR 

IF B THEN 2 
OR 

IF CTHEN 3 

The DoM of these are 
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Heater Command ~u 

Figure 32.8 DoM implied by the three rules for change flu in heater 
setting for text example. 

JlAICT,~u) = min { JlACI), JlIC~U) } 

JlB2(T, flu) = min { JlB(1), Jl2(flu) } 

Jlc3(T,flu) = min { Jlc(1), Jl3(flu) } 

and are noteworthy for being functions of two variables. Finally, we 
develop the function of two variables giving the contingencies 

JloR(T, Llu) = max {JlAl(T, Llu), JlB2(T, Llu), Jlc3(T, Llu)} 

as shown in Fig. 32.9 which encapsulates the possibilities and for each 
measurement. 

For a measurement T meas, we define the DoM function 
corresponding to this instantiation. 

JlmeasCI) = { ~ T=Tmeas 
T1=Tmeas 
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Figure 32.9 DaM as a function of temperature and heater change 
resulting from the three rules. 

We can then develop the DoM for the heater command at this value as 

J.lcontroller(~U @ T meas) 

= max min {J.lmeas(1), J.loR(T, ~u) } 
T 

Choosing ~U as the argument of the maximization of this (rather than 
the centroid) gives 

~U(1) = arg max J.lcontroller(~U @ 1) 
Il.u 

Such a function is shown in Fig. 32.10. It will be seen to be poorly 
defined in some regions, simply because in fact J.lcontroller(~U @ 1) is 
small at values such as T = 24.5. This indicates an incomplete set of 
rules. 

32.4.3 Comments and further reading 

A control law is ultimately a rule or mapping from a set of 
measurements and required-variable values to a command to a plant. 
Fuzzy control laws ultimately yield just that, although the motivations 
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Figure 32.10 The command change as a function of temperature when 
peak value of DoM is the selection rule. Note that the DoM is in some 
regions of (T, &t) too small for a reliable decision and more rules are 
needed. 

are not mathematical and the implementation may (unnecessarily) 
utilize fuzzy logic computations in real-time. The rules are usually 
tuned (by changing the DoMs for inputs or outputs or by adding more 
rules), just as PIDs, LQGs, and other rules are tuned so that the actual 
(rather than theoretical) system gives 'good' performance. As a way 
of generating and adjusting non-linear laws for non-linear systems, 
fuzzy control theory shows promise and, we are told, is actually used 
in some systems. Nevertheless, in spite of the rhetoric, ultimately this 
is another method for generating commands as functions of 
measurements, and the function can be precomputed and stored in 
computer memory along with interpolation rules. 

Since this intriguing alternative to conventional approaches to 
control law design is based upon fuzzy sets, one starting point for 
serious study is the book by Zadeh (1965); early application thoughts 
were pursued by Zadeh (1973). 

Examples are in the literature. Pilot plant-size boiler-steam engine 
and stirred tank systems have been studied, and comparisons to direct 
digital control of PI type have been made which are favourable to 
fuzzy control (King and Mamdani, 1977). A small nuclear reactor 
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was controlled by a system described by Bernard (1988); another 
recent study and description is by Li and Lau (1989). 

32.5 EXPERT SYSTEMS 

The branch of AI research called expert systems is fairly recent, and 
its attempted application to control systems even more recent. It 
seems to be applicable to the supervisory level of control and to PLC 
decision-making rather than to algorithmic device commanding. We 
look briefly at the concept and possiblilities. 

32.5.1 The notion of the artificial expert 

An expert system is a piece of software which attempts to perform 
like a human expert within a very constrained field of knowledge but 
at considerable depth. Some of the most famous examples of expert 
systems are in medicine, where a list of symptoms and laboratory 
results is presented to a computer which then suggests diagnoses and 
treatments; a commercial example is the widely reported DEC® 
system used to configure computer systems to meet customer 
requirements. 

The reasons for using a software expert system vary, although the 
goal ultimately is to emulate a human expert. The motivation may be 
to replace the human in a situation where 

• the human cannot always be available (doctors in remote areas); 
• the situation is a routine one in which the human expert would be 

under-utilized (routine examination of X-ray films or 
electrocardiograms in medicine, plant operating data in 
engineering); 

• augmentation is needed, i.e. when the knowledge base is too 
broad for a single human (diagnosis of obscure diseases, selection 
of configuration for complex systems); or 

• consistency of application of expertise is desirable (human 
operators make mistakes when they tire or have information 
overloads), etc. 

To be useful, the expert system should have a number of properties. 
It must be based on a large body of knowledge contained in rules of an 
IF ... THEN ... ELSE ... type. It should have a traceable line of 
reasoning, i.e. it must indicate why a certain decision has been made, 
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and do so in an understandable way. It must be flexible enough to 
accept new and altered rules. 

To build an expert system, the knowledge must exist in an empirical 
manner to which heuristic rules are applied. Also it is fundamental 
that the system is likely to be less than 100% successful, just as are the 
humans it emulates. 

32.5.2 Industrial expert systems 

Expert systems in industrial applications are generally of two types: 
diagnostic systems and design systems. Diagnostic systems are used to 
suggest reasons for a failure or malfunction, and their primary 
economic benefit is the reduction of down-time by warning of 
problems or assisting in isolating causes for rapid repair. In design 
systems, the benefit seems to derive from suggesting alternatives to 
human designers for tasks such as product configuration or 
management of production flow. 

A new type of system is being investigated for process control on­
line. It may be observed, and perhaps should have been emphasized, 
that control is not a simple matter of a few, possibly complicated 
algorithms and their associated input-output relationships. In fact, 
even simple algorithms have a number of associated heuristically 
based tests. For example, we note the following. 

• Sensor data must be tested. Not only must it be verified that the 
sensor has not failed absolutely, but the data received must be at 
least roughly consistent with other data. 

• Commands should be reasonable, which usually means at least 
that they are magnitude-limited. 

• In the event of a malfunction, the controller should recognize that 
there may be a problem and do something 'reasonable.' No 
control law should make a problem worse. 

• The control law should react properly to predictable transients. 
For example, special startup sequences should be performed 
under appropriate circumstances. 

In addition, there are certain tasks performed by expert human 
operators which might arguably be done by a software system. 
Among these are decisions as to when to retune a PID controller 
(whether a self-tuner or a manually tuned controller), when to 
consider changeover to a backup system, etc. 
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One suggested structure for viewing the problem was presented by 
Astrom et ai. (1986). Their study, using OPS4 as the expert system 
shell, used rules such as 

RULES 
( (State is upstart) (Goal is PID-control) 

(PID parameters available) 

«DELETE> (State is upstart) 
«ADD> (State is PID-control) (Start PID»» 

RULE 12 
( (State is =X) 

(Alarm has occurred) 

«DELETE> (State is =X) 
«ADD> (State is alarm)(Old state is =X»» 

The system used 70 such rules. The plant studied had a choice of 
three algorithms (PID, relay, kc-tc) with a choice of two sets of PID 
parameters, depending on set point, or self-tuning of a Ziegler­
Nichols type. 

32.5.3 Comments and further reading 

Expert systems of this type (rather than the fuzzy set encoding of the 
previous section) are still a field with much potential but few reported 
results. The paper by Astrom et al. (1986) gives an outline of the 
potential and discusses some of the problems. Otherwise, expert 
systems are a standard topic of computer science/AI. A brief 
summary is given by Tanimoto (1987). 

32.6 FINAL REMARKS 

Learning control is, rather like adaptive control, a philosophy more 
than a method. We have looked at four different approaches in this 
chapter. For each, we have given leads to more reading. Overall, the 
reader might be advised to follow the progress of the field in the 
literature. The robotics conferences are among those presenting 
interesting results, as are the journals such as IEEE Transactions on 
Robotics and Automation. 
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Feedback control is necessary to compensate for unpredictable 
disturbances to a plant or process and for inaccuracies in predicting 
plant response because of errors or approximations in plant models. 
There have always been several techniques for designing 
compensators: feedforward control based upon measurements of 
disturbances and placing margins in the design specifications are 
among the basic ones, while adaptive and self-tuning controllers are 
among the more complicated ways of improving plant models. An 
alternative, philosophically related to gain and phase margins, is the 
rapidly developing field of robust control theory, which entails 
mathematical design of control laws to meet defined uncertainty 
levels. In this chapter we briefly and superficially introduce this 
subject. 

33.1 SYNOPSIS 

Consider the system portrayed in Fig. 33.1. From this it is easy to 
show that 

yes) = (I + G(s) C(s»-l G(s)C(s)R(s) + (I + G(s) C(s»-l D(s) 

- (I + G(s) C(S»-IG(S) C(s) N(s) 

There are several goals to be met through choice of C(s): 

1. the system should be stable, even in the presence of errors in the 
implementation of G(s) and C(s); 

2. the response yes) should be satisfactory, even when the system is 
disturbed (by D(s» or the measurements are noisy (through 
N(s»; and 

3. preferably, both 1 and 2 should hold simultaneously. 
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O(s) 

R(s) Vis) 

I 
M(s) T ~ "-------....... r--- - - - O-- N(s) 

+ 

Figure 33.1 System structure for transfer function domain robust 
controller studies. 

If the above are to be done explicitly, then the size of model errors 
and exogenous disturbances and noise must be defined in some way. 
This means that measures of these factors must be developed, and then 
the extent of the errors defined for each situation. For these purposes, 
the theory works with mathematical norms, which are generalizations 
of absolute values of scalars and are denoted 11·11 (Appendix B), and 
the problem definition includes restrictions such as 

IID(joo) II ~ Ll(oo) 

and 

G(s) = Gnom(s)(1 + L(s» where II L(joo) II < l(oo) 

Under these circumstances, typical results are small gain principles of 
the following type 

• For robust stability, it is required that 

II G(joo) C(joo) II < [-1(00) 

• For optimal performance, it is required that we form 

min II (I + G(s) C(s»-lll 
c 
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• For robust performance, it is required that conditions such as 

1 > IIW(ffi) (I + G(s)C(s»-lIl 

+ IIlm(ffi)(I + G(s)C(S»-lG(S)C(S)II 

hold. 

Another important approach to robust performance while maintaining 
stability uses the Y oula parameterization of stabilizing controllers. 

The state-space method using loop transfer recovery (LTR) to 
improve the parameter robustness of LQR controllers (Chapter 28) by 
systematically detuning the filter's model is relatively easy 
conceptually and is computable in a straightforward manner. 

33.2 BASIC NOTIONS AND KEY RESULTS 

The approaches used in robust control theory require more advanced 
mathematical methods than we have explicitly used in previous 
chapters, although many of those chapters could be expressed in terms 
of the notations used here. Thus we define the distance measures 
called norms and present the most important ones in this section. 

It is arguable that there have been two particularly key notions used 
in robust control theory: small gain theorems and parameterization of 
the set of stabilizing gains. Those are also met in this section. 

33.2.1 Notation and error models 

When discussing errors, we need some sort of measure of them. 
When the quantities involved are scalars this is relatively easy, but 
when they are (or can be considered as) vectors, it is necessary to use 
some more advanced mathematics. The basic notion of size is the 
norm of a vector. For a vector v, the norm is a scalar function, 
denoted IIvll, with the following mathematical properties. 

1. II v II > 0 and II v II = 0 if v = O. 
2. II a v II = I a I II v II for any scalar a. 
3. IIv + yll ~ IIvll + lIyll. 
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There are many different nonns, of which the most common are 
defined as 

IIv lip = (i I Vi lP]t 
1=1 

A very common norm has p = 2 and is called the euclidean norm. 
Another useful norm uses p = 1. The limit p ~ 00 turns out to yield 
the max I Vi I and is called the oo-norm, 

i 

IIv 1100 = m~xlvil 
I 

Matrices can be viewed in either of two ways: as vectors having 
their own norms or as operators on vectors v which yield other 
vectors y and hence having their norms defined by the relationship of 
the v-norm and the y-norm. This latter interpretation gives an 
induced norm, and the usual definition has 

where 'sup' denotes the supremum, or least upper bound, and is 
effectively 'almost' the max, or maximum. (The difference is subtle 
and mostly does not concern us. We see, however, thatf(x) = I - e-X 

has a largest possible value, or sup, of 1, whereas max (f(x» is 
undefined - there is no value of x for which it takes on a value which 
cannot be exceeded.) We notice that 

The matrix A will also have a singular value decomposition (SVD) 
given by 
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with 

UU*=I VV*=I 

The largest singular value is crl and is denoted cr(A); the minimum 
singular value is denoted s;r(A); the number r of singular values is the 
rank of the matrix. The connection with norms is that it turns out that 

cr(A) = IIA Ih 

In the above, the vectors and matrices could be functions of 
parameters, in which cases the norms are also functions. We will 
most commonly meet this with transfer function matrices G(s), and 
we will be interested in frequency responses, and in particular 
IIG(jeo)1I2 and its limits cr(G(jeo» and .cr(G(jeo».These latter bound the 
frequency response and allow us to evaluate frequency domain 
compensators. 

The ideas above extend to signals, which are functions of time, and 
'averaging' of those functions, a notion particularly related to noises 
and disturbances. Of the extensions, the common one is the quadratic 
extension, which for a signal yet) is 

and which because of Parse val's theorem becomes 

The important result of all this is that for an input signal u(s) into a 
system G(s), the norm induced in G by the signal norm 1I·lh is 
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IIGII2 = supcr(G(jro» = II G 1100 
c.o 

which is the oo-nonn. We emphasize that the latter is an induced 
nonn. 

This all becomes important when model errors are to be defined in 
explicit tenns by specifying the limits of accuracy of matrices and 
transfer functions. For a state-space example, consider a model 

i = Ax + Bu 

y =Cx (33.1) 

in which A is imprecisely known. Then a possible model is that 

A = AO + oA (33.2) 

where oA may be one of several possible types. If its structure is 
unspecified, but its size is known to be limited, then the model is said 
to have unstructured variations and the error is assumed to satisfy a 
constraint such as 

IIOA II ~ a (33.3) 

for a specified scalar a. An alternative has structured variations, such 
as 

(33.4) 

where - I ~ aj ~ I and of course other possibilities, such as randomly 
varying aj, can be considered. 

With multivariable transfer functions, similar possibilities exist. 
Thus the plant model G(s) may be 

G(s) = Go(s) + oG(s) 
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where the uncertainties are multiplicative on the output, multiplicative 
on the input, and additive, respectively. The error matrices may be 
structured, in that elements are known to within an unknown 
parameter as in (33.4), or unstructured but bounded. In the latter 
case, for example, we may have 

IIL(jO)II ~ Im(O) (33.5) 

or 

IId(jO) II ~ la(O) (33 .6) 

where 1m and la are specified scalar functions, but nothing further is 
known about the individual elements of the matrices L or d . 

In the above, the matrix norm used will vary with the theory being 
used, although in much of the theory both the 2-norm and the oo-norm 
appear. In all cases, the ultimate use is that the plant G(s) is said to be 
a realization from a set :y defined as, for example, 

:y = {G(s)IG(s) = (I + L(s»Go(s) ; IIL(s)112 ~ lm(O)} (33 .7) 

33.2.2 Small gain theory 

One of the fundamental notions in the study of robustness is small gain 
theory. In some cases, this can seem obvious and almost incidental, 
but several key results in robust stability theory are built upon it. An 
over-simplified characterization says that if the loop gain G(s) C(s) is 
stable, then the closed-loop system is stable if, for all (J) 
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IIG(jro)C(jro)II < I (33.8) 

This is arguable using a Nyquist approach concerning ongm 
encirclements by det(I + G(s) C(s», and superficially would seem to 
be sufficient since there would be no encirclements under the stated 
condition. In any case, the result tells us that if the loop gain is 
'small', then closing the loop on a stable open-loop system will yield a 
stable closed-loop system; more precisely and more relevant to 
robustness, a feedback loop composed of stable subsystems will remain 
stable in the presence of uncertainties provided that the transfer 
function gain is 'small enough'. 

33.2.3 Gain parameterization 

One of the difficulties with design is that the compensator which meets 
specifications for any given plant is rarely unique; we hesitate to 
design compensators for all possible plants in the set J7 and then 
choose from the intersection of these to obtain a robust design. One 
way to avoid this exhaustive approach is to parametrize the stabilizing 
controllers for one of the elements of J7. Such parameterization can 
be approached several ways, of which we show two. The first, due 
partly to Youla (Youla et al., 1976) and bearing his name, proceeds 
along the following lines. 

The idea here is that all compensators C(s) which stabilize a plant 
G(s), i.e. for which (I + G(s) C(s»-l has only left-half plane zeros, 
can be written in terms of transfer functions K(s) which are stable. In 
fact, if we can find a stabilizing compensator Co(s), and if 

1 - 1 -Co(s) = Uo(s) V(i (s) = V(j (s) Uo(s) 

G(s) = N(s) D-l(S) = fi-l(s) N(s) 

where Uo, Vo, N, D are appropriately sized matrices of polynomials, 
then any stable matrix K(s) of appropriate size will generate a 
stabilizing compensator C(s) through the calculation 

C(s) = (Uo(s) + D(s) K(s» (Vo(s) - N(s) K(s»-l 
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This can also be written 

C(s) = Co(s) + VOleS) K(s)(I - Vo\s)N(s)K(s»-1 VOl 

and several other ways. 
To find the right-hand matrix fraction description of matrices such 

as G(s), we use the Smith-McMillan form M(s), with L(s) and R(s) 
the appropriate unimodular transformation matrices (see sections 
10.2.2 and 11.3.2). This follows from the basic form 

where 

G(s) = L(s) M(s) R(s) 

M(s) = diag {el(s), .. . , e,(s), ... } (diag {ft(s), ... ,f,(s), ... })-l 

= N/(s) D/-l(s)-l 

Using this, we may define 

N(s) = L(s) N/(s) D(s) = R-l(S) D/(s) 

so that 

G(s) = N(s) D-l(s) 

A similar representation may be obtained for Co(s). 

Another approach, related to the parameterization above but in a 
different form and having the incidental feature of alternatively 
characterizing the compensator, defines, using Go(s), the matrix Q(s) 
which implies the desired controller C(s). Thus let 

Q(s) = C(s) ( I + Go(s) C(s»-l 

C(s) = Q(s) ( 1+ Go(s)Q(s»-l 
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and note that the closed-loop transfer function is given by Go(s) Q(s); 
if the closed-loop system is stable, we may say Q(s) stabilizes Go(s). 
Then, under certain restrictions on the set ~ of possible plants, i.e. 

• ~ = {G(s) I G(s) = Go(s) + oG(s); oG(s) suitably bounded, 
• all RHP poles of Go are of order 1, and 
• all poles of G(s) on the real axis are at the origin}, 

we have the following: 

if Qo(s) stabilizes the system with plant Go(s), then all Q(s) 
which stabilize Go(s) are given by 

Q(s) = Qo(s) + Ql(S) 

where Ql(S) is stable and Go(s) Ql(S) Go(s) is stable. 

In either case above, if we can find a stabilizing controller, we 
know a parameterization of all stabilizing controllers and can seek 
among these for a controller with further properties, such as robust 
stability or robust performance. A sub-optimal design method to 
attempt is to find a simple representation with a variable parameter, 
such as a gain, and vary that gain to meet the specifications; thus if 
Go(s) is stable, the choices Qo(s) = 0 and Ql(S) equals anything stable 
are adequate for the theorem if not in practice. The latter is because 
the implications of Qo(s) = 0 are that C(s) = Ga\s), which may be 
impossible to implement and be unstable if the plant is not minimum 
phase. 

33.3 TRANSFER FUNCTION APPROACHES TO 
ROBUSTNESS 

Much recent robustness theory utilizes transfer function models for 
the mathematical arguments, although it has been remarked that the 
actual calculations frequently use state-space operations. In this 
section, we consider robust stability and robust performance, with 
emphasis on the notions involved. We remark that design methods 
seem largely of the cut and try or iteration of analysis variety. 
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33.3.1 Robust stability 

Robust stability results depend in detail, but not in essence, on the 
uncertainty type - whether input or output multiplicative, for 
example. To develop the techniques used and illustrate a gain limit 
yielding robust stability, we consider a set ~ of plants characterized 
by a nominal plant Go(s) with output multiplicative unstructured 
uncertainty 

G(s) = (I + L(s» GoCs) 

Then the system will remain stable with compensator C(s) provided 
that 

cr(GoUro) CUro) [I + GoUro) CUro)]-I) < cr(L~ro» (33 .9) 

A short version of the argument used for this is that the closed-loop 
transfer function frequency response is 

TUro) = GUro) CUro) [ 1 + GUO) CUro) ]-1 

and hence (dropping the arguments jro) we need that 

det [I + GC ] :t 0 

This requires that the singular values all be positive, so that 

~ [ 1 + GC ] = ~ [ 1 + Go C + LGo C ] > 0 

Thus we need 

~ [[CLGOC)-1 + L-l + 1 ]LGoC] > 0 

which holds, since L Go C is stable by assumption, if 

Q: [ [(Go C)-1 + 1 ] L-l + 1 ] > 0 
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This holds provided that 

Q: [ [(Go C)-1 + 1 ] L-l ] > 1 

for which it is sufficient that 

Q [(Go C)-1 + 1 ] Q [L-l] > 1 

This is the same as 

cr [[(Go C)-1 + 1 ]-1] a [L] < 1 (33.10) 

from which (33.9) follows. 
An alternative argument can be developed using the small gain 

theorem. For variety, we consider the case of input multiplicative 
errors as in 

G(s) = Go(s) [I + L(s)] IIL(joo) II ~ 1(00) (33.11) 

Our objective is to evaluate the robustness of stability associated 
with a controller C(s). The system is diagrammed in Fig. 33.2(a) 
with an alternative form in 33.2(b). 

In the alternative form, we make the definitions 

where 

M(s) = - Go(s) C(s) (I + Go(s) C(s»-l 10 

~(s) = L/~) 

10 = sup (cr(L(joo») 
ro 

and hence II ~(s) II ~ 1. 
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(a) 

R(s) ~(s)~ Y(s) 

(b) 

M(s) 

Figure 33.2 Uncertainty description models (after Morari and Zafiriou, 
1989): (a) multiplicative uncertainty block diagram; and (b) general model. 

We use the small gain result and consider a system as in Fig. 
33.2(b). If M(s) is stable, the implication of the small gain theorem is 
that the indicated loop is stable provided IIM(s)~(s)1I < I for all 0); an 
alternative statement of this for the induced oo-norm is that, for all 0) 

cr(MGO)~GO)) < 1 

sup (cr(MGO)~GO)) < 1 
0) 

or, because of the restriction on II ~(s) II, that 

or 

sup (cr(MGO)) < 1 
0) 

II M(s) 1100 < 1 
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Immediate application of this to the system of Fig. 33.2(a) yields that, 
for all ro 

or 

cr(Go(jro) C(jro) (I + Go(jro) C(jro»-l) 10 < I 

I II Go(s) C(s) (I + Go(s) C(s»-I11 <-z 
00 0 

(33.12) 

is required for robust stability. Furthermore, since at high 
frequencies Go(jro) C (j ro) is usually 'small', we can approximate 
(33.l2) to yield the requirement that, for (0 large 

cr(Go(jro) C(jro» < 10 

It is worth noting that any of these is easily computed (using SVD 
algorithms) for a given C(s). 

The problem with the above is not only finding C (s) which 
stabilizes the nominal plant Go(s), but finding one with sufficient 
stability margin to stabilize all the possible plants meeting the 
requirements (33.5-8). 

33.3.2 Robust performance 

Discussion of performance requires a definition of performance goals. 
For the robust theory, this is defined in terms of the error. Thus we 
take the system description 

yes) = (I + G(s) C(s»-l G(s) C(s) R(s) + (I + G(s) C(s»-l D(s) 

- (I + G(s) C(s»-l G(s) C(s) N(s) 

and define the error e(t) and its transfer function E(s) through 
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E(s) = Y(s) - R(s) 

= (I + G(s) C(S»-l (D(s) - R(s» 

- (I + G(S)C(S»-l G(s)C(s)N(s) (33.13) 

Then we choose to evaluate the error in the square sense 

lie II, = (l(eT(t) e(t) dt »)' 

and which because of Parseval' s theorem becomes 

(33.14) 

We can extend this by 

1. frequency weighting the error, with lower frequencies being 
emphasized compared to higher frequencies; 

2. selecting some components of e(t) as being more important than 
others; and 

3. emphasizing certain input signals. 

The first two of these can be done with a matrix W output( co) and the 
third with a matrix Winput(CO) so that instead of (33.14) we work with 

where ( )H denotes the complex conjugate transpose. In these terms, 
we seek the controller C(s) which minimizes this error, or the 
solution of 
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2 
min II Woutput(s)E(s) Winpub)112 
C(s) 

00 

= min2~ f (WoutputEGc.o) Winput)H (WoutputEGc.o) Winput)dc.o 
C(s) -00 

For computation, the above needs the inputs D(s), R(s), N(s) 
defined. It is standard to consider the noise as a separate problem, so 
that N(s) = 0, and to note that the error in (33.13) is the same whether 
the input is a disturbance D(s) or a reference R(s); hence it is 
unnecessary to separate the issues of tracking command inputs from 
those of suppressing errors. In fact, then 

E(s) = e(s) V(s) 

where 

e(s) = (I + G(s) C(S»-l 

is called the sensitivity function. Now we consider the problem of 
minimizing error when the inputs are norm-bounded. In particular, 
we design for inputs vet) for which the frequency weighted 2-norm is 
bounded,asin 

or its equivalent, v' = W i;Jut v, 'r' = { v' I II v' II~ ~ I}. We then seek 
the maximum error due to such inputs, i.e. 

max II W outputE 112 = max II Woutput e W input V' 112 
Ve~ Ve~ 

By careful choice of v' and examination of the definition of the 
2-norm, we can argue 
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max II Woutput E W input v' Ih 
V'Er' 

= sup cr(Woutput(jro) E(jro) Winput(jro» 
ill 

Thus the optimal design problem becomes 

min II Woutput (I + GC)-l Winputlloo 
C(s) 

= min sup cr(Woutput (jro )(1 + G (jro) C(jro»-l W input(jro» 
C(s) ill 

The optimum value will be some (unknown) value J*. Hence, we 
may state that, for all w, 

min IIWoutput (I + GC)-l Winputlloo ~ r 
C(s) 

or, with 'reasonable' scaling on the weighting functions Winput and 
Woutput. that 

min II Woutput (I + GC)-l Winput 1100 < 1 
C(s) 

Hence we have met the performance requirement satisfactorily if 
we find a compensator C(s) such that 

II Woutput (I + GC)-l Winput 1100 < 1 

The robust performance problem is then of finding C(s) which 
meets this requirement for any G(s) E~. To simplify the algebra, we 
combine the two weighting functions into a single scalar function w(s), 
so that the requirement is that 

II w (I + GC)-l 1100 < 1 
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We use the model 

G(s) = (I + IL(s» Go(s) IIL(jro) II $1 

and note that we require, for all ro and for all G E :Y 

cr(W(jro) (I + GUro) C(jro»-I) < 1 

Defining 

Eo(s) = (I + Go(s) C(s»-1 

11o(s) = (I + Go(s) C(s»-1 Go(s) C(s) 

let us compute 

£(s) = (I + G(s) C(s»-1 = Eo(s)(1 + lL(s)11o(s»-1 

Then we compute that the robust performance requirement is 

cr(W(jro)E(jro») = cr(W(jro) Eo(jro)(1 + ILUro) 110(jro»-I) < 1 

and this is implied by 

cr( w(jro) Eo(jro)) cr( (I + IL (j ro) 11o(jro »-1) < 1 

Using the equivalent relationship 

cr( (I + IL Uro) 110(jro»-I) = Q(I + IL Gro) 11 o(j ro) ) 

= 1 - cr(lL(jro) 11o(jro») 

= 1 - cr(l11o(jro») 

(33.15) 
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with (33.15) leads to 

o(wOoo) EOOoo») + 0(1110000») < 1 

or explicitly 

cr(W(jro) (I + GO(jro)C(jro»-l) 

+ cr(l (I + Go(jro) C(jro»-l GO(jro) C(jro») < 1 (33.16) 

It is easy to consider this expression as having a robust stability 
term (the second term, since I is associated with the model bounds) 
and a nominal performance term (the first term, with its weighted 
sensitivity emphasis). Thus we get robust performance by leaving a 
performance margin (first term < a < 1) and also being 'stable 
enough' (second term < I - a). This is a classic engineering trade-off 
made mathematically explicit. 

33.3.3 A design approach 

The problem in the above is to find a compensator C(s) so that (33.16) 
is satisfied. One approximate method is to find the compensator 
which yields optimal nominal performance, and then to detune this 
until the robustness constraint is satisfied. We might note that this is 
essentially what loop transfer recovery (section 33.4) does. The 
search can be aided by using the controller parameterization to obtain 

One special case for which there is an explicit solution for C has 
Gnom stable and of the form 
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and the input similarly 

where the subscript A denotes all-pass, i.e. of the form for example 

-s + a ' 
GA(S) = e-s9 n *' . s + a j 

l 

where Re (aj) > 0 and e ~ O. The subscript M indicates that the factor 
is minimum phase, i.e. that the zeros have negative real parts; the 
poles have negative real parts because of the assumption that the 
function is stable. Using the above factorizations, it has been shown 
by Morari and Zafiriou (1989, Thm. 4.1-1) that the optimal ISE 
control is given by 

In this, the notation ( )* indicates that after partial fraction 
expansion, all terms involving poles of GAl(s) are omitted. As an 
example, if 

and 

then 

-s+2 
Gnom(s) = GA(S) = -­

s+2 

s {s + 2 s + I} 
Qo(s) =S+1 -s + 2 -s- * 

= _s_ {-I + L + 6 } = -s + 1 
s + 1 s -s + 2 * s + 1 
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With Qo determined, we now detune using a filter F(s), so that 
finally 

Q(s) = F(s) Qo(s) 

One straightforward technique is to choose a filter form and adjust 
one or more parameters of the filter to meet the robustness conditions. 
A candidate which retains the error constants for a Type 1 system is 

1 
F(s) = (A.S + 1)n 

while a Type 2 system can be retained using the form 

nA.s + 1 
F(s) = (A.S + l)n 

in which cases n and A. are parameters. The order n is chosen so that 
Q(s) is proper, i.e. so that the order of the denominator is higher than 
that of the numerator. Then for a chosen A., check the following: 

• robust stability - ensure that, for ro = 0 

I GnomUro)QoUro) FUro)lL(ro) I < 1 

• robust performance - increase A. until, for all ro 

I GnomUro) QoUro) FUro) lL( ro) I 

+ l(l-GnomUro)QoUro)FUro))w(ro)1 < 1 
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Example 

We are given a process model 

m 1 
Go(s) = ke-s9 n 1 

j=l tiS + 

in which the delay e, which is nominally equal to 1, is uncertain up to 
15%. The performance is to be optimized for a step input, to show a 
Type 1 characteristic, and to have a maximum weighting of 
wmax(oo) = 0.4. 

The set:§ of potential actual plants is defined by 

:§ = { G(s); I G -;;oG o I = le-jo - 11 < /L(w) } 

from which it follows from the specifications that 

1=2 
{ 

1 - e-O.15s 

L(s) = 2 
1 

0.15OO~1t 

0.1500 > 1t 

The optimum non-robust and possibly unrealizable controller can 
be found as 

(k m 1 )-1 (1 1) 
= s a 't is + 1 e-s9 s 

1 m 
= ke-s n (tiS + 1) 

1=1 
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and we choose to use the filter 

1 
F(s) = (AS + l)m 

This yields the controller 

1 m 
C(s) = k«As + l)m - 1) D ('tiS + 1) 

We now choose A so as to achieve robust stability. To do this, we 
search for A such that, for ro = 0 

I GoUro) QoUro) FUro) IL(ro) I < 1 

which, since Go(jro) Qo(jro) = 1, is easy to compute. Using any 
calculator (such as MathCad) one can compute this for various m as 

m A 

1 0.1 

2 0.062 

3 0.05 

The robust performance requirement simplifies, for all ro to 

I FUro) I + 1(1 - e-jro FUro» W(ro) 1< 1 

With m = 1, the robust stability value A = 0.1 from the table above 
yields the maximum of the left-hand side::::: 1.6; checking other A 
reveals that the robust performance inequality requires A> 0.33. 
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33.4 STATE-SPACE APPROACHES 

One of the most used robust control law development methods is the 
loop transfer recovery (LTR) method, which is basically a linear 
quadratic regulator (LQR) with output from a suitably detuned 
Kalman filter. We review this before looking briefly at one of the 
early and alternative state-space approaches to robust performance, 
that of guaranteeing a maximum cost in a LQ problem with state 
feedback. 

33.4.1 A special technique: loop transfer recovery (LTR) 

In Chapter 29, it was argued that a system modelled as 

X =Ax + Bu + rv 
y = Cx + w 

with cov(v(t» = Qno(t), cov(w(t» = Rno(t), x(O) - N(XO,LO) is 
optimally controlled according to the cost index 

by the control law 

u(t) = - Kx(t) = - R"P} BT P x(t) 

in which P solves 

0= QPI+ ATP + PA - PBRp}BTp 
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and i is the output of the steady-state Kalman filter 

x = Ax + Bu + G [y - C [Ax + Bu]] 

where 

G = I.CTR;l 

o = AI. + I.AT -I.CTR;lCI. + rQnrr 

Now if noise-free state feedback is possible, the use of the filter 
estimate x is unnecessary, the compensator is C(s) = K in Fig. 33.1, 
and the loop transfer function is 

Gl(S) = K(sI - A)-lB (33.17) 

It is known that this transfer function exhibits gain margin of at 
least 1 and phase margin of 60°; it is robust in that it can tolerate a 
gain error of 1 or more. 

If the Kalman filter must be used, however, the comparable loop 
transfer function becomes 

G2(S) = K(sI - A - BK - GC)-l GC(sI - A)-l B (33.18) 

It is known (Anderson and Moore, 1989) that in this case it is 
possible that for certain filters the margins can become very small, so 
that the method cannot be used without care. Usually, however, 
(33.18) approaches (33.17) if G ~ 00 and thereby approaches the 
original state feedback design properties. G can be made large by 
making Q n large, which corresponds to implying that either 
disturbances can be large or the model errors are large enough that 
disturbance effects are apparent. Either way, the method is to design 
a succession of filters, using a parameterized Qn as in 

Qo>O 

with q a scalar parameter. 
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Example 

To see the effect of the L TR methods, we consider a simple problem 
using a motor model. In particular, assume 

i = [ ~ _!] x + [~] u = Ax + bu 

y = [1 0] x = Cx 

If the optimal control criterion is 

oo( [100 0] ) 00 J= J xT 0 1 x + [ 1 ]u2 d't = J (xTQx + Ru 2) d't 

then the optimal control law (Chapter 26) for state feedback is 

where 

Kc = [10 3.69 ] 

The loop transfer return difference KcUroI - A)-l b is shown (as 
dotted lines) in Fig. 33.3. 

Since only a scalar measurement is involved, a filter or observer is 
required. We use a Kalman filter, assuming that noise terms 

[~] v and [1] w 

with variances qn and r n are respectively added to the dynamics and 
measurement equation models. Choosing 
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Figure 33.3 Loop transfer function recovery by using LQG controller 
with various system noise parameters q in the Kalman fIlter. 

rn = 1 

and letting q be a parameter, we may find the steady-state Kalman 
filter gains Kf(q) and from this the return difference 

KcGooI - a + bKc + Kf(q) C)-l Kf(q) C GooI - A)-l b 

is computed. These are shown in Fig. 33.1 for q = 0.01,1 ,100,104, 
106. The gains are 

q \ 0.01 1 100 104 106 

Kf = 0.095 0.73 3.58 13.18 43.73 

0.0046 0.27 6.47 86.82 956.3 

From the figure, it is clear that as q increases, the filter plus 
controller system becomes closer in loop transfer characteristic to the 
state feedback controller case. In this instance, the gain cross-over 
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frequency increases with q, implying an input robustness; the infinite 
gain margin and 60° + phase margin of the original system become 
20 dB or so and about 60° respectively in all cases using the filter, 
implying a gain and time constant robustness in all cases. 

The above demonstates only the influence of tuning the Kalman 
filter design to achieve closer to the desired transfer function. In 
MIMO cases, the principal gains are used. In a more complicated or 
special case, the gain margins when the filter is used may be almost 
zero (Anderson and Moore, 1989), clarifying that (a) such a structure 
may exhibit no parameter robustness and hence (b) the Kalman filter 
must be carefully designed if the loop recovery is to be effective. 

33.4.2 Robust performance 

Robust performance has also been approached in state-space. One 
such problem was defined as in (33.1-4) with the structured errors 

where A and Ai (i=1,2, ... ,p) are n x n matrices, and B is an n x 1 
vector, while the ei (i= 1,2, ... ,p with -1 ~ ei ~ 1 and 1 ~ eb ~ b) and 
b are scalars. Then for the cost criterion 

T 

]=1 xTHx +1 J (xTQx+uTRu)dt 
o 

the cost J will be a function of the parameters e = [81 82 ... 8p 8bl, and 
we wish to choose a feedback control law u = - K(t)x such that the 
maximum cost, regardless of the instantiation of e, is minimized. 
Thus we need 

min max] 
K(t) e 

Alternatively, let V(K) be the least upper bound of] as e varies; we 
wish to minimize V by choice of K. Then it can be shown (Dorato, 
1987) that 
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u = - R-IBTS(t)X 

with cost guarantee 

v = !XTS(t)X 

provided that Set) solves the modified Ricatti equation 

. P T 
- S = Q - SBR-IBTS + SA + ATS + L P iabs(Ai)Pi 

i=l 

SeT) =H 

where the orthonormal matrix Pi diagonalizes [SA + ATS] to yield 
Ai, as in 

P T [SAi + AT S] Pi = Ai 

and abs (A) has elements equal to the absolute values of elements of A. 
Steady-state solutions can be found from backward integration. 

One notes that in the absence of uncertainty, this is simply the LQ 
problem of optimal control. 

33.5 COMPUTER AIDS 

Computer aids are both necessary and available for these problems. 
Finding the singular values such as cr(G(joo», for example, is easy 
numerically using SVD algorithms. The LTR iterations (on the 
parameter) are also straightforward using the LQR and LQE 
algorithms. Packages such as MA TLAB® and Ctrl-C also have special 
robust control packages. Manufacturers literature and worked 
examples can be more helpful here than some of the textbooks. 
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33.6 SUMMARY 

The above has only touched the surface of this intensively researched 
new topic in an attempt to convey a feel for the nature of the 
approaches and a couple of important results. One might attempt to 
be aware of the modelling methods used for the uncertainties, the key 
steps of small gain theorems and stabilizing controller 
parameterizations, and the nature and ubiquity of the LTR approach. 
One might also be aware of the fact that the theory is mostly 
associated with linear systems and, to some extent, the way in which 
the linear model is good enough for non-linearities. Many engineers 
will perhaps check any design with simulations, including a set of runs 
with parameters randomly chosen from within the specification 
envelope (a relative of so-called Monte Carlo techniques.) 

33.7 FURTHER READING 

Selected research literature is readily available in reprint books such 
as those by Dorato (1987) and Dorato and Vedavali (1990). 

An advanced textbook devoted to the subject, particularly the 
multi variable transfer function approach, is that by Morari and 
Zafiriou (1989), while Maciejowski (1989) includes helpful 
discussions of robust control and Anderson and Moore (1989) have 
studies of loop transfer recovery (L TR). 
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Structures of multivariable 
controllers 

Multi-input-multi-output (MIMO) control is in principle handled 
using the theory presented in earlier chapters. The classical theory 
has been extended to systems described by plant models G(s) where G 
is a matrix, and much state-space theory, such as optimal control and 
pole-placement feedback, is intrinsically multivariable in capability. 
The result is that, in principle, control can be done as in Fig. 34.l(a). 

For a number of reasons, however, the engineering applications 
may not use the full theory. These range from theoretical reasons, 
such as models too large to handle well, through reasons of need to 
manipulate the models into forms to which the theory and engineers' 
judgements apply, to practical reasons of controllers too complicated 
to be readily implemented. 

Engineering judgement has led to real systems such as the 
following. 

• In industrial robots such as the PUMA series by 
Unimate/Kawasaki, a hierarchical arrangement is used. The 
individual joints are each controlled as SISO systems using a 
servo-motor under microprocessor control. The joints are co­
ordinated by a supervisory minicomputer. 

• In some process control, the input and output sets of variables are 
decomposed into pairs. Then a particular input (called a 
manipulated) variable is generated based primarily upon a 
selected output (called a controlled) variable. The fact that 
variables necessarily interact - e.g. the output temperature of a 
fluid depends upon both the heat input and the flow rate - is 
accounted for in the design of the controllers. 

In essence, the reality is that large MIMO systems are likely to be 
controlled as in Figs 34.1(b) or 34.l(c). Reasons include engineering 
convenience, judgement, and understanding, plus the ready availability 
of computers of many sizes and prices, some built into measurement 
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devices, actuators, or low level process controllers, and others used 
for tasks such as plant control and electric grid supervision and 
control. 

(a) 

(b) 

(C) 

· • 
• 

• • • 
PLANT/PROCESS 

COMPUTER w~h /,tIMO CONTROL LAW 

PLANT/PROCESS 

~OP" Co",,,,,,,, : 

I Loop 2 Contro"e~ 
r 

~·--- l Loop 1 Controller L _ _ • ________ 

• • 

1 
~ » 
V> 
C 

ill 
;:: 
m 
~ 
V> 

i- -t oop1 Controller ! -- -_c_ ---- - -----, 

i L.-.- SUPERVISORY CONTROLLER A +-__ ...-. 

! r-
I' I ;:: , 

CJ) ,I , ~ I 
~ I ~_~------------~~ J CJ) , 

~ -->- PLANT/PROCESS _->-~ _______ J 

~ ---~-------., o _ z ' 
(,) , -i 

CJ) 

MASTER CONTROL (Control Room) COMPUTER 

Figure 34.1 Structuring of control of multivariable systems: (a) MIMO 
controller; (b) decoupled into set of SISO loops; and (c) typical 
hierarchical/distributed control. 
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Although many of these systems have been designed primarily based 
on engineering judgement, as in Chapter 2, there exists a patchwork of 
theory which is helpful. Such theory is met in this chapter. The 
various techniques will do one or more of the following: 

• allow approximation of the plant so that designs are more 
practically studied; 

• allow preliminary design of controllers so that laws can be 
designed using extensions of SISO methods; and 

• allow simplification and approximation of controllers designed 
using and reflecting the full power of the design methods of 
earlier chapters. 

34.1 SUMMARY 

Standard in the engineers' repertoire, if not in teaching, are special 
structures for compensation of SISO systems. Especially common are 
the notions of feedforward control, of either inputs or disturbances, 
and cascade controls to handle multiple loops in a special case of 
MIMO control. 

More generally, decomposition of the MIMO problem into smaller 
problems depends ultimately on exploiting special structural 
relationships of the system. These potentially include different time­
scales of the subsystems' responses and (partial) decoupling of the 
internal variables from each other. 

In matrix terms for linear system models, we will be concerned 
with the basic plant/process model 

x = Ax + Bu 

y = Cx (34.1) 

in which the A, B, and C matrices have special character, such as is 
represented in the partitionings 

= [Bl 0] 
B 0 B2 

C _ [C1 0] 
- 0 C2 
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For convenience, we use partitioning and the notations 

x = [:~] u = [:~] y = [~~] [ All A12] 
A = A A 21 22 

where Xl is an nI-vector, YI is a PI-vector, etc. In some such cases, 
we would like to be able to achieve adequate control with 

instead of the general MIMO 

u = fey) 

This will of course require special assumptions or properties of the 
coupling matrices A12 and A2I, or alternatively special functions fl 
and f2 to account for the coupling. 

In transfer function terms we need the matrix transfer functions 
Gij(s) and vector transforms Yj(s) and Uis) in 

[YI(S)] [G1l(S) G12(S)] [UI(S)] 
yes) = Y2(S) = G2I(S) G22(S) U2(S) 

= G(s) U(s) (34.2) 

to be such that a pairing of inputs and outputs, such as in specializing 
the general case 

U(s) = Ge(s)E(s) = Ge(s) [R(s) - yes)] 

= [Gell(S) Ge12(S)] [R(s) _ yes)] 
Ge2I(S) Ge22(S) 

to the special case represented by 
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U(s) -_ [Go ell 0 ] [R() Y()] G s - S 
e22 

=[ Gell(S) (Rl(S)-Yl(S)) 1 
Ge22(S) (R2(S) - Y2(S)) 

gives adequate control. 
With either of the above, and with variations of them, there has 

arisen a body of knowledge, containing both practical and theoretical 
elements, which is helpful to the engineer. It is unfortunate that this 
body is seldom definitive as to what should be done. 

We remark that in many cases, because the state-space 
representation (34.1) has transfer function representation 

yeS) = G(s) U(s) = C(sI - A)-l BU(s) 

and a transform relationship (34.2) has many state-space 
representations, the techniques below apply to both types of problems 
even though motivated by only one of them. 

34.2 CASCADE AND FEEDFORWARD STRUCTURES 

Two common and straightforward structures for basic systems are 
feedforward and cascade controllers. Both have the aim of improving 
performance, the former by anticipating and precompensating for 
errors, the latter by using extra measurements in a natural way. 

The concept of feedforward control is straightforward, even though 
the implementations are sometimes not; it can require extra 
measurements and careful tuning. There are two situations in which it 
is useful: 

1. reduction of disturbance effects by measuring the disturbance and 
applying a compensatory command before the error grows to the 
point at which the feedback controller will cancel it, e.g. one 
might measure the temperature of fluids input to a boiler and 
adjust the boiler flame to maintain the output fluid at constant 
temperature; and 

2. open-loop anticipation of commands needed to attain a specified 
output s, e.g. generate robot limb commands based upon the input 
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of desired position - feedback is used to compensate for position 
errors resulting from inexactly known robot parameters. 

Both are, in effect, the generation of a control based directly upon 
the measured quantity, whether disturbance or input, in lieu of waiting 
until a feedback error arises and then compensating. The controller 
structures appear in Figs 34.2 and 34.3. 

Input + 

R(q) 
Controller 

C(q) 

Disturbance 
D(q) 

PLANT 

G(q) 

Output 
Y(q) 

Figure 34.2 Structure of feedforward disturbance compensation, when 
the disturbance is measured. 

The case of feedforward control of disturbances can be analysed in 
the usual manner. Using Fig. 34.2, we have 

Y(q) = (I + G(q) C(q»)-l 

(G(q)(F(q) + Cff(q»D(q) + G(q) C(q)R(q») 

and it is clear that if we can measure the disturbance d(t), and hence 
by implication treat its transform D(s) as a potentially known input, 
then designing Cff(q) such that 

(I + G(q) C(q» - l (G(q) (F(q) + Cft{q»D(q» 

is small, and using the controller with transfer function 
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U(q) = C(q)E(s) + Cff(q)D(q) 

will reduce the effects of disturbances. 
Command feedforward is also intended to reduce the error 

transients. It is inherently an open-loop command, as can be seen by 
considering Fig. 34.3. 

Feedforward 
r--~----I Compensato 

Input + 
R(q) _ 

C (q) 

Controller 
C(q) 

PLANT 
>----~-l 

G(q) 

Figure 34.3 Structure of feedforward input compensation. 

Here we have 

Output 
Y(q) 

Y(q) = (I + G(q)C(q))-l (G(q)C(q) + G(q)Cft{q))R(q) 

and formally (or for scalars) 

Y(q) = (I + G(q)C(q))-lG(q)C(q) (I + C- l(q)Cff(q))R(q) 

= (I + G(q) C(q))-l G(q) C(q) R'(q) 

We see that by the choice Cn(q) = G-l(q), we have Y(q) = R(q), a 
provocative result which is often impractical because of the large 
commands needed for step responses. It is possible to use lower 
performance feedback loops, i.e. simpler C(q), with feedforward 
because the errors to be removed are smaller due to the use of Cn{q). 
It is noteworthy that implementation can be done directly as in 

U(q) = C(q) E(q) + Cn(q) R(q) 
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or indirectly by modifying the reference input, as in 

U(q) = C(q) [(I + Cit<q»R(q) - Y(q)] 

= C(q) (R'(q) - Y(q» 

The second common configuration uses cascaded controllers to 
implement multiple loops. Ordinarily this comes about when process 
variables other than the main controlled outputs are available; a 
standard example is in a servo-motor, in which the shaft angle is to be 
controlled, but where using a tachometer allows shaft speed to be fed 
back in a control loop. A simple configuration is shown in Fig. 34.4. 

,--- ------ - ---- - ------- --- -- - ----- -- ----------- ------, 

Y(q) 

Figure 34.4 Structure of cascade compensation. 

It is easy to show in the scalar case that 

and hence clearly the use of the inner loop gives extra freedom in 
designing the system. We remark that one of the costs of doing this is 
that we must ensure that inaccuracies or failures in either the inner or 
outer loop are not catastrophic. 

34.3 TRANSFER FUNCTION APPROACHES TO 
MUL TIV ARIABLE SYSTEMS I: INPUT -OUTPUT 
PAIRING 

A process control operation can easily have hundreds of manipulated 
(input, control) variables and a similar number of output (measured) 
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variables . It is not practical to do MIMO control on this entire 
system, nor would the results of doing so necessarily be reasonably 
implementable. Problems with implementation would range from the 
obvious need for considerable centralized computer power, and 
extensive communications to and from it, to the less obvious problems 
of assuring fail-safe operation of subsystems, if for example a 
communication line were to fail. An additional and important factor 
is that operating personnel may have extensive experience with, say, 
PID control of certain valves which would be lost to no good 
advantage if an elaborate centralized controller were used. 

To investigate the problems and what can be done here, we consider 
only 2-in-2-out (21-20) processes and their linear time-invariant 
system models. We look first at the problem, then at the relative gain 
away method of considering pairing, and finally the issue of 
decoupling compensators. 

34.3.1 The issue 

A process modelled by (34.2) and specialized to scalar use in the form 

[ YI(S)] [GII(S) G12(S)] [VI(S)] yes) = = 
Y2(S) G21(S) G22(S) V2(S) 

= G(s) V(s) (34.3) 

can be depicted as in Fig. 34.5 

Figure 34.5 A 21-20 process/plant. 
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Figure 34.6 Two-loop control of the 21-20 plant using input/output 
pairing. 

Figure 34.6 depicts the closed-loop situation when the plant is 
controlled through pairings of input 1 with output 1, and input 2 with 
output 2. Figure 34.7 shows the alternative pairing. 

Figure 34.7 Alternative pairing of two-loop control of 21-20 plant. 
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It is straightforward to show that in the first case, since 

[ Gell(S) 0 ] 
U(s) = 0 Gell(S) [R(s) - yeS)] 

= [Gell(S) (RI(S) - yeS»~ ] 
Gell(S) (R2(S) - yeS»~ 

the transfer functions for the closed-loop become the following: 

Y (S) - Gll Gell (1 + G e22 G22) - G 12 G21 Gell Ge22 R 
1 - (1 + GIl Gell) (1 + G22Ge22) - G21 G12Gell Gell 1 

G12Ge22 R 
+ (1 + Gll Gell) (1 + G22Ge22) - G2I G12Gell Ge22 2 

Y (S) - G21 Gell R 
2 - (1 + GllGell) (1 + G22Ge22) - G21 G12Gell Ge22 I 

GllGe22 (1 + G ell G U)- G12 G21 Gc11 Gc22 R 
+ (1 + Gll Gell) (1 + G22Ge22) - G21 G12Gell Ge22 2 

(34.4) 

It may be observed that to the extent that the coupling terms G12(S) 
and G21(S) are 'small', the control will be dominated by the 1-1 and 
2-2 feedback loops. A number of observations can be made, 
however, when these terms cannot be ignored. 

1. If controllers are designed or tuned as if no coupling occurs, i.e. 
as if control design only considers selecting Geii(S), i = 1,2, to 
give good closed-loop transfer functions 

Gii(S) Gc;;{s) 
1 + Gii(S) Geii(S) i = 1,2 

and hence good poles at the zeros of 
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we may be very disappointed with performance, and even have 
an unstable system because the actual system poles will be at 

(1 + Gll(S) Gell(S» (1 + G22(S) Ge22(S» 

- G21(S)G12(S) Gel1(S) Ge22(S) = ° 
2. We would like to have a scientific way of selecting the proper, or 

'best' , pairings of inputs with outputs. It would also be helpful to 
have a way of knowing when pairing is inappropriate for some 
subsystems. 

3. Compensation for the presence of coupling would be a useful 
design option. 

34.3.2 Pairing selection using the relative gain array 

The relative gain array provides a methodology for selecting pairs of 
input and output variables in order to minimize interactions among the 
loops. Although straightforward and experimentally implementable, 
it has the disadvantage of considering only the steady-state character 
of the interactions. 

To see how it works, we consider again the 21-20 system 

[YI(S)] [Gl1(S) G12CS)] [UI(S)] 
yes) = Y2(S) = G21(S) G22(S) U2(S) 

= G(s) U(s) 

For a small step input with one variable, say UI, we can hold either 
U2 or Y2 constant and find the effect on Yt . Specifically, we find 

[~YIJ = lim sYI(S) = lim Gl1(S) 
oU I u2 s~O s~O 

when U2 = ° and UI(S) = lis. Also, with the same input but the 
constraint Y2 = 0, we find 
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1 o = Y2(S) = G21(S) s + G22(S) U2(S) 

so that 

G2I(S) 
U2(S) = - sG22(S) 

and hence 

(~1 . Y ( ) . {G () G I2(S) G2I(S)} =limsIS=lim l1S- G() 
~UI 2 s~O s~O 22 S 

We then define the relative gain Aij between Yi and Uj as 

The bar notation represents the 'other value' so when i = 2, 1= 1. 
Thus for i = 1, 2, j = 1, 2 

_(~)-l (~) 
A22 - ~U2 Yl ~U2 Ul 

Looking at these, we see that: 

1. if All = 0, then output 1 does not respond to input 1, so input 1 
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should not be used to control output 1; 
2. if All = 1, then the numerator and denominator of the relative 

gain expression are equal and input 2 does not couple to output 1; 
3. if ° < All < 1, then an interaction exists and U2 will affect YI -

the closer All is to zero, the stronger the interaction; and 
4. if All < 0, then U2 strongly affects YI and in the opposite direction 

from UI. (This is a potentially difficult interaction to deal with.) 

In addition, by working from the definitions, we may show 

5. All + Al2 = 1 
A21 + A22 = 1 

All + A21 = 1 
Al2 + A22 = 1 

The above may be extended to larger systems (with N outputs and N 
controls) by defining 

It then turns out that the relative gain array matrix A = { Aij } has 
the property that its row sums and its column sums are all equal to 
one: 

j = 1,2, ... , N 

i = 1,2, ... , N 

In selecting pairings, then, we 

1. attempt to pair outputs i with inputs j for which Ai} is relatively 
small and positive; and 

2. use caution when any output i has inputj such that Ai} is negative. 
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34.3.3 Sequential loop closing 

With the output-input pairings decided, there is still the issue of 
designing the feedback laws for each pair. If we assume (without loss 
of generality) it has been decided that Gcii(S) are to be the only non­
zero controllers, one approach is to design the compensators 
successively. Thus from (34.4) we first design Gcll(S) in 

Y (s) - Gu GCll (1 + G 22) R 
1 - 1 + G 11 Gcll 1 

to give good response. Then Gc22(S) is designed so that 

Y s - Gz2 Gc22 (1 + GCll Gll) - G12 G21 GCll Gc22 R 
2( ) - (1 + G11 Gcll) (1 + G22Gc22) - G21 G12Gcll Gc22 2 

also responds 'well'. The procedure obviously can continue for 
higher numbers of inputs and outputs. 

The basic advantage of the approach is that each stage is a SISO 
design problem for which methods are known and stability can be 
evaluated. There are several disadvantages: 

• a good pairing is important; 
• early design choices, such as the choice of Gcll(S) above, will 

affect the later design problems in ways that can be hard to 
predict and may be deleterious; and 

• the disturbance effects of inputs other than the one current at 
each stage are difficult to account for. 

Notice that this is essentially the same as the cascade control of section 
34.2. 

34.3.4 Decoupling compensators 

If interactions are significant, we may be forced to compensate for 
them by using decoupling compensators, which are in some ways 
similar to feedforward compensators. We might consider this a 
design method which avoids true MIMO control by using sets of SISO 
controllers with cross-compensation built in. 
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From (34.3) 

it is clear that if we choose 

(where the r subscript indicates the command reference value) then 

Similarly, if we also choose 

we obtain finally 

( ~) fl(S) = Gll(S) - G12(S) G22(S) Ul,,{S) 

Defining 

Ui,r(S) = Gcii(S) (Ri(s) - fi(s») i = 1,2 

then gives the closed-loop transfer functions 
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y (s) - Gc22(S)(G22(S) - G12(S)G21(S)/Gl1(s)] R (s) 
2 - 1 + Gc22(S) [G22(S) - G 12(S)G21(S)/GU(s)] 2 

Thus the structural change has made the control loop appear 
independent. The structure is shown in Fig. 34.8. 

Figure 34.8 Pairing of input and output plus explicit decouplers. 

In the above theory, the decoupling controls are given by 

G21(S) 
U2 dec(S) = -Dl(S)Ul ,(s) = - G (s) Ul ,(s) . . 22' 

We note that if cancellation is not exact, which is likely for various 
reasons including the imprecision with which the transfer functions 
are known, then 
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YI(S) = (Gll(S) - G12(s)DI(S)) VI, AS) 

+ (G12(S) - GU(S)D2(S)) V2,r(S) 

Y2(S) = (G2I(S) - G22(S)DI(S)) VI, AS) 

+ (G22(S) - G21(S)D2(S)) V2,r(S) 

Hence the attempt at decoupling has simply created a different, albeit 
perhaps more favourable, cross-coupling of the variables. Decouplers 
are in essence feedforward control terms, effectively cancelling the 
effects of the 'disturbances' to a loop caused by the cross-coupling 
imposed by the physical process. 

It is always possible to compensate for only some of the cross­
couplers, e.g. by choosing to use only DI(S) above; this situation is 
called partial decoupling. 

34.4 TRANSFER FUNCTION APPROACHES II: 
DIAGONALIZATION OF TRANSFER MATRICES 

An important notion in the compensation of plants described by 
transfer function matrices is that the compensator transfer function 
matrix K(s) can be considered structured. 

K(s) = KaKb(S) Kc(s) = ~(s) Kb(s) K~ 

where Ka and K~ are permutation matrices (which reorder the inputs 
and outputs by permuting rows and columns), Kc(s) and K~(s) are 
diagonal matrices of rational functions of s, 

Kc(s) = diag {ki(S)} 

and Kb(S) and Kb(s) are products of elementary matrices each having 
the form 

The design algorithm first has Ka and Kb(s) selected to make the 
plant transfer function G(s) diagonally dominant. Then Kc(s) is 
chosen in a set of SISO designs to achieve performance goals. More 
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precisely, choose Ka and Kb(s) so that 

G'(s) = G(s) KaKb(S) 

is diagonally dominant (see Chapter 15). Next, choose Kc(s), which is 
by definition diagonal, so that G'(s) Kc(s) has the desired properties 
(using Nyquist methods with Gershgorin bands as necessary to ensure 
stability margins). Finally, the controller becomes 

U(s) = KaKb(S) Kc(s)E(s) 

The first problem here is to choose Ka and Kb(S). Occasionally cut 
and try methods are possible. The next stage is to try 

for a chosen frequency for which the inverse exists. 
Unfortunately, G(jw) will usually be complex except at w = 0, and 

the inverse will not exist at ° if the system has integrators (poles at the 
origin); an approximation may work, however. Otherwise, certain 
other theory can by tried; see Maciejowski (1989). 

34.5 MIMO STRUCTURES: STATE-SPACE 
APPROACHES 

For this section, we use continuous time models because it is primarily 
plant models which are being decomposed. Necessarily, because of 
the nature of the modern theory's search for optimal controllers, some 
continuous time controllers are also presented. 

Essentially, the state-space model of a plant is given by (34.1), 
repeated here. 

x = Ax + Bu 

y = Cx 

The goal is to decompose this in some useful and sensible way into 
subsystems for which the controllers can be derived individually. 
There are two situations of interest: decomposition into (nearly) 
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uncoupled subsystems, and decomposition into 'fast' and 'slow' 
subsystems. These are modelled as 

. [Xl] [All 
X = = EA 

X2 21 

and 

respectively. In these £ > 0 is 'small' and Xi, Ui are vectors of lengths 
ni and mi, respectively, for i = 1,2, where we have limited the 
decomposition to two levels only for notational convenience. In either 
case, the theory then considers a hierarchy and suggests whether the 
decomposed system is near to optimal according to the quadratic 
criterion 

tf 

J = J xT(-c) Qx(-c) + uT(-c) Ru(-c)d-c 
to 

34.5.1 Loosely coupled systems 

The state-space handling of systems which are somewhat independent 
is different in philosophy from the classical methods. One result 
which demonstrates this is that for the optimal LQ control of a system 
modelled as 

y = ClXl + C2X2 (34.5) 
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The object is to minimize 

tf{ [Qll eQ12 ] [Rn O]} 
J =! J xT EQ21 Q22 X + u T 0 R22 U dt 

to 

The general solution is that (Chapter 26) 

u(t) = - R-IBTK(t)x(t) 

where the gain K(t) is the solution to the matrix Riccati equation 

K =-KA _ATK+ KBR-l BTK - Q K{tf) = 0 

(34.6) 

(34.7) 

If tf --7 00, then K (t) --7 K is the positive definite root of the 
algebraic equation 

0= KA +ATK - KBR-IBTK +Q 

It is not unusual for the dimensions of the state to be too large for 
this to be reasonably solved, requiring as it does the solution of 
n(n + 1)12 coupled quadratic equations. An alternative is to design a 
control for each of the two systems defined by E = 0 and then modify 
the controller for the presence of the interactions. In particular, one 
assumes that the gain K is a function of both t and E, and then defines 
the approximate gain G as 

G - K( 0) dK(t, O) E2 d2K(t, 0) EP dPK(t, O) 
- t, + E de + 2 dE2 + ... + p! dEP 

for an appropriate truncation parameter p. It is obvious that the 
steady-state values as tf --7 00 must be 

[ Kl 0] 
K= 0 K2 
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where 

0= KlAn + ATIKI- KIBnRilBTIKI + QI 

0= K2A22 + Ai2K2 - K2B22R2lBi2K2 + Q2 

Not so obvious, but proven by Kokotovic et al. (1969) is that 

aK(t,O) _ [ 0 Kb 1 a -IT 
E K12 0 

where Kl2 solves the linear equations 

0= -Kb(A22 - B22R21B12K2) - (All- BllRiIBTIKl)TK12 

- KIA12 - AT2K2 + Kl (BllRi1BIl + BI2R~BI2)K2 - Q12 

The method of proof is by direct expansion of (34.7) using (34.5) 
and (34.6). The use of the expansion helps in three aspects. 

1. It allows a reduction in computation. Computing the constant 
terms, for subsystems of equal size n12 x n/2 requires solution of 
only 2 (n12)(n12 + 1) simultaneous quadratic equations. The next 
term then needs computation of n linear equations. 

2. The cost criterion in using a pth order approximation in E to K is 
a (2p + 1) order approximation (in E) to J. At the extreme, the 
separation approximation is roughly linear in E for small E; we 
might have only a 10% cost penalty if E :::: 0.1 . 

3. We might use only KI and K2, so that Uj = Kjxj, i = 1,2, is 
selected as a reasonable control law. 

34.5.2 Systems with slow and fast modes 

Many systems which are in principle of high dimension are 
decomposable into subsystems which operate at vastly different time 
scales. For one example, an aircraft's roll attitude can be changed 
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much more rapidly than its altitude; for another, motor shaft response 
is much faster than the liquid tank level for which the shaft operates 
an outlet valve. In such instances, the fast mode may be considered 
virtually instantaneous by the designer of the controller for the slow 
mode, while the designer of the fast mode controller may treat the 
state of the slow mode as a constant parameter. 

A matrix model is given by 

(34.8) 

In this, the submatrices Aij are taken to have elements of 'similar' 
size, and hence the dynamics of X2 are fast relative to those of Xl. 

Example 

Consider the system with transfer function 

1 
G(s) = (O.OIs + 1) (s + 1) 

A state-space model of this is 

[Xl] [-1 1] [Xl] [0] 
X2 = ° 100 X2 + 100 u 

y=[ 1 ° ]x 

An alternative form, similar to (34.8) is 

[ ~l] = [-1 1] [Xl] + [0] u 
0.01X2 ° 1 X2 1 

y=[ 1 O]x 
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A special control law for Xl might simply use X2 as a commandable 
quantity (because X2 z - u). Also, a control law for X2 could be 
designed assuming that Xl is known and constant. 

In the more general terms of (34.8), it seems reasonable to assume 
that e z 0, so that if A22 is non-singular, then 

X2 = - A2i (A21 Xl + B2 u) 

Using this, the slow system description becomes 

Xl = (All - AI2 A2iA21)XI + (BI - A12 A2i B 2)U 

Y = (CI - C2 A2i A 21)XI - C2 A2i B 2U 

We rewrite this slow mode model as 

Ys = CsXs + Dsus 

(34.9) 

On the other hand, the slow system state becomes essentially a 
constant input value XI , ref to the fast system. Under these 
circumstances, we treat X2, ref as the resulting steady-state value (if it 
were allowed to converge to it) and Uref as the associated command. 
Then it must be that 

X2,re[ = 0 

X2, re[ = -A2i(A21 Xl, ref + B2 Uref) (34.10) 

Then if we define the excursion from reference values as 

OXf = X2 - X2,ref OU = U - Uref 

we find that because of (34.10) 
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OXr = A220Xr + B2 uref 

OYr = C2 0Xf (34.l1) 

The design problem then can be considered one of finding good 
state feedback controllers for the separate slow and fast systems and 
combining those to give the appropriate controller for the original 
system; the analysis problem is to determine whether this 
'engineering' solution is 'good'. 

A partial answer to this is given by considering any state feedback 
controller. Let 

be state feedback controllers for the slow and fast modes separately, 
i.e. for (34.9) and (34.11), where it is assumed the state feedback 
gives stability, and in particular that (A22 + B2 Gr) is stable. Then the 
control to the original system defined by 

will yield a state vector 

Xl(t) = xs(t) + O(E) 

X2(t) = -A21 (A21 + B2Gs)Xs(t) + oxr(t) + O(E) 

where O(E) ~ 0 faster than E. It is also true that 

u(t) = us(t) + oUr(t) + O(E) 

y(t) = ys(t) + oyr(t) + O(E) 
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34.5.3 Model aggregation 

The aggregation approach involves the replacement of a true model 

x = Ax + Bu (34.12) 

with n-dimensional state vector x with a model with state z defined, 
using a p x n matrix D with p < n, by 

z = Dx 

and hence a dynamics model 

:i = Fz + Gu (34.13) 

provided 

FD =DA G =DB 

If A and D satisfy 

DA = DADT(DDT)-lD 

then an appropriate F is 

F = DADT (DDT)-l 

D is called the aggregation matrix, and z is the aggregated state 
vector . The aggregation matrix is the primary design factor in 
studies of the system. Its use allows inferences to be made about 
smaller dimensional systems than the original, and it is chosen so that 
the error made by evaluating (34.13) instead of (34.12) is 'small'. 



www.manaraa.com

MIMO structwes: state-space approaches 853 

Aggregation of weakly coupled fast and slow systems 

If the matrix A has eigenvalues AI, A2, ... , An and corresponding 
eigenvectors e}, e2, ... , en, then 

(34.14) 

Hence if the vector Dej :t 0, then it is an eigenvector of F with 
eigenvalue 1..j. This may be used to select the aggregation system as 
one with fast or slow modes. In particular, let 1..1,1..2, ... , 1..p be the 
desired aggregated eigenvalues and choose D such that 

i=1,2, ... ,p 

i = p+l, ... ,n 

In general, this task is not easy for large systems, partly because of 
the need to fmd the eigenvalues and eigenvectors of the matrix A. 

The task is somewhat simpler, at least in approximations, if the 
system has 'weakly coupled' subsystems. Consider two subsystems 
coupled into a system described by 

_ [ A Al2] 
A - A2l M 

in which A =diag(1..l,1..2, ... ,1.. nl ), M=diag(J!1,J!2, ... ,J!n2)' with 
nl + n2 = n. Defming the bounds of the eigenvectors by 

then the subsystems are weakly coupled, and the X2 subsystem is fast 
relative to the Xl subsystem, if 

r - «1 R 
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Then it has been shown that the eigenvalues of A are approximately 
given by the solution of 

Vj = J!j-nl 

The eigenvectors of A are approximately 

where 

(A12llo) 
ej+.! = 11~ J 

(A - AI2M-IA21)~j = Vj ~j 

Mrlj = J.1.j11j 

j = 1, ... ,nl 

j=nl +1, ... ,n2 

j = 1, ... ,nl 

j = 1,2, ... ,n2 

j = 1,2, .. . ,nl 

j = 1,2, ... ,n2 

These approximations may make the computation of an appropriate 
aggregation matrix as in (34.14) easier. 

Suboptimal control through aggregation 

The object of the control may be to minimize 

00 

J = j (xT(t)Qx(t) +uT(t)Ru(t))dt 

for the system 

i = Ax + Bu 
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We consider instead, for computational reasons, the optimal control of 

:i = Fz + Gu 

with criterion 

J = J [zT(t)QFZ(t) + uT(t) Ru(t)] dt 

We know that the solution to the former is 

where P satisfies 

ATp + PA - PBR-IBTP + Q = 0 

while the solution to the latter is 

where P satisfies 

Since G = DB and FD = DA, if we multiply the final equation 
above by DT and D, we find 

Comparing this with (34.12), we see that DTPF D corresponds to P 
if DT QF D corresponds to Q, although they cannot generally be equal 
because of their probable difference in rank. One possible choice is 

QF = (DDT)-l DQDT (DDT)-l 
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The fmal suboptimal control is given by 

and it may be shown that the resulting cost of 

compares to the system optimal 

xT(O)Px(O) 

and the subsystem optimal 

XT(O) DT Pp Dx(O) 

through 

In this, P A is the solution of 

0= (A - BR-IGPpD)T PA(A - BR-l GPpD) + Q 

+ (GPpD)TR-IGPpD 

(34.15) 

In principle, D may be manipulated to minimize the actual cost as in 
(34.15) and hence to get near the lower bound. 

34.5.4 Periodic co-ordination 

The notion of periodic co-ordination is that of a simple hierarchy in 
which low levels of control, designed only for their subsystems and 
seeing interactions as disturbances, are periodically commanded by a 
coordinator. Thus, for example, the system properly described by 
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[Yl(k)] _ [Cl 0] [Xl(k)] 
Y2(k) - ° C2 x2(k) (34.16) 

will have two subsystems modelled as 

A control law of the form 

is designed for each, where by definition Yi(k) = {Yi(k-j), j = 
0, 1, ... ,k} , i = 1,2. Periodically, such as whenever k = pN for some 
integer p and integer period N, the supervisor interacts with the 
subsystems by considering their measurements and commands and the 
overall system model (34.16) . The supervisor then generates 
commands based upon its knowledge of the model and its knowledge 
of the measurements (whether the entire history or the history at 
supervisory instants). These are then given to the subsystems as 

or 

Ui,ext(pN) = Fi (Yi (PN), Y2(PN), Ui (PN), U2(PN» i= 1,2 

where 

Yi(PN) = {yj((P-j)N,j=O,I, ... ,p)} 

Uj(pN) = {uj((PN-j), j=O, 1, ... ,pN)} 

Vi (pN) = {Uj((p-j)N,j=O, 1, ... ,p)} i= 1,2 
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Notice that the subsystems see the effects of other subsystems, i.e. the 
terms Aijxj(k) for j :# i, as environmental disturbances. The co­
ordinator, however, which has complete information, can plan for this 
and send appropriate compensatory commands. 

34.6 COMPUTER AIDS 

Among the decomposition algorithms in commonly available CACSD 
programs are those for model reduction based upon fast and slow 
modes, as in section 34.5.3. 

34.7 FURTHER READING 

The standard teaching with regard to introduction to decomposition of 
systems through pairing is given in texts such as Seborg, Edgar and 
Mellichamp (1989 Chs 19 & 28) and Stephanopoulos (1984 Chs 24 & 
25). Multivariable transfer function methods are in Maciejowski 
(1989). 

The fast/slow mode discussion here follows principally Chow and 
Kokotovic (1976), while aggregation and E-coupling follow Aoki 
(1968) and Kokotovic et al. (1969), respectively. These and other 
interesting research articles are reprinted in Larson (1979). 
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z-Transform 

A.l DEFINITION AND IMPORTANT PROPERTIES 

One way of representing discrete time systems and their inputs uses 
the z-transform. This is defined for a sequence {x(k), k= ... ,-2,-1, 
0, 1,2, ... } by the double-sided series 

00 

X(z)=.%({x(k)}) = Lx(i)z-i 
i=-eo 

or, on the presumption we shall use that all signals are causal and 
hence have xCi) = 0, i < 0, by the single-sided series 

00 

X(z) =.%( {x(k)}) = L xCi) Z-i 
i=O 

where the X(z) and % {.} notations are both used to represent the 
transform, depending upon the application. Here we say that X(z) 
forms a transform pair with {x(k)}, for which we often use the 
notation {x(k)} <=> X(z). For a great many common signals and 
systems, a rational (i.e. ratio of polynomials) representation is 
available for the transform. Thus, for example, if 

then 

x(k) = { ~ k = ° 
k :1= ° 

X(z) = lzo +OZ-l +OZ-2 + ... = 1 
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If 

then 

x(k)::: { ~ k < 0 
k ~ 0 

X(z)::: ~ z-i _ 1 __ z_ 
£.J - 1 - z- 1 - Z - 1 i=-oo 

These are usually derived by direct evaluation for the simpler 
expressions and given in tables such as Table A.2 (page 870). 

Table A.I Properties of z-transform 

Linearity 

Time shift 

Final value 

Initial value 

Convolution 

%(ax(k) + by(k»::: a%(x(k» + b%(y(k» 

%(x(k-n» ::: z-n %(x(k» 

lim x(k)::: lim (1 - z-l)%(x(k» 
k-too z-tl 

x(O)::: lim %(x(k» 
z-tO 

Z(1 x(n) y(k - n»)=.2"(X(k» .2"(y(k» 

The z-transfonn is a linear operation and hence its properties are 
similar to those for any linear transfonnation, and in particular to the 
Laplace transfonn. In fact, the z-transfonn is often conveniently 
thought of as the discrete analog of the Laplace transfonn. The 
commonly quoted properties are in Table A.I, but there are three 
properties which we use, implicitly or explicitly, very frequently. 
Some of these are demonstrated below. 

Property 1: Linearity The sum of z-transfonns is the z-transfonn of 
the sum of the sequences. Consider the two sequences {x(k)} and 
{y(k)} with z-transforms X(z) and fez), respectively. Then if 
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w(k) = ax(k) + by(k), for any constants a and b, it is true that 

W(z) = aX(z) + bY(z) 

and vice versa. It is this property which will allow us to do 
superposition of inputs, partial fraction expansions, etc. 

Property 2: Backward shift If for sequences {x(k)} and {y(k)} the 
relationship holds that 

y(k) = x(k-l) 

for all k (assuming x(-l) is defmed somehow) then 

00 00 00 

Y(z) = Ly(k) z-k = L x(k-l )z-k = x(-I) + z-l L x(k) z-k 
k=O k=O i=O 

= z-lX(z) + x(-l) 

and in fact if y(k) = x(k-p) then 

Y(z) = z-pX(z) + x(-p) + z- lx(-p+l) + r2x(-p+2) 

+ ... + z-p+lx(-l) 

Thus, if y(k) = -ay(k-l) + u(k-l) and if {u(k)} <=> U(z) and 
{y(k)} <=> Y(z), then 

Y(z) = -arl Y(z) - ay(- l) + z-l U(z) + u(-l) 

or 

Y(z) = ( z-l )u(Z) + -ay(-l) + u(-I) 
1 + az- 1 1 + az- 1 

This shows an explicit relationship between the transforms of the 
u(k) and y(k) sequences. Notice the use of the linearity assumption on 



www.manaraa.com

862 z-Transform 

the right-hand side. This method generalizes immediately to the 
general case of a difference equation such as 

n m 
y(k) = - L aiy(k-i) + L biu(k-i) 

;=1 ;=0 

to yield 

fez) = bo + bI Z-I + b2Z-2 + ... + bm z-m 
1 + aIz-I + a2z-2 + ... + anz-n U(z) 

(terms in initial conditions on yO and uO) 
+ 1 + al Z-I + a2z-2 + . .. + an z-n 

IC 
= B(z) U(z) + D(z) 

The expression B(z) is the discrete transfer function of the system 
of equations, or simply the transfer function. The denominator 
polynomial is denoted D(z), and the initial condition terms are denoted 
IC. 

We should remark here that we have been a bit crude in not spelling 
out the causality assumption about the system - no outputs prior to 
the arrival of the requisite inputs. 

Property 2a: Forward shift The above backward shift also has a 
forward shift version. Again working directly from the definition of 
the one-sided transform, if y(k) = x(k+ 1), then 

00 

fez) = L y(i) Z-i 
;=0 

00 

=ZLx(i)Z-i 
j=1 

=zX(z) - zx(O) 
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Similarly, 

%({x(k+p)}) = zPX(P) -zPx(O) - zP-1x(l) - zP-2x(2) - ... - ZX(p-l) 

Property 3: The convolution-product relationship If two sequences 
{x(k)} and {y(k)} are convolved, the z-transformation of the 
convolution is the product of the z-transforms of the sequences. Thus 
if 

then 

00 

w(k) =LX(k-i)y(i) 
i=O 

W(z) = i [f. X(k-i)y(i)]Z-k 
k=O f;6 

00 00 

= Ly(i) L x(k-i)z-k 
i=O k=O 

00 

= Ly(i)[Z-iX(Z) + xC-i) + z-lx(-i+ 1) +z-2x(-i+2) 
i=O 

+ .. . + Z-i+lx(_l)] 

= Y(z)X(z) (A.I) 

provided xCi) is also causal, i.e. xci) = 0 for i < O. More terms 
appear if this is not true; for example if only x(-l) and x(-2) are 
non-zero for i < 0, (A. 1 ) becomes 

= Y(z) X(z) + x( -1) [zY(z) - y(O)] 

+ x(-2)[Z2 Y(z) - zy(O) + yO)] 

The pattern extends, but if it becomes of infinite extent, then two­
sided z-transforms, i.e. those which index from -00 to +00, are used, 



www.manaraa.com

864 z-Transform 

and the basic result of (A.l) follows easily. 
Notationally, if ** denotes convolution, then the rule is 

{y(k)} ** {x(k)} <=> f(z)X(z) 

{y(k)} {x(k)} <=> fez) ** X(z) 

where the left-hand side of the second relation denotes the sequence 
{z(k)} = {y(k)x(k)}. 

The application of this arises from our observation that the output 
of our simple linear system is the convolution of the input with the 
pulse response. Thus, for a system with input luCk)} and pulse 
response {h(k)}, the transform of the output {y(k)} is given by 
H(z) U(z). 

A.2 THE INVERSE Z·TRANSFORM 

The inverse z-transform is defined by the contour integral 

y(k) = ~ t f(z)l-l dz 
21tJ C 

where the contour C is a circle in the region of convergence of fez). 
For our purposes this becomes, because fez) is usually a rational 
function of z, 

y(k) = L Residues( fez) Zk-l at singularities Zi of f(z» 
i 

In fact, for our purposes it is seldom necessary to perform an 
inversion in this way. Again because fez) is rational in z, we can 
make good progress with either of two methods: long division, and 
partial fraction expansion plus tables. 

Using long division, we find 

f() N(z) ~. ( .) . 
z = D(z) = f;1/ l Z-I 
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where N(z) and D(z) are numerator and denominator polynomials in 
Z-l, which by long division yield a sum with constant coefficients f(i). 
The coefficients are then the same as y(i) because our assumptions are 
sufficient to ensure uniqueness of the defining z-transform. 

Example 

Let 

z I 
Y(z) = z+a = I +az-1 

Then 

1- az-I + a2z-2 - ... + (-a)kz-k ... 

I + az-Ill 

1+ az-1 

-az-1 

- az-I - a2 Z-2 

a2z-2 

a2 Z-2 + a3 z-3 

which immediately gives y(i) = (-a)i. 

The alternative to the above is to use partial fraction expansion of 
Y(z) and interpret the resulting terms using tables. That this works 
follows from the Fundamental Theorem of Algebra, which tells us 
that the denominator can be factored into a product of factors linear in 
z (or quadratic in Z if the coefficients are to be real), the linearity of 
the z-transform, and the uniqueness of the transform under our 
assumptions. The method works by finding suitable rational 
expressions YI(Z), Y2(Z), ... , Yn(z), where suitable means we have 
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already computed their inverses {Yl(k)}, {Y2(k)}, ... , {yn(k)} in tables, 
such that 

Then we immediately have 

y(k) = Yl(k) + Y2(k) + ... + Yn(k) 

Example 

Suppose 

Z2 + (a + b)zl2 
fez) = Z2 + (a + b)z + a b 

Then we immediately find 

f _z2+(a+b)z12_ Z + Z 
(z) - (z + a )(z + b) - 2(z + a) 2(z + b) 

from which it follows that 

(-a)k + (-b)k 
y(k) = 2 

Notice that, if a few examples are tried, it becomes obvious that the 
partial fraction method gives expressions for y(k), whereas the long­
division method gives numerical values. 

An alternative method to get numerical values is to use simulation 
techniques. In these, the rational fraction is converted to a difference 
equation which is solved using a computer. Here, then, if fez) is to be 
found, we observe that it is a pulse response of a linear system. Let 

N(z) 
X(z) = fez) V(z) = D(z) V(z) 
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Then D(z)X(z) = N(z) U(z) from which 

(zn + alzn-1 + a2zn-2 + ... + an)X(z) 

= (bozn+bIZn-1 + . .. +bmzn-m)U(z) 

which agrees with the difference equation 

x(k+n) + alx(k+n-l) + a2x(k+n-2) + ... + anx(k) 

= bou(k+n)+blu(k+n-l) + ... bmu(k+n-m) 

or alternatively 

x(k) = -Qlx(k-l) - a2x(k-2) - ... - anx(k-n) 

+ bou(k) + bl u(k-l) + ... + bm u(k-m) 

The latter is easily computed for k~O taking u(O)=l, u(k)=O, 
k;t:O; x(k) = 0, k<O. The numbers x(k), k~O, then are the unit pulse 
response of the system, and hence are the same as the numbers 
associated with the definition of fez). 

A.3 THE 'EQUIVALENT' TRANSFORM 2'eq 

Consider a system with a differential equation model 

u(n) + al u(n-l) + ... + an-l it + anu 

and hence the Laplace transform transfer function 

U(s) ~m + ~m-IS + ... + fto sm 
Gis) = E(s) = sn + al sn-l + ... an 
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This system will have a unit impulse response h(t) and therefore a set 
of samples {h(O), h(T), h(2T), ... }. Hence we have 

h(t) = £2-1[Ga(s)] 

h(nT) = £2-1[Gis)] I 
t=nT 

By definition, the z-transform of this sequence is 

00 

GcJCz) = L h(iT) z-i =%&-I[Gis)] I } 
i=O 1 t=nT 

To make the notation more convenient, we write the right-hand side as 

or as 

G*(z) =%&-I[Ga(s)] I } 1 t=nT 

This may be taken as defining the 'equivalent' z-transform for the 
Laplace transform. 

By careful work with particular systems, we are able to work out 
the equivalents as shown in these two examples. 

1. Let Ge(s) = lIs. Then h(t) = 1, hUT) = 1, and 

00. 1 z 
GcJCs) =L Z-l = 1 _ -1 = --1 

i=O z z-
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2. Let Ge(S) = 1 /(s+a). Then h(t) = e-at, h(i1) = e-aiT and 

00 z 
G .I s) = ~ (e-a T Z)-i = -=---::: 
a\.i..t Z - e-aT 

i=O 

:z. (_1)_ z 
eq s + a - Z - e-a T 

Continuing in a like mode, we find Table A.2. This table also 
shows the z-transform 'equivalent' of (l - e-sT)Ge(s)/s, which is both 
the step-invariant response and arguably the 'correct' representation 
for a plant model (Chapter 12). 

Particular properties to note are that 

.2"eq[(l- e-Ts) G(s)] = (1- Z-l).2"eq[G(s)] 

.2"eq[G(s) + H(s)] =.2"eq[G(s)] +.2"eq[H(s)] 

.2"eq[ G(s) H(s)] :t.2"eq[G(s)].2"eq[H(s)] 

The first two are easily shown using time domain arguments 
(essentially from the definition of .2" eq) and the last can be 
demonstrated with counter-examples. All also make sense intuitively, 
as the student is invited to consider. 

A.4 FURTHER READING 

Several textbooks have elaborate explanations of the z-transform; 
students may like Ogata (1987), for example. Other books have more 
or less extensive tables containing information similar to Table A.2. 
Among the latter are Kuo (1980), Ogata (1987), and Franklin, Powell, 
and Workman (1990). We remark, however, that by using partial 
fraction expansions it is possible to generate most transforms from a 
table going only up to second-order terms. 

The modified z-transform is discussed and tables are presented by 
Kuo (1980). 
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Table A.2 z and Laplace transfonns 

G(s) g(t) g(kT) Impulse equivalent 

t~O k~O 

1 
1 1 

1 

t---=r s -z 

1 e-at e-akT 1 
s + a 1 -aT-l -e z 

1 
kT 

Tz-1 
s2 t 

(l-z-lt 

a 1 -at 1 -akT 
(l _ e-aT)z-1 

-e -e 
(l_z-1 )(I_e-aT z-l) s(s+a) 

m 
sin oot sinkooT 

z-1 sinooT 
s2 + m2 1-2z-1 cosooT + z-2 

s 
coskroT 

1- z-l cosmT 
s2 +002 cos rot 

1- 2z-1 cosmT + z-2 

00 e-at sin rot e -kooT sin kroT 
e-aT z-1 sin roT 

(s+a)2 +ro2 1_2e-aT z-1 cos roT +e-2aT z-2 

s+a e-at cos rot e -kooT cos kroT 
1-e -aT z-1 cos roT 

(s+ai +ro2 1_2e-aT z-1 cos roT + e-2aT z-2 
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(h(z) = (1 - Z-1)% eq (~) 

Tz-1 

-1 -1 -z 

1 (l_e-aT )z-1 

a l_e-aT z-1 

T2 (l+z-1)z-1 

2 (l-z-1l 
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(aT -1 +e-aT )z-1 + (l_e-aT _aTe-aT )z-2 

a(l- z-1 )(I_e-aT z-l) 

(1- cos roT) z-1 + z-2 
ro 1-2z-1 cos roT + z-2 

sin roT z-1 _ z-2 
ro -1---2-z-'-I'-c-o-s-ro-T-+-z-"""'2 

(l-{ke-aT sin roT _e-aT cosroT)z-l + (e-2aT + {ke-aT sin roT _e-aT cosroT)z-2 ( ro ) 

1_2e-aT z-lcosroT +e-2aT z-2 a2 +ro2 

(I + ~e-aT sin roT _e-aT cosroT)z-l + (e-2aT _~e-aT sin roT - e-aT cosroT)z-2 ( a ) 
1-2e-aT z-lcosroT +e-2aT z-2 a2 +ro2 
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Appendix B 
Review of matrices 
In the use of state- space representations and in multi-dimensional 
transfer functions, matrices are used regularly and with great effect. 
In this appendix we review a few definitions, properties, and common 
facts (theorems) about them. We should try to remember, however, 
that matrices are a notational device rather than an advanced method 
of analysis. Hence they can be built up and dissected at will for the 
purposes of aiding our understanding. 

B.l DEFINITIONS AND NOTATIONS 

A matrix is a rectangular array of numbers, with n rows and m 
columns. We often denote such an n x m array by a bold capital letter 
or by a generic element. An element from the ith row and jth column 
is denoted with subscripts ij or i,j. Thus we have 

all al2 al3 aIm 

a21 a22 a23 a2m 

A = [aij] = 

The special case of a I-column matrix, i.e. an n x I matrix, we shall 
often call an n-vector and denote it by a lower-case bold letter, with 
elements given only one subscript. Thus the n-vector x is 

Xl 

X2 

X = [xil = X3 

Xn 
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Many matrices of interest to us will be square, i.e. have m = n. The 
elements all, a22, a33, ... , ann of a square matrix are called the main 
diagonal of the matrix. One very special matrix is the identity 
matrix, which is square, usually denoted lor, if its dimension must 
be made clear, by In for an n x n identity, and in which all elements 
are zero except the diagonal elements, which are 1. Thus 

I o 0 o 0 
0 I 0 0 
o 0 I 0 

1= 

0 I 0 
0 0 I 

A matrix may always be multiplied by a scalar by multiplying it 
element by element times the scalar, so that 

aA = [a aij] = {aA}ij 

and the complex conjugate A * of the matrix A is the matrix of the 
complex conjugates of the elements of A. 

Two matrices A and B may be multiplied to yield a matrix C, 
provided A is n x m and B is m x p, i.e. their sizes are compatible. 
The result is a matrix of dimension n x p. Notationally, 

C = AB =[cij] = [Cij = ~ aikbkj ] 
k=l 

In general, BA may not even be defined (because the dimensions 
are not compatible) and if it is defined, usually BA :t AB. 

The transpose of an n x m matrix A, denoted by AT, is the m x n 
matrix which is a mirror image of A around its diagonal terms. 
Thus, 

AT = [ aij ]T = [ aji ] 
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and a numerical example is 

[ 1 2 3]T = [I 4] 
4 5 6 2 5 

3 6 
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The Hermitian conjugate of the matrix A is the transpose of its 
complex conjugate, and is denoted AH. 

The determinant is a scalar function of a square matrix which 
combines its elements in a particular way: it adds all possible products 
of n elements of the matrix where one element is taken from each row 
and column. It can be evaluated recursively using the ideas of 
cofactors, which we develop here. For a matrix A, the matrix of 
dimension n-I x n -I defined by deleting row i and column j is 
denoted M ij. Its determinant is called the ijth minor of A. The 
principal minors are those for which i = j. The cofactor 
corresponding to an element aij is defined as (_l)i+j det(Mij). Using 
these ideas, the determinant of A may be written using Laplace's 
expanSIOn as 

n 
det(A) = L aij (-I)i+j det(Mij) 

j=l 

for any i= 1,2, ... ,n. Thus the determinant of order n is computed in 
terms of determinants of order n - 1. This can continue until a low­
enough level is reached: 

• if n = I, det(A) = all; 
• if n = 2, det (A) = all a22 - a12a21; 
• if n = 3, det(A) = alla22a33 + a12a23a31 + a13a21a32 -a12a21a33 

- a13a22a31 - all a23 a32 

and so on. A few manipulation rules may be derived for 
determinants, of which the most important are 

1. det(AB) = det(A) det(B) provided A and B are square; 
2. det(eA) = en det(A) where e is a scalar and A is n x n; 
3. det(B) = e det(A) if B is obtained by multiplying one row or 

column of A by a scalar e; 
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4. det(AT) = det(A); 
5. det(A-) = - det(A) if A- is A with two rows or columns 

interchanged; and 
6. det(A-) = det(A) if A- is A with a multiple of one row or 

column added to another. 

One function of a square matrix which yields a matrix is the 
adjoint matrix, defined using the co-factors as 

adj (A) = [ (-l)i+j det(Mij) ]T 

where the transpose should be noted. A second square matrix function 
is the inverse matrix, which is that matrix B which, if it exists for a 
given A, results in 

AB =BA =1 

This is usually denoted A -1. The inverse may in principle be 
computed from Cramer's Rule 

A-I _ adj (A) 
- det(A) 

although for large matrices it is more efficient to use other methods. 
Note that det(A) must be non-zero for this to hold. We remark that it 
is possible to define special inverses for non-square matrices and those 
for which the determinant is zero (see below). A matrix A for which 
A AH = I, i.e. for which the Hermitian conjugate is also the inverse, is 
called unitary. 

A square matrix for which AT = A is said to be symmetric, while 
one for which AT = -A is skew-symmetric. A matrix for which aij 
is a function of (i - j) is said to be Toeplitz; thus in a Toeplitz matrix 
we will have for instance a13 = a25 = a36 .... A square matrix for 
which a ij = 0 for i > j (or i < j) is said to be upper triangular 
(lower triangular). 

We now continue with some notes on more advanced concepts in 
matrix manipulation and discussion. 
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B.2 RANK 

Let a1oa2, ... ,ap be a set of p n-vectors. These are said to be linearly 
independent if there are no scalar coefficients Cj, not all zero, for 
which 

It is a result of linear algebra that there can be at most p = n 
linearly independent vectors in the set (and there may be fewer). The 
maximum value of p for which the set {aj} is linearly independent is 
called the dimension of the set. It turns out that any other vector in 
the set can be written as a linear combination of the basic p vectors, so 
they are called the basis of the set and are said to span the set. 

Now consider an n x m matrix A. Consider the m columns of the 
matrix as a set of n-vectors. Then the dimension of this set is called 
the rank of A. If the rows are considered as n different m-vectors 
(by transposing), it turns out that the dimension of this set is the same 
as the rank of A. The rank is always less than or equal to min(m, n), 
as a look at the definitions will disclose. An m x n matrix A for 
which rank(A) = min(m,n) is said to have full rank. 

Important rules about rank as a mapping from the matrix to the 
integers are 

1. rank(AB) $ min (rank(A),rank(B)); 
2. if A is nxm, n>m, and rank(A)=m, then ATA has an inverse, 

i.e. it is non-singular; 
3. if A is n x m and B is m x p, then (Sylvester's Inequality) 

rank(A) + rank(B) - m $ rank(AB) $ min(rank(A),rank(B)) 

4. if A = 0, then rank(A) = 0; 
5. if A = xyT where x is an n-vector and y is an m-vector and 

neither is zero, then rank(A) = 1; and 
6. if A is n x m and rank(A) = q, then there exist n-vectors Xi and 

m-vectors yj, n ~ q and m ~ q, such that 
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B.3 MATRIX INVERSES AND DECOMPOSITIONS 

Matrices may be factored, and the most basic factorization is of a 
square matrix into a product of two (nearly) triangular matrices, 
where 'nearly' allows a permutation of the rows. The representation 
in terms of a permutation of a lower triangular matrix multiplied by 
an upper triangular matrix is called an LU (or occasionally LR) 
decomposition. The reason for doing this is that it makes other 
operations easy. 

Lower-upper factorization 

Suppose that we have found matrices L and U such that 

A=LU 

where L is a permuted lower diagonal matrix with ones on the 
permuted diagonal, and U is upper diagonal. For example 

[: ~ :]=[! ~ ~][: :~] 
780 100 OO~ 

It is easy to show that if the inverses exist, then 

(AB)-I = B-1 A-I 

For the decomposition, 

A-I = U-IL-I 

which are relatively easy to compute. Even easier is the determinant 

det(A) = det(L) det(U) 
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which is easily shown to be 

n n 
det(A) =IT Ujj IT ijj 

i=l i=l 

This above is called an LU-factorization. 

Orthonormal factorization 

Another useful factorization is the orthonormal factorization, in which 
a rectangular matrix is factored into the product of an orthonormal 
matrix, i.e. a square matrix Q for which QQT = I, and an upper 
triangular matrix. For an n x m matrix A, 

A=QR 

where Q is n x nand R is n x m. It is useful for computing the best 
least squares solution to an overdetermined set of linear equations, i.e. 
a set for which there are more equations than unknowns. 

Singular value decomposition 

A very powerful decomposition is the singular value decomposition 
(SVD). If A is an n X m, n ~ m, complex matrix, then there exist 
unitary matrices Y and U, of dimension n x m and m x m, 
respectively, such that 

A =YSUH (B.1) 

where S = diag{crl,cr2, ... ,crm} is the matrix of eigenvalues of AAH 
and it is assumed 01 ~ 02 ~ ... ~ Om. The unitary property means 

yHY = 1m 

UHU = UUH = 1m 
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The matrices are all complex, and (B.l) constitutes a singular value 
decomposition of A. This amounts to a representation of A in terms 
of m rank one matrices 

m 
A = L criViVr 

;=1 

where Vi and Vi are the ith columns of V and V, respectively. 
It is direct to show that 

Because VH = V-I, clearly V are the eigenvectors of AHA and {cr7l 
are its eigenvalues. 

Similar properties involving V hold if n ~ m. 
When A is a function of frequency, then the transformation is also 

such a function. One name which has been suggested for the singular 
values under those circumstances is principal gains. The notations 
(j and Q: are frequently used for the largest and smallest singular 
values, crI and crm respectively. 

Modal decomposition 

Finally, there is the modal decomposition 

A=MLM-l (B.2) 

where L is the matrix with the eigenvalues of A on its main diagonal 
and (possibly) ones on the diagonal above the main, i.e. L is the 
Jordan form for A. M is the matrix of (generalized) eigenvectors of 
A. We elaborate slightly because this representation will be of 
considerable use to us . For a matrix A, a vector e and scalar A. such 
that 

Ae = A.e = eA. (B.3) 

are called an eigenvector and eigenvalue of A, respectively. A square 
matrix A of dimension n x n has n eigenvectors and up to n distinct 
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eigenvalues. Supposing the eigenvalues are distinct and calling them 
Al,A2, ... ,An and that the corresponding eigenvectors are called 
el.e2, ... ,en, we may write them all in the form 

. .. ... [~1 ~.2 ~. ] 
A [ e1 ; e, ; ... ; e.] = [e1 ; e, ; ... ; e.] ~ 0 A" 

Calling the matrix of eigenvectors M and the matrix of eigenvalues 
A gives 

AM=MA 

from which (B.2) follows because the eigenvectors are always linearly 
independent and hence M is invertible. The eigenvalues are computed 
from noting that the defmition (B.3) requires that 

(A -AI)e = 0 (B.4) 

which for e non-zero (and hence non-trivial) means (A - AI)-1 cannot 
exist and therefore 

det(A - AI)= 0 

This is a scalar equation in the unknown scalar A.. In general, it 
yields an nth order polynomial in A. and hence gives n values, possibly 
distinct, for the eigenvalues. For each eigenvalue, we can then find a 
solution of (B.4) for a corresponding eigenvector e. 

B.4 SIMILARITY TRANSFORMATIONS 

Suppose that we have an n-vector x which is the state vector in 
describing a certain linear system, so that the system is modelled in the 
form 
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x(k+ 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) (B.5) 

Suppose further that we decide to change the coordinate system in 
the representation, and to do this linearly. Then the new coordinates 
are a state vector w, where 

w =Tx (B.6) 

where presumably the matrix T is invertible, so that we can change 
back to the old coordinates if desired. To compute the dynamics for 
w, we substitute (B.5) into (B.6) to find 

w(k+ 1) = Tx(k+ 1) = TAx(k) + TBu(k) 

= TAT-1w(k) + TBu(k) 

and 

y(k) = CT-l w(k) 

The matrix TA T-l is said to be similar to A, and the change is 
called a similarity transformation. 

We first verify a couple of facts about the effects of the 
transformation. 

1. The similarity transformation does not change the eigenvalues of 
the system. This follows from considering the characteristic 
equation 

0= det(TAT-l- zI) = det(T) det(A - zI) det(T-l) 

so that the eigenvalues of the transformed system are the same as 
those of the original system. 

2. The input-output relation is unchanged. Consider the z-transform 
of the output of the w-system. 
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Y(z) = CT-I(zI - TAT-I)- l BU(z) 

= C (zI - A)-l BU(z) 

as in the original. 

It is particularly useful to do a tranformation into certain canonical 
forms. This is done in section B.12. 

B.S QUADRATIC FORMS, POSITIVE DEFINITE 
MATRICES, ETC. 

An expression of the form 

where the aij are scalars, is called a bilinear form in the 2n 
variables Xl, ... ,Xn and YI, .. . ,Yn, where we note that the expression is 
linear in the elements separately, i.e. with other elements fixed. It 
may be written with n-vectors x and y and square coefficient matrix 
A as 

(B.?) 

If A = I, then this is the inner product of x and y. If x = y, then 
(B.?) is called a quadratic form in the n variables XI,X2, ... ,Xn and 
may be written 

Q=xTAx 

Writing out the terms, we can find 

Q = au xi + (a12 + a21)xI X2 + (a13 + a31) Xl X3 

+ .. , + (aIn + anl)XIXn + a22 xi + (a23 + a32)x2 X3 

+ (a2n + an2)X2Xn + ... + annX; 

(B .8) 
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If we denote Cjk = (ajk + akj)/2, then we see this can be written as 

Q = Cl1 xi + (CI2 + C2I)XI X2 + ... + (Cln + CnI)XIXn 

2 2 + C22 X2 + (C23 + C32)X2 X3 + ... + CnnXn 

or in matrix form 

Q = xTCx 

where Cjk = Ckj, i.e. C is symmetric. Thus, any real quadratic form 
may be written in the form (B.8) where A is symmetric. With 
matrices, the above can be derived with 

(A + AT) 
Q = xT Ax = xT 2 x = xT Cx 

We will usually assume that a quadratic form uses a symmetric 
matrix in its representation. 

Any scalar function f(x) is called positive definite if it satisfies 
the conditions 

f(x) > 0 x * 0 

f(O) = 0 

It is called positive semidefinite if the first inequality is f(x) ~ O. 
It is negative definite if -f(x) is positive definite, and negative 
semidefinite if -f(x) is positive semidefmite. If the function is not 
one of the above, it is said to be indefinite. 

For the special function represented by a quadratic form, 

f(x) = XTCX 

the defmiteness is detennined by the properties of the matrix C. If 
the quadratic form is positive definite, for example, then we often will 
say that C is a positive definite matrix. This is slightly abusive of the 
terminology, but is very common. 
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It can be shown that the quadratic fonn is positive definite (the most 
usual case of interest) only if the symmetric matrix C is such that: 

1. C has full rank, C is invertible, C has a non-zero determinant, 
and other equivalent statements; 

2. C has positive eigenvalues; and 
3. the principal minor determinants, i.e. those whose diagonals are 

from the main diagonal of C, are all positive. In fact, only the n 
leading principal minors need be checked. The leading principal 
minors are 

[ 1 [ CII Cl2 C13] 
Cll Cl2 

[cn] C21 C22 C23 ... C 
C21 C22 

C31 C32 C33 

i.e. those k x k minors which have the first k elements of the 
main diagonal as their diagonals. 

Similar statements for positive semidefinite are: 

1. C has non-negative eigenvalues; and 
2. the principal minors (not just the leading ones) are all non­

negative. 

For negative definite quadratic forms, the matrix should exhibit: 

1. full rank, etc.; 
2. negative eigenvalues; and 
3. positive leading principal minors of even dimension and negative 

leading principal minors of odd dimension. 

For negative semidefiniteness, the matrix C should exhibit: 

1. non-positive eigenvalues; 
2. non-positive odd-dimensioned principal minors and non-negative 

even-dimensioned principal minors. 

When we choose positive definite matrices, we often simply select 
diagonal matrices with positive diagonal elements. This is particularly 
common in linear-quadratic optimal control problems. 
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The other place where quadratic forms appear is in estimation 
problems. Here, we are concerned with expected values of functions 
of random variables. It is easily shown that for a random n-vector y, 
the matrix given by 

is positive semidefinite. To show this, we consider a quadratic form, 
for arbitrary n-vector x 

xTpx = xT W {yyT} X = W {xTyyTx} 

=W{(xTy)2} ~O 

which follows because xT y is a scalar and the expected value of a 
scalar squared is necessarily non-negative. 

B.6 PROJECTION MATRICES 

Let 2"1 be a set of vectors which are a linear combination of columns 
of a matrix M, i.e. 2"1 is in the range space of M . This means there 
exists a vector q such that, if x is in 2"1, then x = Mq. Let2"2 be all 
other vectors of the same dimension as x; these vectors have no such 
representation in terms of M. We assume that M is n x m 
dimensional, and without loss of generality take m ::; n and M with full 
rank (= m). 

For any vector x, it must be a sum of two vectors, one in 2"1 and 
one in 2"2, i.e. 

x = XM + XNM 

where for some q, XM = Mq. To find q and hence XM, we compute 

x =Mq +XNM 

MTx = MTMq + MTXNM 
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Now XNM must be orthogonal to the columns of M by contradiction 
with its definition. (If for some column j, X~M Mj * 0, then choosing 
q with Qj * 0, qi = 0, gives a portion of XNM in2'l; a contradiction.) 
From this it follows that MT XNM = 0. Thus 

q=(MTM)-lMTx and x=Px+(I-P}x 

where P = M (MTM)-l MT is the projection matrix of x onto2i. 
We also see that 

x = Px + (I - P) x = XM + XNM 

A common notation denotes the projection of x orthogonal to M by 

P.L = (I - M (MTM)-l MT) 

and P.LP = P P .L = o. 
U sing this, if we have 23 = {x : M x = o} and 24 as its complement, 

then since any vector has a representation 

x = X3 + X4 = X3 + Mq 

where X3 E 23 and X4 E 24, we find 

X3 = P.L X 

B.7 MATRIX IDENTITIES 

Among the useful matrix identities are the Householder matrix 
inversion identities 

(A + BCBT)-l = A-I - A-I BC(C + CBT A-I BC)-l CBT A-I 

= A-I - A-I B (C-1 + BT A-I B)-I BT A-I (B.9) 

which are frequently used in obtaining computationally convenient 
forms for optimal filters and controllers. (It is assumed that all of the 
indicated inverses exist.) 
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Another useful expression is the form for the inverse of a matrix in 
terms of submatrices. In particular, 

[ Q S}1 _ [A B] 
T RJ - C D 

satisfies 

A = (Q - SR-l T)-1 

B =-ASR-l 

C =_R-lTA 

D = R-l + R-l TASR-l 

The above can all be verified by direct evaluation. For example, 
multiplying the second line of (B.9) by (A + BCBT) confirms 

1= I+A-lBCBT _A-IB (C-l+BT A-IB)-l(BT +BTA-lBCBT) = I 

B.8 THE CAYLEY-HAMILTON THEOREM 

The version of the Cayley-Hamilton theorem which we will use 
frequently is one which allows us to express power series in the 
matrix A as polynomials of no higher degree than n -1. 

Theorem: (Cayley-Hamilton) 
A square matrix satisfies its characteristic equation. Thus if 

')..n + al ')..n-l + a2 ')..n-2 + ... + an-I').. + an = 0 

is the characteristic equation of an n x n matrix A, then 
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Corollary 
A square matrix A has the property that any power of A, say Ak, can 
be written as a linear combination of the matrices Aj, j = 0, 1, ... , n -1. 

Corollary 
The matrix [B 1 A B 1 A 2 B 1 A k B] has no more linearly 
independent rows (has no greater rank) than the matrix [B 1 A B 
A2B 1 ... ; An-lB]. 

B.9 FUNCTIONS OF MATRICES 

Let a function of a scalar have a power-series expansion 

f(x) =L ajx j 

Then, subject to convergence, we define for a square matrix A that 

is the meaning of the notationfiA). 
It is straightforward to demonstrate that, if the eigenvalues of A are 

Aj, i = 1,2, ... , n and are distinct, and if the modal transformation is M, 
so that 

A =MAM-l 

then 

Example 

The most useful example for us is the matrix exponential. Since 

a a 2 ak 
eO. = 1 + -1 , + -2' + ... + -, + ... .. k. 
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for scalars, we define the matrix exponential to mean 

A A2 At 
eA = 1 + If + 2f + ... + k! + ... 

If A has distinct eigenvalues AI. A2, ... , An, then we may compute the 
matrix exponential as 

with suitable modifications using the Jordan form if the eigenvalues 
are repeated. 

B.10 MINIMIZATION 

There are several ways to justify an extremum of a matrix form. We 
consider the form 

F(U) = UT8U + UTTX + XTTTU + A 

and argue that the extremum of this over U as a function of X is given 
by 

U# =- 8-1TX (B.IO) 

provided 8-1 exists. In this, X is n x p, 8 is m x m, Tis m x n, U is 
m x p, and A is p x p. One way of justifying (B.IO) is to complete 
the square in F(U). Doing this, we fmd that 

F(U) = (U + 8-1 TX)T 8 (U + 8-1 TX) - XTTT8-1 TX + A 

Since only the first of the right-hand side terms depends upon U, it 
is clear that if 8 is positive definite, F(U) is minimized in some sense 
by choosing (U + 8-1 TX) = O. That sense is of course that the first 
term is zero and hence its trace, eigenvalues, and other scalar 
measures are zero. If p = 1, this is an ordinary quadratic form which 
is minimized by the given choice. 



www.manaraa.com

Minimization 891 

Alternative demonstrations result from fonnal differentiation and 
from expansion with a scalar parameter which is zero at the optimum. 
For the first, we take (formally) 

aF(U) au = 2SU + 2TX = 0 => U# = - S-l TX 

For the second, we assume U# is the optimum and let 

(B.ll) 

where ~ is an arbitrary matrix and (X is a scalar. Using this, it must 
be that the optimum occurs for (X = O. Thus we have 

F(U) = (U# + (XL\)T S (U# + (X~) + (U# + (X~)TTX 

+ XTTT(U# + (X~) + A 

= F(U#) + (X~TSU# + (XU#TS~ + (X2~TS~ + MTTX 

+ (XXTTT~ 

From this, 

a~~J) = ~TSU# + U#TS~ + 2(X~TS~ + ~TTX + XTTT~ 

The minimizing value is known to be at (X = O. Hence we have 

a~~u) = 0 = ~TSU# + U#TS~ + ~TTX + XTTT~ 

= ~T (SU# + TX) + (SU# + TX)T ~ 

For this to be true for arbitrary ~, it must be that (SU# + TX) = O. 
This gives (B.IO) as before when S-l exists. 

The last argument above can also be used to minimize a trace of a 
matrix. Thus, if we wish to find 
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~intr(U +S-1 TX)TS (U + S-1 TX) - XT TTS-l TX + A) (B.12) 

we may substitute as in (B.II) and look for an extremum with respect 
to the scalar a . Because of the symmetry of the matrix expression 
(B.12), the trace is non-negative and clearly has a minimum when its 
matrix function has a minimum. The latter has already been shown to 
happen when (B.IO) holds, but could also be done directly by taking 
the partial derivative of (B.12) with respect to a when (B.ll) is 
substituted, etc. 

B.II ACKERMANN'S FORMULA 

Given the n x n matrix A with characteristic equation 

and the n x 1 matrix B, we wish to find a I x n matrix K such that the 
matrix <P = A - BK has characteristic equation 

To do this, we first place A, B into a controllable canonical form 
using a similarity transform. In particular, let T be such that 

-al -a2 -a3 -an- l -an 

1 0 0 0 0 
0 I 0 0 0 

AT = T-IAT = 

0 0 0 0 0 
0 0 0 1 0 

1 
0 

BT = T-IB = (B.13) 

0 
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or alternatively the form 

0 1 0 0 0 
0 0 1 0 0 
0 0 0 0 0 

AT= T-IAT = 

0 0 0 0 1 
-an -an-I -an-2 -a2 -al 

BT=T-IB =m 

We define the controllability matrices for each representation, so 
that 

Qc = [ B ~ AB ~ ... ~ An-I B ] 

QcT=[BT~ATBTl ... lA~-IBT] 

= T-I [B ~ AB ~ ... ~ An-IB ] = T-IQc 

Clearly, we have 

and we remark the transformation exists if and only if Qc is non­
singular, which means the pair (A, B) is controllable. 

We notice that for any KT, in the first model we have 

-al-Kn -a2-KT2 ... -an-I-KTn-1 -an-KTn 
1 0 0 0 
0 I 0 0 

AT -BTKT = 

0 0 0 0 
0 0 I 0 
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so that the characteristic equation is 

Matching the desired closed-loop characteristic equation involves 
simply making 

and then adjusting for the transformation T by taking 

K= KTT-l 

Ackermann's formula simplifies some of the calculations, and in 
particular removes the need to compute the open-loop characteristic 
equation. To do this, it exploits the special structure of the AT matrix. 

To derive the formula, we first note that, because a matrix satisfies 
its characteristic equation, AT satisfies 

An An-l An-2 A I 0 T + al T + a2 T + ... + an-l T + an = (B.14) 

The same matrix substituted in the desired characteristic equation is 
not zero, but is a matrix 

Substituting for A~ from (B.14), we find 

Let ek = [0 0 .. . 0 I 0 ... 0 ]T be the unit vector with only the 
kth element non-zero. We observe that 
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and hence that 

From this it follows that 

e~ D(AT) = (al - al) eT + (a2 - a2)e! + ... + (an - an) e~ 

=KT 

Using all of the above, we finally have that 

K = KTT-l = e~D(AT)T-l = e~T-lD (TATT-l)TT-l 

= e~ T-l D(A) = e~ (QcT Q~l) D(A) 

K = e~ Q~l D(A) 

where the last follows from the easily shown fact that e~ QcT = e~ . 
We notice that this can be significantly easier to compute than actually 
performing all of the transformations. 

In the case of the second model, it is easy to show that 

Hence 

where we note that K~ has its components in reverse order from those 
above. Finally 

T T ' -1 = el T-lD(A) = el (QcTQc)D(A) 
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which, because 

gives 

and hence yields again the formula 

Thus the derivation is seen to be independent of the intermediate 
canonical representation. 

B.12 SPECIAL SIMILARITY TRANSFORMATIONS INTO 
THE STANDARD CANONICAL FORMS 

We may use canonical forms for the system representation when this 
is convenient, as by doing so we are not affecting the system 
behaviour. The important canonical forms are the controllable or 
phase variable form, the observable form, and the Jordan form, which 
often becomes a diagonal form. 

In the following subsections, we examine how to obtain these 
canonical forms . All reduce to having a similarity transformation, of 
course; it is only a matter of specifying which similarity 
transformation. 

For these transformations, it will be assumed that the system is 
described by 

x = Ax + Bu 

y=Cx 

where the characteristic equation of the A matrix is given by 
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=0 

and u and y are scalars. Below, the W matrix is defined by 

an-l an--2 a2 al I 

an-2 an--3 al I 0 

W= 
al I 0 0 0 
I 0 0 0 0 

The controllable canonical form 

To obtain the controllable, or phase variable, canonical form, we 
define the n x n matrix 

(We will see this in Chapter 22 as the controllability matrix.) Assume 
that Qc is invertible. Then the transformation x = Tz, with T defined 
as T = Qc W gives the state equations 

z = Acz + Bcu 

y= CTz 

where 

0 1 0 0 
0 0 1 0 0 

Ac = T-lAT = 

-an -an-l -al 
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Be = T-IB = 

o 
o 

o 
1 

(B.I5) 

and CT is not of fixed form, but is given by direct calculation. It 
might be remarked that Ae is a companion form of matrix A; 
companion forms are matrices with either first or last row or first or 
last column consisting of the negative coefficients of the characteristic 
equation and the remainder of the matrix zero except for an identity 
matrix of size (n -1) x (n -1) placed off the diagonal. (Other 
examples are in (B.16) and (B.I8).) 

The proof is possible in several ways; we choose to do a simple 
verification as in Ogata (1987). We first notice that the matrix A 
satisfies 

A Qe = [ AB 1 A 2 B 1 .. . 1 An B ] 

= [AB 1 A2B 1 .. . 1 An-IB 1-anB -an_lAB 

-'" - alAn-lB] 

where the last follows directly from the Cayley-Hamilton Theorem. 
Rewriting the last in matrix notation gives 

AQe = [B 1 AB 1 .. . 1 An-l B] 

000 
100 
010 

o 
000 

Now we have from the definition of Ae that 

0 
0 
0 

0 

1 

-an 
-an-l 
-an-2 

-a2 

-al 

(B.I6) 
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Ae = T-IAT = W-IQ~l AQe W 

but from (B.16) we can substitute for A Qe to get 

T Ae = W-lAe W 

which must be verified. It is easy but tedious to show that 

T 
WAe=Ae W 

as required, so that Ac is correctly given by the transformation. To 
verify Be, we need to show that 

Be = T-IB 

or 

B =TBe 

Computing the right-hand side of this we have 

1 
o 

=Qe 0 

o 

=B 

as required. The demonstration is very straightforward, using only 
the definitions of the quantities involved. 

An alternative controllable canonical form is given by (B.13), and 
its verification is similar. 
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The observable canonical form 

The observable canonical form is obtained much as the controllable 
form was. We define the observability matrix, an n x n matrix (in 
this case) given by 

Then our transformation is given by x = Tz where 

With this, we have 

z = Aoz + Bou 

y= Coz 

where 

Ao = T-lAT 

000 0 -an 

I o 0 0 -an-l 
0 1 0 0 -an-2 = (B.17) 

000 I -al 

Co =CT 

=[00000 ... 01] 
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The proof is almost identical to that given for the controllable 
form. Bo is in this case not of fixed form; the controllable and 
observable canonical forms are designed to fix the structure of the A 
and one of the B and C matrices. 

An alternative form has 

-al 1 0 ... 0 0 
-a2 0 1 ... 0 0 
-a3 0 0 ... 0 0 

= (B.I8) 

-an-l 0 0 0 1 
-an 0 0 ... 0 0 

I I 

Co=CT 

=[100 ... 00] (B.I9) 

This is developed in the same manner as above. 

The Jordan canonical form 

Most of the similarity transformation work in the text assumes that the 
eigenvalues of a square n x n matrix A are distinct, so that a modal 
matrix M, whose columns are eigenvectors of A, is suitable for the 
transformation 

M-IAM =A = diag{A},A2, ... ,An} 

From this follows that 

eAT = MeATM-l = Mdiag {exp(AIT),exp(A2T), ... ,exp(AnT)}M-l 

Ak = MAKM-l = Mdiag {At At ... ,A~}M-l 

More generally, some eigenvalues will be repeated. In this case, the 
similarity transformation is to a Jordan canonical form, given by a 
diagonal matrix consisting of Jordan blocks and exemplified by 
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Jn1O"1) 0 0 0 

0 Jn2(Al) 0 0 

J= 0 0 J n3(A2) 0 

0 0 0 In/"Aq) 

where each Jordan block Jk(A) is given by the k x k matrix 

AI00 0 
o A 1 0 

JiA) = 0 0 All 

o 0 0 0 A 

Thus nl + n2 + ... + np = n, p is the number of Jordan blocks, and 
the number of distinct eigenvalues is q ~ p. The number of Jordan 
blocks associated with each eigenvalue is at least 1 and is up to the 
number nT, the multiplicity of the eigenvalue; it is given by the 
number of independent eigenvectors associated with the eigenvalue. 
The size of a given Jordan block depends upon the number of 
generalized eigenvectors generated by a particular ordinary 
eigenvector. 

Let us expand the above by elaborating the definitions. A matrix A 
which has characteristic equation 

det(A.I - A) = 0 

will have n eigenvalues if the matrix is n x n. Some of these 
eigenvalues may be repeated, so that in fact the characteristic equation 
is 

where 
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There are q distinct eigenvalues and the eigenvalue Ai has 
multiplicity nri. A non-trivial vector e is a generalized eigenvector of 
the matrix if 

This means that for some i, and some k S i, we have 

(A - J..I)ke = 0 

If k = 1, then e is an (ordinary) eigenvector of the matrix A 
corresponding to the eigenvalue Ai. 

Let el be an ordinary eigenvector of A corresponding to an 
eigenvalue Ae. Then 

(A - Ae I) el = 0 

Let e2, e3, ... ,ek be the generalized eigenvectors of A for this 
eigenvalue. Then 

(A - AeI)2e2 = 0 

(A - AeI)3e3 = 0 

Subtraction of one of these from the one below it and factoring out 
(A - Ae I) :t. 0 means 

(A - AeI)e2 = el 

(A - Ae I) e3 = e2 

(B.20) 
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The above gives a method for generating the successive generalized 
eigenvectors of A: first find (ordinary) eigenvectors for each 
eigenvalue Ae, then generate the generalized eigenvectors up to the 
number given by the multiplicity n, of the eigenvalue. Continue until 
n eigenvectors have been found for the matrix. 

It is straightforward to convince oneself that the relationships 
(B.20) will lead to a Jordan block of dimension k x k for the 
eigenvalue "-e. 

Notice that if the Jordan form has all Jordan blocks of dimension 1, 
then the Jordan matrix is diagonal. 

For the Jordan block, it may be shown that 

eJT = I + JT + J212/2 + ... 

eAT TeAT 12eAT/2 Tk-l eATlk! 
0 eAT TeAT 

= 
0 0 0 eAT 

and that 

Am mAm-l (~)Am-2 (~)Am-3 (l~1)Am-2 

0 Am mAm-l (~)Am-2 
Jm = 

mAm-l 

0 0 0 Am 

where by convention the combinations (j) = 0 for j > m. The matrix 
with Jordan blocks will also be of block form when raised to a power 
or used in the exponential. 

Change of variable ordering 

Sometimes the companion matrix forms in the observable and 
controllable canonical forms look slightly different: the aj row (or 
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column) is the first rather than the last. This is a result of an ordering 
of variables and can be easily changed. The similarity transformation 
is 

0 0 0 0 0 0 1 
0 0 0 0 0 1 0 
0 0 0 0 I 0 0 

p= 
0 0 0 I 0 0 0 
0 0 I 0 0 0 0 
0 I 0 0 0 0 0 
I 0 0 0 0 0 0 

for which we see that P = P-l . Applying this, we see for example that 

000 0 -an 

1 o 0 0 -an--l 

P 010 0 -an--2 P 

000 I -al 

-at 1 0 0 0 
-a2 0 1 0 0 

= -a3 o 0 1 0 

-an 000 0 

when applied to (B.l7). Similar results hold for (B.1S). 

B.13 METRICS FOR MATRICES 

The norm of an element of a vector space is a scalar function, 
usually denoted II x II for an element x of the space, which has the 
following properties: 
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1. II x II ~ 0 and II x II = 0 if x = 0 
2. II-xII = IIxll 
3. IIx+yll~lIxll+llyll 

It can be seen that this is a generalization of the notion of absolute 
value for scalars. 

If a vector norm has been defined, an induced matrix norm is 
defined by 

The commonly used Euclidean norm for vectors is given by 

IIx II = ~xTx 

and can be shown to induce the spectral norm 

IIA lis = cr 

where (t denotes the positive root of the largest eigenvalue of AT A. 
Another norm is defined directly as 

IIAII =L laijl 
i,j 

Other norms can be defined. Two are of particular interest when A 
is a function. With minor restrictions (no poles on the imaginary 
axis), we define IIA(s)112 as 

IIA(s)lh = (2~ jtr[AGOl)ATGOl)ldOl Y 
and IIA(s) 1100 as 

IIA(s) 1100 = supcr(A(jro» 
ro 
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where cr is the positive square root of the largest eigenvalue of 
A(jro)AH(jro), and the superscript H denotes the complex conjugate 
transpose. We remark that 

cr(A(jro))) = IIA(jro) lis 

The set of all matrix functions A(s) which are proper, in that each 
element ails) has no more finite zeros than poles, and for which 
II A(s) 1100 < 00 constitutes a Lebesgue space (denoted Loo). If in 
addition the functions are exponentially stable, i.e. have no poles with 
real parts non-negative, they constitute a Hardy space, denoted Hoo. 

The use of norms is common in advanced control theory and has 
been for many years. Currently it is part of the foundation of robust 
control theory using transfer functions. Accordingly, more 
information has been presented in section 33.3. 

B.14 FURTHER READING 

Matrix methods appear as needed in most texts, with many of them 
having reviews. One starts with linear algebra texts, but control 
theory specific results are often in textbooks such as Anderson and 
Moore (1989). 
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Description of random 
processes 

The modelling of systems sometimes requires the explicit modelling of 
randomness in the system or its signals. Such models are based in the 
notions of probability theory, but for the purposes of this book and 
indeed for much of control theory only the means and variances of the 
signals are ordinarily needed. 

C.I EVENTS, PROBABILITIES, AND PROBABILITY 
DENSITY FUNCTIONS 

For describing random situations, we use probability theory. This is 
built up from three axioms concerning events: 

1. Pr(any event) ~ 0; 
2. Pr(n) = 1, where n denotes the union of all possible events; and 
3. Pr(A and B) = Pr(A) + Pr(B), when AnB = <1>, i.e. the 

intersection of A and B is the null set <1>. 

The above notions are consistent with a relative frequency 
interpretation of probability and also with our intuitive notions. 

If an event is associated with a number, that number is called a 
random variable. For example, the event that a certain face of a die 
shows when the die is rolled may be associated with the number of 
spots on that face. For the random variable x, we may describe its 
event probabilities using the cumulative probability function P, as in 

P(x :S X) = Pr(event that the random number is :S X) 

=F(X) 

It follows that 
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o ~ P{x ~X) ~ 1 

o ~F{X) ~ 1 

It is often true that there exists a function p{x), called the 
probability density function (p.d.f.), such that 

x 
F{X) = P(x ~ X) = f p(~) d~ 

-00 

If this holds, then it follows that 

dF(x) 
p{x) = dx 

00 

f p{~)d~ = 1 
-00 

X2 

P{XI < X ~ X2) = F{X2) -F{Xl) = f p{x) dx 
Xl 

If an event structure can provide us with two (or more) random 
variables x and y, then we may define a joint cumUlative 
distribution function 

and 

P(y ~ Y, x ~ X) = F(Y,X) 

y X 

F{Y,X) = f f p('l),~)d~d'l) 
--00 -00 

(y ) d2F(y,x) 
p ,x = dydx 

If the random variables are independent, then 

F{Y,X) = F{Y)F(X) 
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Whether or not they are independent, a conditional joint 
cumulative distribution function may be defined as 

F(Y, X) 
F(X I Y) == F(Y) = P(x ~ X I y ~ Y) 

This is the probability that x ~ X when it is known that the random 
variable y has value ~ Y. Using this, a conditional joint 
probability density function for y = Y may be derived, assuming 
the relevant quantities exist and are non-zero, as 

( I ) p(y,x) 
p x y = p(y) 

These, we note, are functions of Yand not distributions over y. It 
turns out that 

00 

f p(x I Y) dx = I 
-00 

p(x I Y) ~ 0 

00 00 

-00 -00 

where the last is called the marginal density (or marginal p.d.f.) of 
x, as it is in fact a probability density function. 

C.2 A VERAGES AND MOMENTS: MEANS AND 
VARIANCES 

If gO is any function, we define the expected value, or expectation, 
of the random variable g(x) as 

00 

cW[g(x)] = cWg(x) == f g(;) p(;) d; 
-00 

= g(x) 
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and similarly 

00 00 

Wg(x,y) = J J g(~, '\»p(~, '\»d~d'\) 
-00 -00 

Notice that although x (and y) may be random variables, Wg(x) is a 
number (constant). Furthermore, since 

W[ag(x) + ~f(x)] = aWg(x) + ~Wf(x) 

we see that W[ . ] is a linear operator. 
The expectation operator is particularly useful in manipulating 

moments. The most common are given here. 

• Mean 
00 

W[x] = J xp(x)dx = x 

• Mean square 
00 

W[x2] = J x 2 p(x) dx 
-00 

• nth moment 
00 

W[xn] = J xn p(x) dx 
-00 

Central moments, defined relative to the mean, are particularly 
useful: 

• nth central moment 
00 

W[(x_X)n] = J (x - x)np(x)dx 
-00 

• First central moment 

W(x-X)=O 
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• Variance or second central moment 
00 

02 = W[(x - i)2] = J (x - x)2 p(x) dx 
-00 

= (standard deviation)2 

C.3 RANDOM PROCESSES 

If an event generates or is associated (in principle) with a function of 
time (or some other variable), then we have a random process. If we 
take that random process x at some point in time t, the result x(t) is a 
random variable. To completely describe a random process, we need 
in principle to know the joint p.d.f. 

for all n = 1,2, ... , and all times ti, i = 1,2, ... ,n. This task is reduced 
somewhat if the process is of special type: gaussian, Poisson, 
stationary, ergodic, etc., as discussed below. 

Moments 

The commonly used moments of a random process are the first and 
second moments. 

• Mean value function 
00 

met) = f x(t) p(x(t» dx(t) 
-00 

• Correlation function 

.9i xy(tt, t2) = g'[x(tt)y(t2)] 

00 

= f X(tl) y(t2) p(X(tl),y(t2» dx(tl) dy(t2) 
-00 
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• Autocorrelation function 

9f x(tl,t2) = 9f xx(tl. t2) 

In the special case called a stationary random process, the p.d.f. 
is not dependent upon the value of time, but only on the time between 
samples. In equation fonn 

for all 't, n, and ti. If stationarity cannot be shown, it may be 
sufficient to show or assume the process is wide sense stationary. This 
needs 

m(t) = x(t) = m = constant 

9fx(tl +'t, t2 +'t) =9f itl, t2) =9f itl -t2,0) =9fitl -t2) 

where the last is a notational convenience. 
The second central moment of a stationary random process is given 

by 

Vector cases 

=9fx(tt. t2) - m2 

= ~x(tl, t2) 

The above generalizes nicely when a random variable or function is in 
fact a vector: we simply use matrix notations to keep track of the 
elements, which after all are jointly distributed random variables. 
Thus let xCt) be a vector function of time. We look at its moments 
and find that the mean value function is easily found: 

xCt) = S"[x(t)] = n-vector with elements S"Xi(t) 
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For the second moment, we write 

!HxCtl,t2) = {rij = g'Xi(t})X/t2)} 

= g'[X(tl)XT(t2)] 
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which is clearly an nXn matrix; it is termed the (auto)-correlation 
matrix; the corresponding central moment 

~itl, t2) = {Cij= g'(Xltl) - mi(tl» (Xj(t2) - m/t2»} 

= g'[X(tl)XT(t2)] - m(tl)mT(t2) 

is called the (auto)-covariance matrix. 
If the process is stationary, then the mean value function is constant 

and 

9l x(tl, t2) = 9l x(tl - t2) 

~x(tl,t2) = ~x(tl - t2) 

are symmetric. 
We notice that ~iO) has terms cij = f5'(Xi - Xj)(Xj - Xj). Hence 

where Pij has the property -1 ~ Pij ~ 1 and is called the correlation 
coefficient. The matrix is called the covariance matrix. 

In the important case in which the noise is white (see below), or at 
least uncorrelated, we have 

9li't) = R 

=0 

with the notation 

't=0 
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where 0 is the Dirac delta function in continuous time or the 
Kronecker delta in discrete time (in which case the notation is usually 
O(iT,jD or Dij). We notice that it follows from the definitions that the 
matrices91x are positive semi-definite. 

In the above, no mention has been made of the p.d.f. of the random 
processes. In particular, a process may be white or uncorrelated 
without being gaussian, in spite of a common presumption to the 
contrary. 

C.4 SPECTRA 

For a stationary random process x(t), we can compute the Fourier 
transform of the auto-correlation function to yield the power 
spectrum S1: 0») 

00 

yx< 0») = J 9l x( 't) e-jO>t d't 
-00 

from which it follows that 

9l x< 't) = -21 j Yx( 0») e-jO>t dO) 
1t -00 

and in particular 

00 

9l iO) = 2~ J YX< co) dO) 
-00 

We note from the definition that if 9l x( 't) = R 0 ('t), then 
YX< 0») = R = constant. The process is then called a white noise 
process, because it contains all frequencies equally as white light is 
modelled, and we see that it is uncorrelated in time. 
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C.S EFFECT OF LINEAR SYSTEMS 

If the stationary scalar random process x(t) is passed through a linear 
system with impulse response h(t) ~ H(jOO), then it follows from the 
definitions of the quantities that the scalar output process yet), given 
by 

has 

yet) = f h(a.) x(t - a.) do. = x(t) ** h(t) 

Ry(t) = h(t) ** h(t) ** RxCt) 

.9'/(0) = HGoo)H(-jro).9'x(OO) (C.1) 

These representations are vital in the study of random processes. 
Particularly noteworthy in (C.1) is that, given a spectral density 
.9'y( (0), we can in principle produce noise with this spectrum by 
passing white noise (with .9'x(OO) = 1) through a linear system with 
transfer function R(s), where the transfer function is chosen so that 

.9'y(OO) = IHGoo)1 2. 

C.6 GAUSSIAN PROCESSES 

An n-vector x is a gaussian (or normal) random variable if its 
probability density is of the form 

1 1 
p(x) = (21t)n12 ISII12 exp [-!(x - m)T S-1I2(x - m)] 

for some n-vector m and positive semidefinite n x n matrix S. One 
can show that 

g"(x) = m 

g"«x) - m)(x - m)T) = S 

A common notation for this is N(m, S). 
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A random process x(t) is gaussian if vectors x(tj), i = 1,2, .. . are 
jointly gaussian for any times ti. This latter means that the vectors 
formed by, e.g. 

are N(my(t),Sy(t)), where t = [tl t2 .. . tk], i.e. the mean and 
covariance matrices may depend upon the times involved. We 
frequently restrict the discussion to only a single time t, so that 
N(mxCt),SxCt)) are of primary interest. 

C.7 TIME AVERAGES AND ERGODICITY 

We frequently estimate properties, especially the first and second 
moments, of random processes. In a single experiment, we may 
attempt to find W(x(t)) from measurements yeti) of X(ti) and do 
processing such as 

A process for which all such time averages can be expected to yield 
good estimates of the process moments is said to be ergodic. Clearly 
an ergodic process must be stationary, but the reverse need not hold. 

C.8 FURTHER READING 

Random processes and probability theory have entire books devoted to 
them. Among the classics are those by Doob (1953) and Loeve 
(1963). More recent and readable for beginners is Papoulis (1977, see 
Part 3, especially Ch. 9). 

In the same type of context as we use in this book, a review of 
random processes is given by Anderson and Moore (1979, Appendix 
A). 
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Fuzzy control 784 
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crossover frequency 478 
margin 332, 336, 389, 477 
scheduling 740, 743 
small gain theorem 803, 808 

Gaussian process 919 
Gershgorin 380 
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controllability 517 
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Guard filters 71 

Hamiltonian 619,632 
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Historical notes 3 
Human factors 86 
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Integral control 171 
Integral of error functions 

IAE - integral of absolute 
error 337 

ISE - integral of square 
error 338 

IT AE - integral of time x 
absolute error 338 

ITSE - integral of time x 
error squared 338 

MSE - mean square error 338 
Internal rate of return 42 
Interrupts 94, 118 
I/O (input-output) 99, 117, 144 

Jordan form 248,258,901 
Jury's stability test 362 

Kalman filter 679 
application 112 
design 679,694 
extended 687 
for identification 731 
gain 684, 695 
steady-state form 685, 695 

Ladder logic programming 
128, 162 

Lagrange multipliers 607 
Lagrangian 206 
Laplace transform 

application 277 
Learning control 761 

non-parametric control 776 
Linear quadratic (LQ) optimal 

control 
application 112 
problem definition 604 
regulator (LQR) 641 
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solution 611,629, 662 
with gaussian noise (LQG) 

704 
with LTR 820 

Linearization 213, 520 
L TR, see Linear quadratic, 

Robust control 
Luenberger observer, see 

Observers 
Lyapunovequation 399,403 
Lyapunov methods 

applications to design 401, 
732,778 

first method 404 
second method 396 
see also Stability 

MAP 152 
M-circles 386 
Matrices 

background 873 
decompositions 878 
identities 887 
metrics, see Norms 
quadratic forms 883 
similarity transformations 

881 
Matrix inversion lemma 613, 

887 
Measurement noise 211, 301, 

681 
Minimal realization 254 
Minimum energy control 519 
Minimum time problems 605, 

624,634,655 
Minimum variance control 646 
MIT rule 750 
Model reference adaptive 

control (MRAC) 741, 749 
Modelling 182 

continuous time 221 
discrete time 271 

examples 186 
sources 193 

Models 
analogue 184 
disturbances and noise 301 
errors 216, 266, 268, 304, 

346,802 
mathematical 184, 185, 186 
pilot plant 184 
scale 184 
simulation 184, 185, 192-3 

MIMO (Multi-Input-Multi-
Output) 

decoupling compensators 841 
loosely coupled systems 846 
pairing 834 
relative gain array 838 
sequential loop closing 841 
slow and fast mode 

decoupling 848 
structures 827 
see also Robust control, 

Transfer functions 
Modified z-transform 326 
Motors 80 

model 186 
Multiplexers 70 
Multitasking 117 
Multivariable design, see 

MIMO 

N-circles 386 
Networks, communications 147 

protocols 150 
technology 149 
topology 148 

Neural networks, see ANNs 
Nichols charts 239, 393, 488 
Noise 

filtering, see Observers, 
Kalman filter 

models 209, 266 
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in filtering 687 
state-space models 259 

Non-minimum phase 476 
Norms 800,905 

induced 488,800,906 
Nyquist methods 238,374 

design 381 
Nyquist contours 375 
Nyquist plots 376, 488 
stability 316 

Observability 565 
definition 341,565 
index 569 
tests 567 

Observable form 245,257, 
291,583 

Observers 578, 690, 700 
design 578 
in noise 690 
reduced order 587 

Open-loop feedback 605,658 
Operating systems 117, 131 
Optimal control 599,645 

criteria 338, 603 
see also Linear quadratic 

(LQ) optimal control 
Optimal estimation, see 

Estimators, Kalman filter 
Optimalizing control 740, 744 
Overshoot 333, 445 

Parameter optimization 652 
Parametric identification, see 

System identification 
Performance measures 333, 

436,445 
see also Integral control, 

Optimal control, 
Overshoot 

PD controller 174 

Index 937 

Phase crossover frequency 478 
Phase leadllag compensators 

179,481 
Phase margin 332, 336, 389, 

477 
Phase plane 636 
PI controller 172 
PID controllers 104, 112, 165, 

167,309,481 
PLC 101, 160 
Pole placement 

controller use with observers 
700 

criteria 435 
design methods 

in regions 560 
state-space controllers 

497, 523 
state-space observers 580 
transfer function 

controllers 549 
Pole polynomial 236 
Pole-zero mapping 312 
Poles 224,275 
Pontryagin principle 600,617 
Principle of optimality 660 
Program structure 122 
Programmable logic 

controllers, see PLC 
Programrninglanguages 122 

examples 126 
Proportional control 168 

Quadratic form 883 
Quantization 

effects 107, 211 
Quasilinearization 668, 671 

Random noise 916 
Random processes 909 

gaussian 919 
spectra 917 
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Reachability 347 
Reaction curve tuning 176 

see also Tuning rules of 
thumb 

Recursive filters, see Estimators 
Regulation 7 
Riccati equation 613,631 

algebraic 642,665 
Rise time 333 
Robust control 797 

definitions 344 
design approach 817 
LQRlLTR problems 820 
robust performance 810 
robust stability 807 
state-space 824 

Root contour 428 
Root locus 

analysis 419 
definition 419 
design 430 
sketches 420 

Root selection 435 
Roundoff error 107 
Routh array 356 

Sample and hold 70 
Sampling 110,111,211 
Selection of components 

evaluation/combination 36 
factors 34 

Self-tuning control 164, 739, 
746 

see also System identification 
Sense lines 95 
Sensitivity 342 
Sensors 

examples 55 
intelligent 71 
interfacing 68 
properties 51 

Separation property 699 

Servomechanism 9,83 
Set point 7, 192 
Settling time 334 
Signal conditioners 70, 89 

Similarity transforms 256, 298 
Singular values 286, 490, 800, 

879 
SISO (Single-Input-Single-

Output) 223 
Small gain theory 803, 808 
Smart sensors, see Sensors 
Smith-McMillan form 233, 

284,379,805 
Software timing 116 
Stability 

BmO tests 
Jury 362 
Nyquist criterion 374 
Routh 356 

conditions 353 
definitions 

BmO 330 
Lyapunov 331 

Lyapunov tests 396,403 
relative 332, 365, 389, 477 

Stabilization 545 
State estimators, see 

Estimators - state 
State feedback 697 
State-space 240 

MIMO 249 
models 259, 287, 292 
variables 240 

Steady-state error 409 
Steepest descent 674 
Stochastic control 755 
Structure of control systems, 

see Controller 
configuration 

System identification 194, 711 
adaptive observer 732 
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Cauer form 721 
frequency response 714 
Kalman filtering 731 
least squares method 724, 

727, 729 
parameter determination 

713, 734 
partitioned filters 736 
real time 729, 731, 732, 734 

System type 347, 413 
Systems engineering 23 

component selection 33 
levels 24 
structural determination, see 

MIMO 

Three-term controllers, see PID 
controllers 

Top-down design 32 
Tracking and trajectory 

following 9, 621 
Trajectory shaping problems 

10 
Transducers 

principles 49, 76 
see also Sensors 

Transfer functions 
continuous time 223 
conversions to state-space 

253 
discrete time 279 
forms 225 
manipulation 230 
matrix fraction 237 
MIMO 231,282 
Smith-McMillan form 233 

Transition matrix 262, 298 

Index 939 

Transmission zeros 231 
Tuning 

rules of thumb 111, 174 
see also Self-tuning control 

Two-point boundary value 
problem 630 

Unit pulse 225 
Unit step 228 

Validation 134 
Variation of extremals 674 
Verification 134 

Warping 475 
Watt governor 4, 8 
Weighting matrices 

in Roo-design 811 
in LQ control 640 

White noise 917 
Windup 105, 180 
Word length 106, III 
Worst case design 
w-transform 364,474,485 

Y oula parameterization 804 

Zero-order hold (ZOR) 89, 
212 

Zero polynomial 236 
Zeros 224 
z-transform 278, 300, 859 

equivalent to Laplace 867 
modified 326 
properties 860 
table 870 

Ziegler-Nichols tuning 175 
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